
ALBERTA 3.0: Technical Manual

Alfred Schmidt

Zentrum fuer Technomathematik
Universität Bremen
Bibliothekstr. 2
D-28359 Bremen, Germany

Daniel Köster

P+Z Engineering GmbH
(formerly Universität Augsburg)

Kunibert G. Siebert

Fachbereich Mathematik
Universität Stuttgart
Pfaffenwaldring 57
70569 Stuttgart, Germany

Claus-Justus Heine

Fachbereich Mathematik
Universität Stuttgart
Pfaffenwaldring 57
70569 Stuttgart, Germany

http://www.alberta-fem.de

ALBERTA is an Adaptive multi-Level finite element toolbox using Bisectioning refinement and Error
control by Residual Techniques for scientific Applications.

Version: ALBERTA-3.0, March 13, 2014

http://www.alberta-fem.de

ii

PREFACE iii

Preface to the Technical Manual for ALBERTA-3.0

This is the “Technical Manual” for the finite-element toolbox ALBERTA, version 3, a refer-
ence manual which intentionally lists all functions and data-structures exported to application
programs. In other words: this manual contains the definition of what commonly is referred
to as “API” – Application Program Interface. After the release of version 1.2 – which was
accompanied by publishing the ALBERTA-book [24] through Springer (or vice-versa: the book
was accompanied by the release of version 1.2) – there was already a successor labelled AL-
BERTA-2.0 (with slight bug-fixes in version 2.0.1), see www.alberta-fem.de. Version 2.0 was
in its principal part the outcome of the labours of Daniel Köster.

Already at that time it was felt by the developers of ALBERTA that at least a reference
manual – documenting the API – should be available as part of the source-code distribu-
tion of ALBERTA– or at least should be accessible through a less “fixed” medium than a
book, prominently to make it easier to cover new developments and fix bogus documenta-
tion concerning API-functions, without having to republish the entire book. As a slightly
strange side-effect, the reference manual starts with Chapter 2, which explains the example
applications contained in the alberta-3.0-demo package. Occasionally, this manual contains
back-references to “The Book”, which is inconvenient, because that part is not yet publicly
available. My apologies; the reader is referred to the ALBERTA-1.2 book [24]. The theoretical
concepts explained there still hold.

On the other hand: providing “on-line” documentation does not grant the same merits
as publishing a book. One way out of this dilemma was to separate a “book”-section from
the API-description. The book intentionally describes the abstract concepts underlying the
ALBERTA-toolbox, while the API-documention – this document – lists the available functions
and data-structures in a (hopefully) application oriented manner, is available on-line, and thus
can be maintained more easily.

ALBERTA-3.0 is primarily the product of extensions added by me to the toolbox during
my time at the University of Freiburg. The principal differences to version 2.0 – according to
my judgement – are

• Vector-valued basis functions.

• Direct sums of finite element spaces, which – together with the previous point – allow
for the implementation of several of the known stable mixed discretizations for the
Stokes-problem in a fairly convenient manner.

• An add-on package libalbas (distributed with the core-package) implementing some
of the more fancy mixed Stokes-discretizations.

• Periodic boundary conditions, including, but not limited to mere translations, main-
taining compatibility with the “sub-mesh” – or better: “trace-meshes” – introduced in
version 2.0.

• (Iso-)parametric meshes of arbitrary degree (the support in ALBERTA-2.0 was limited
to at most piece-wise quadratic parameterizations). To be honest: V3.0 does not support
anything beyond degree 4, but simply because the underlying Lagrangian finite element
spaces are only implemented up to degree 4.

• Space-meshes in arbitrary co-dimension, of course with support for higher order param-
eterizations.

http://www.alberta-fem.de

iv PREFACE

• Iso-parametric higher-order boundary approximation, implementing the algorithms de-
scribed in [15]. A fairly complicated issue.

• A cleaner separation of geometric data defined in the macro-triangulation and the inter-
pretation of this data by the application. In particular, the implementation of boundary
conditions has changed substantially, see Section 3.2.4.

• Limited support for Discontinuous Galerkin methods, implemented through a new struc-
ture describing kind of boundary operators.

• Likewise, differential operators optionally may be accompanied by contributions “liv-
ing” on the boundary of the computational domain. This opens the possibility to, e.g.,
implement Robin boundary conditions without having to define a trace-mesh, simply
because a boundary integral has to be computed to assemble the operator.

• Example-programs for most of the new features, distributed along with the suite of
demo-programs (see Chapter 2).

There are special “Compatibility Notes” interspersed with the documentation for the indi-
vidual structures and functions, concerning differences to the predecessor ALBERTA-2.0.

Most of the time my work on the toolbox through the recent years – after Daniel Köster
stopped working on ALBERTA because of his occupation in his industrial employment – was a
one-man show. However, lately there were noticable contributions by the following people: Re-
becca Stotz (Paraview interface, static condensation for the “Mini”-element, synchronization
between the reference manual and the source-code of the library, “HOWTO-port-ellipt.txt”
document), Notger Noll (C-source-code for a block-matrix solver interface, work on the com-
patibility layer for read mesh() function, inclusion of the symmlq-solver [20], synchronization
between the reference manual and the source code), Christian Haarhaus (read mesh() com-
patibility layer, thus enabling ALBERTA-3.0 to read version-1.2 data. Grid-generator inter-
face from FreeFem++ to ALBERTA), Björn Stinner (contributing code for mesh-smoothing
through the computation of conformal mappings to the unit-sphere. “Ported” to recent ver-
sions of the toolbox by Rebecca Stotz)

Further, my thanks go to Thilo Moshagen for beta-testing and fruitful discussions, Thomas
Bonesky for beta-testing, Robert Nürnberg and Ed Tucker for their bug-reports. In the likely
case that somebody is missing in above lists: my apologies, if so, then he or she was left
out unintentionally. ALBERTA-3.0 serves as a back-end for Thilo Moshagens albertasystems
package (a C++ toolbox for the discretization of systems of many scalar equations), my own
unfem++-toolbox (a toolbox for unfitted finite elements); it is also supported by the recent
development versions of Dune (which uses the implementation of the hierarchical mesh from
ALBERTA, besides supporting “mesh-implementations” from a variety of other packages).

Of course, most prominently I’d like to thank the two principal authors of ALBERTA-1.2,
Kunibert Siebert and Alfred Schmidt, and Daniel Köster.

Freiburg im Breisgau, March 13, 2014 Claus-Justus Heine

Contents

Preface iii

Contents v

List of Figures xi

List of Tables xiii

2 Implementation of model problems 1
2.1 libdemo.a . 2

2.1.1 Online-graphics . 2
2.1.2 parse parameters() . 3

2.2 Poisson equation . 4
2.2.1 Include file and global variables . 4
2.2.2 The main program for the Poisson equation 6
2.2.3 The parameter file for the Poisson equation 8
2.2.4 Initialization of the finite element space 10
2.2.5 Functions for leaf data . 11
2.2.6 Data of the differential equation . 11
2.2.7 The assemblage of the discrete system 13
2.2.8 The solution of the discrete system . 15
2.2.9 Error estimation . 16

2.3 Nonlinear reaction–diffusion equation . 19
2.3.1 Program organization and header file 20
2.3.2 Global variables . 21
2.3.3 The main program for the nonlinear reaction–diffusion equation 21
2.3.4 Initialization of leaf data . 22
2.3.5 The build routine . 22
2.3.6 The solve routine . 23
2.3.7 The estimator for the nonlinear problem 24
2.3.8 Initialization of problem dependent data 25
2.3.9 The parameter file for the nonlinear reaction–diffusion equation 29
2.3.10 Implementation of the nonlinear solver 30

2.4 Heat equation . 41
2.4.1 Global variables . 41
2.4.2 The main program for the heat equation 41
2.4.3 The parameter file for the heat equation 44

v

vi CONTENTS

2.4.4 Functions for leaf data . 46
2.4.5 Data of the differential equation . 47
2.4.6 Time discretization . 48
2.4.7 Initial data interpolation . 48
2.4.8 The assemblage of the discrete system 49
2.4.9 Error estimation . 53
2.4.10 Time steps . 54

2.5 Installation of ALBERTA and file organization 57
2.5.1 Installation . 57
2.5.2 File organization . 58

3 Data structures and implementation 59
3.1 Basic types, utilities, and parameter handling 59

3.1.1 Basic types . 59
3.1.2 Message macros . 60
3.1.3 Memory allocation and deallocation 64
3.1.4 Parameters and parameter files . 68
3.1.5 Parameters used by the utilities . 72
3.1.6 Generating filenames for meshes and finite element data 72

3.2 Data structures for the hierarchical mesh . 73
3.2.1 Dimension of the mesh . 73
3.2.2 The local indexing on elements . 75
3.2.3 BLAS-like routines for DIM OF WORLD- and N LAMBDA MAX-arrays 75
3.2.4 Boundary types . 81
3.2.5 The MACRO EL data structure . 84
3.2.6 The EL data structure . 86
3.2.7 The EL INFO data structure . 87
3.2.8 Caching of geometric element quantities 90
3.2.9 The INDEX macro . 91
3.2.10 Application data on leaf elements . 92
3.2.11 The RC LIST EL data structure . 93
3.2.12 The MESH data structure . 94
3.2.13 Initialization of meshes . 96
3.2.14 Projection of new nodes . 97
3.2.15 Reading and writing macro triangulations 99
3.2.16 Import and export of macro triangulations from/to other formats . . . 107
3.2.17 Mesh traversal routines . 110

3.3 Administration of degrees of freedom . 117
3.3.1 The DOF ADMIN data structure . 118
3.3.2 Vectors indexed by DOFs: The DOF * VEC data structures 121
3.3.3 Interpolation and restriction of DOF vectors during mesh adaptation . 124
3.3.4 The DOF MATRIX data structure . 125
3.3.5 Access to global DOFs: Macros for iterations using DOF indices . . . 130
3.3.6 Access to local DOFs on elements . 131
3.3.7 BLAS routines for DOF vectors and matrices 133
3.3.8 Reading and writing of meshes and vectors 133

3.4 The refinement and coarsening implementation 136

CONTENTS vii

3.4.1 The refinement routines . 136
3.4.2 The coarsening routines . 142

3.5 Implementation of basis functions . 143
3.5.1 Data structures for basis functions . 143
3.5.2 Vector-valued basis functions . 156
3.5.3 Chains of basis function sets . 157
3.5.4 Lagrange finite elements . 158
3.5.5 Discontinuous Lagrange finite elements 172
3.5.6 Discontinuous orthogonal finite elements 174
3.5.7 Basis-function plug-in module . 174

3.6 Implementation of finite element spaces . 175
3.6.1 The finite element space data structure 175
3.6.2 Access to finite element spaces . 176

3.7 Direct sums of finite element spaces . 179
3.7.1 Data structures for disjoint unions and direct sums 179
3.7.2 List-management and looping constructs 180
3.7.3 Managing temporary coefficient vectors 183
3.7.4 Data transfer during mesh adaptation 188
3.7.5 Forming direct sub-sums . 189

3.8 Data structures for parametric meshes . 191
3.8.1 Piece-wise polynomial parametric meshes 192
3.8.2 The PARAMETRIC structure . 198

3.9 Implementation of submeshes . 204
3.9.1 Allocating submeshes . 204
3.9.2 Routines for submeshes . 206
3.9.3 Refinement and coarsening of submeshes 208

3.10 Periodic finite element spaces . 210
3.10.1 Definition of periodic meshes . 210
3.10.2 Periodic meshes and finite element spaces 212
3.10.3 Element-wise access to periodic data 214
3.10.4 Periodicity and trace-meshes . 214

3.11 Per-element initializers for quadrature rules and basis function sets 215
3.11.1 Basics . 215
3.11.2 Per-element initializers and vector-valued basis functions 217
3.11.3 Tag management . 217
3.11.4 Mesh-traversal and per-element initializers 218

4 Tools for finite element calculations 221
4.1 Routines for barycentric coordinates . 221
4.2 Data structures for numerical quadrature . 222

4.2.1 The QUAD data structure . 223
4.2.2 The QUAD FAST data structure . 227
4.2.3 Integration over subsimplices (walls) 230
4.2.4 The WALL QUAD data structure . 231
4.2.5 The WALL QUAD FAST data structure 232
4.2.6 Caching of geometric quantities on quadrature nodes 234

4.3 Functions for the evaluation of finite elements 236

viii CONTENTS

4.4 Calculation of norms for finite element functions 243
4.5 Interface for application provided functions 244
4.6 Calculation of errors of finite element approximations 248
4.7 Tools for the assemblage of linear systems . 251

4.7.1 Element matrices and vectors . 251
4.7.2 Data structures and functions for matrix assemblage 263
4.7.3 Matrix assemblage for second order problems 266
4.7.4 Matrix assemblage for coupled second order problems 278
4.7.5 Data structures for storing pre-computed integrals of basis functions . 279
4.7.6 Data structures and functions for updating coefficient vectors 287
4.7.7 Boundary conditions . 291
4.7.8 Interpolation into finite element spaces 301

4.8 Data structures and procedures for adaptive methods 302
4.8.1 ALBERTA adaptive method for stationary problems 302
4.8.2 Standard ALBERTA marking routine 306
4.8.3 ALBERTA adaptive method for time dependent problems 307
4.8.4 Initialization of data structures for adaptive methods 310

4.9 Implementation of error estimators . 312
4.9.1 Error estimator for elliptic problems 312
4.9.2 Error estimator for parabolic problems 318

4.10 Solver for linear and nonlinear systems . 324
4.10.1 Krylov-space solvers for general linear systems 324
4.10.2 Krylov-space solvers for DOF matrices and vectors 328
4.10.3 SOR solvers for DOF-matrices and -vectors 335
4.10.4 Saddle-point problems, CG solver for Schur’s complement 336
4.10.5 Saddle-pointer solvers for DOF-matrices and -vectors 340
4.10.6 OEM matrix-vector functions for DOF-matrices and -vectors 350
4.10.7 Preconditioners . 352
4.10.8 Multigrid solvers . 362
4.10.9 Nonlinear solvers . 366

4.11 Graphics output . 369
4.11.1 One and two dimensional graphics subroutines 369
4.11.2 gltools interface . 372
4.11.3 GRAPE interface . 374
4.11.4 Paraview interface . 378
4.11.5 Geomview interface . 380
4.11.6 GMV interface . 380

4.12 Contributed “add-ons” . 381
4.12.1 add ons/bamg2alberta/ . 381
4.12.2 add ons/block solve/ . 381
4.12.3 add ons/geomview/ . 390
4.12.4 add ons/gmv/ . 390
4.12.5 add ons/grape/ . 390
4.12.6 add ons/libalbas/ . 390
4.12.7 add ons/meshtv/ . 394
4.12.8 add ons/paraview/ . 394
4.12.9 add ons/static condensation/ . 394

CONTENTS ix

4.12.10add ons/triangle2alberta/ . 397
4.12.11add ons/write mesh fig/ . 397

Bibliography 399

Index 401

Data types, symbolic constants, functions, and macros 409

List of data types 409

List of symbolic constants 410

List of functions 412

List of macros 420

x CONTENTS

List of Figures

2.1 Solution of the linear Poisson problem and corresponding mesh 4
2.2 Graph of the unstable solution, nonlinear reaction-diffusion problem 27
2.3 Graph of the physical solution, nonlinear reaction-diffusion problem 27
2.4 Adaptivity: heat-equation, time-step size and number of DOFs, 2d 46
2.5 Adaptivity: heat-equation, time-step size and number of DOFs, 3d 46

3.1 Local indices of edges/neighbours in 2d and local indices of edges in 3d. . . . 75
3.2 Refinement at curved boundary . 97
3.3 Local indexing of DOFs . 132
3.4 Mesh-refinement, maintenance of DOFs . 140
3.5 DOFs and local numbering of the basis functions for linear elements 160
3.6 DOFs and local numbering of the basis functions for quadratic elements . . . 164
3.7 Cubic DOFs on a patch of two triangles. 170
3.8 Parametric meshes, triangulation of a disc . 193
3.9 Paremetric meshes, transformation to the reference element 193
3.10 Trace-meshes, numbering of subsimplices . 205
3.11 Trace-meshes, 1d slave-elements . 205
3.12 Modified refinement algorithm. 209

xi

xii LIST OF FIGURES

List of Tables

3.1 Implemented BLAS routines for REAL D vectors 82
3.2 Implemented BLAS routines for matrix-vectors multiplication. 83
3.3 Implemented BLAS routines for DOF vectors and matrices 134
3.4 Local basis functions for linear finite elements in 1d. 159
3.5 Local basis functions for linear finite elements in 2d. 159
3.6 Local basis functions for linear finite elements in 3d. 159
3.7 Local basis functions for quadratic finite elements in 1d. 163
3.8 Local basis functions for quadratic finite elements in 2d. 163
3.9 Local basis functions for quadratic finite elements in 3d. 163
3.10 Local basis functions for cubic finite elements in 1d. 169
3.11 Local basis functions for cubic finite elements in 2d. 169
3.12 Local basis functions for cubic finite elements in 3d. 170
3.13 Local basis functions for quartic finite elements in 1d. 172
3.14 Local basis functions for quartic finite elements in 2d. 172
3.15 Local basis functions for quartic finite elements in 3d. 173

4.1 BLAS-operations for element-vectors and -matrices 264
4.2 BLAS-operations for element-vectors and -matrices 265
4.3 ADAPT STAT structure, default initialization 311
4.4 ADAPT INSTAT, default initialization . 312
4.5 adapt initial sub-structure of an ADAPT INSTAT, default initialization . . . 313
4.6 adapt space sub-structure of an ADAPT INSTAT, default initialization 313
4.7 Iterative solvers, storage requirements and matrix types 326
4.8 Parameters read by mg s() and mg s init() 366

xiii

xiv LIST OF TABLES

Chapter 2

Implementation of model problems

In this chapter we describe the implementation of two stationary model problems (the linear
Poisson equation and a nonlinear reaction-diffusion equation) and of one time dependent
model problem (the heat equation). Here we give an overview how to set up an ALBERTA
program for various applications. We do not go into detail when refering to ALBERTA data
structures and functions. A detailed description can be found in Chapter 3. We start with
the easy and straight forward implementation of the Poisson problem to learn about the
basics of ALBERTA. The examples with the implementation of the nonlinear reaction-diffusion
problem and the time dependent heat equation are more involved and show the tools of
ALBERTA for attacking more complex problems. Removing all LATEX descriptions of functions
and variables results in the source code for the adaptive solvers. During the installation of

ALBERTA (described in Section 2.5) a tar-archive

PREFIX/share/alberta/alberta-VERSION-demo.tar.gz

is installed as well (PREFIX denoting the installation prefix, as specified by the --prefix

parameter for the configure script). The tar-archive can be extracted at a location where
the respective user has write permissions:

jane_john_doe@street ~ $ tar -xf PREFIX/share/alberta/alberta-VERSION-demo.tar.gz

jane_john_doe@street ~ $ cd alberta-VERSION-demo

jane_john_doe@street ~/alberta-VERSION-demo $ less README

jane_john_doe@street ~/alberta-VERSION-demo $ cd src/2d

jane_john_doe@street ~/alberta-VERSION-demo/src/2d $ make ellipt

jane_john_doe@street ~/alberta-VERSION-demo/src/2d $./ellipt

The archive extracts into a sub-directory having the same name as the base-name
of the tar-archive. The corresponding ready-to-compile programs can be found in
the files ellipt.c, heat.c, and nonlin.c, nlprob.c, nlsolve.c in the subdirectory
alberta2-demo/src/Common/. Executable programs for different space dimensions can be
generated in the subdirectories alberta2-demo/src/1d/, alberta2-demo/src/2d/, and
alberta2-demo/src/3d/ by calling make ellipt, make nonlin, and make heat. There are
also a couple of other programs, please refer to the file README in the top-level directory of the
demo-package. The idea was to generate one variant of the ellipt.c program for each new
feature introduced for the current ALBERTA version (higher order parametric meshes, higher
co-dimension parametric meshes, periodic meshes, vector-valued basis functions and direct
sums of finite element spaces, limited support for DG-methods). Mostly, these programs have
the name ellipt-FEATURE.c.

1

2 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

The make-files in the demo-package interprete a DEBUG-switch specified on the command-
line. This can be useful when modifying the demo-programs to suite the user’s own needs. The
resulting programs will be compiled with debugging information, such that they can be run
from within a source-level debugger. Mind the leading call to make clean, the make-program
cannot know that it should remake the programs!

jane_john_doe@street ~/alberta-VERSION-demo/src/2d $ make DEBUG=1 clean ellipt

jane_john_doe@street ~/alberta-VERSION-demo/src/2d $ gdb ellipt

2.1 libdemo.a

The example programs share some common routines for processing command-line switches,
parameter parsing and for some sort of online-graphics. These routines consequently have
been put into a small library called libdemo.a. The proto-types for the support functions are
provided through the file alberta-demo.h, its essential part looks like follows:

#include < l im i t s . h>
#ifndef PATHMAX
define PATHMAX 1024
#endif

#include <a l b e r t a . h>
#include ” graph i c s . h”
#include ”geomview−graph i c s . h”

extern void parse parameter s (int argc , char ∗argv [] , const char ∗ i n i t f i l e) ;

2.1.1 Online-graphics

As can be seen in the source-code listing above, the definitions, for graphical are in turn
included from graphics.h and geomview-graphics.h. The demo-programs described in this
manual use only the definitions from graphics.h, resulting in either a home-brewed 2d graph-
ics, or output through the gltools package, if that could be found during the configuration
of the ALBERTA distribution.

void graph i c s (MESH ∗mesh , DOF REAL VEC ∗u h , REAL (∗ g e t e s t) (EL ∗ e l) ,
REAL (∗u) (const REAL D x) , REAL time) ;

void graph i c s d (MESH ∗mesh , DOF REAL VEC D ∗u h , DOF REAL VEC ∗p h ,
REAL (∗ g e t e s t) (EL ∗ e l) ,
const REAL ∗(∗u) (const REAL D val , REAL D x) , REAL time) ;

The proto-type for the geomview-interface looks like follows:

extern void togeomview (MESH ∗mesh ,
const DOF REAL VEC ∗u h ,
REAL uh min , REAL uh max ,
REAL (∗ g e t e s t) (EL ∗ e l) ,
REAL est min , REAL est max ,
REAL (∗ u l o c) (const EL INFO ∗ e l i n f o ,

const REAL B lambda ,
void ∗ud) ,

2.1. LIBDEMO.A 3

void ∗ud , FLAGS f i l l f l a g s ,
REAL u min , REAL u max) ;

Geomview is used by the demonstration programs for parametric meshes in higher
(co-)dimension. We refer the reader to the example programs for the calling conventions for
the graphic-routines (although we know that these should be explained in some more detail).
Specifically, when gltools is in use, then pressing the key “h” in one of the output-windows
displays a very brief online help in the terminal the program is running in.

As ALBERTA was developed in an environment where mostly Unix-like operating systems
were in use, the online-graphics uses the X window system (www.xorg.org), so redirection of
graphical output to other other machines by means of the DISPLAY environment variable is
possible.

2.1.2 parse parameters()

We give a more detailed explanation for the following routine:

Prototype

void parse parameter s (int argc , char ∗argv [] , const char ∗ i n i t f i l e) ;

Parameters

argc, argv The program’s command-line parameters, as passed to the main() func-
tion. See any C programming manual.

init file The name of the file containing the parameters, usually having the form
"INIT/<program>.dat", but the name is arbitrary and the choice is left to the ap-
plication.

Description

The function parse parameters() initializes the access to parameters defined in pa-
rameter files, commonly found in

alberta-VERSION-demo/src/2d/INIT/<program>.dat

and likewise for the other dimensions. The access to the parameters is explained in
greater detail, especially in the section dealing with the demonstration for the Poisson-
problem, see Section 2.2 below. The actual source-code for parse parameters() is
contained in src/Common/cmdline.c (the path being relative to the demo-package).

parse parameters() implements some command-line switches, prominently the -h or
--help switches:

jane_john_doe@street ~/alberta-VERSION-demo/src/2d $./ellipt --help

Usage: ./ellipt [-h] [-i INITFILE] [-p PARAMETERS]

[--help] [--init-file=INITFILE] [--parameters=PARAMETERS]

jane_john_doe@street ~/alberta-VERSION-demo/src/2d $./ellipt -i myparams

--parameters="degree=3’do_graphics=0"

www.xorg.org

4 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

So -i or --init-file allows the user to override the name of the default parameter-
file, and -p or --parameters allows the user to override specific parameters from the
parameter-file, in the example above jane john doe request that the finite element
simulation is to be run with Lagrange elements of degree 3 and that no graphical
output should appear during the simulation. The general format of the argument to
--parameters or -p is

KEY1=VALUE1’KEY2=VALUE2...

So “=” separates a given key from its value, and a single quote separates the key-value
pairs. Note that it might be necessary to escape the single quote, or to enclose the entire
argument by double quotes (as in the example given above).

2.2 Poisson equation

In this section we describe a model implementation for the Poisson equation

−∆u = f in Ω ⊂ Rd,
u = g on Γd,

∂νu+ αr u = gn on Γn, with ∂Ω = Γd∪̇Γn.

Apart from the slightly complicated boundary conditions this is the most simple elliptic prob-
lem, but the program presents all major ingredients for general scalar stationary problems.
Also, Poisson equations often occur as sub-problems in much more complicated settings.
Modifications needed for a nonlinear problem are presented in Section 2.3.

Figure 2.1: Solution of the linear Poisson problem and corresponding mesh. The pictures were
produced by GRAPE.

Data and parameters described below lead in 2d to the solution and mesh shown in
Figure 2.1. The implementation of the Poisson problem is split into several major steps which
are now described in detail.

2.2.1 Include file and global variables

All ALBERTA source files must include the header file alberta.h with all ALBERTA type
definitions, function prototypes and macro definitions:

2.2. POISSON EQUATION 5

#include <a l b e r t a . h>

This is realised by including the header file alberta-demo.h which additionally includes the
header files graphics.h and geomview-graphics.h for graphical output:

#include ” a lber ta−demo . h”

leads to:

#include <a l b e r t a . h>
#include ” graph i c s . h”
#include ”geomview−graph i c s . h”

For the linear scalar elliptic problem we use four global pointers to data structures holding
the finite element space and components of the linear system of equations. These are used in
different subroutines where such information cannot be passed via parameters.

stat ic const FE SPACE ∗ f e s p a c e ;
stat ic DOF REAL VEC ∗u h ;
stat ic DOF REAL VEC ∗ f h ;
stat ic DOFMATRIX ∗matrix ;

fe space a pointer to the actually used finite element space; it is initialized by the function
main(), see Section 2.2.4;

u h a pointer to a DOF vector storing the coefficients of the discrete solution; it is initialized
by the function main()

f h a pointer to a DOF vector storing the load vector; it is initialized by the function
main()

matrix a pointer to a DOF matrix storing the system matrix; it is initialized by the function
main()

The data structure FE SPACE is explained in Section 3.6.1, DOF REAL VEC in Section 3.3.2, and
DOF MATRIX in Section 3.3.4. Details about DOF administration DOF ADMIN can be found in
Section 3.3.1 and about the data structure MESH for a finite element mesh in Section 3.2.12.

We use another set of three global variable which store information about the boundary
conditions in use:

stat ic REAL rob in a lpha = −1.0;
stat ic bool pure neumann = f a l s e ;
stat ic BNDRY FLAGS d i r i c h l e t ma sk ; /∗ b i t−mask o f D i r i c h l e t segments ∗/

robin alpha The zero-order factor if Robin-boundary conditions are prescribed, see Sec-
tion 4.7.7.3.

pure neumann When prescribing Neumann boundary conditions on all parts of the bound-
ary, then the solution is only determined up to an additive constant. In this case it is
necessary to perform a mean-value “correction” before, e.g., computing an error in the
L2-norm.

dirichlet mask Initialized by a call to GET PARAMTER() in the main-function. A bit-mask
tagging boundary segments on which the discrete solution is subject to Dirichlet boundary
conditions. See Section 3.2.4 and Section 4.7.7.1.

6 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

2.2.2 The main program for the Poisson equation

The main program is very simple, it just includes the main steps needed to implement any
stationary problem. Special problem-dependent aspects are hidden in other subroutines de-
scribed below.

We first read a parameter file (indicating which data, algorithms, and solvers should be
used; the file is described below in Section 2.2.3). The call to parse parameters() is further
explained in the section Section 2.1.2 above. The parameters fetched from the parameter file
at this point in the code are:

dim Dimension of the mesh.

filename The file-name for the macro-triangulation.

degree The desired polynomial degree for the finite element triangulation (should be be-
tween 1 and 4).

n refine The number of global refinements of the mesh to be performed before starting
the simulation.

do graphics A boolean value for disabling all graphical output (individual windows can
be disabled separately, see below in Section 2.2.3.

dirichlet bit The number of the boundary segment where Dirichlet boundary conditions
should be imposed. See also Section 3.2.4. Boundary segments having another number than
dirichlet bit are Neumann- or Robin-boundaries.

robin alpha If positive, the zero-order parameter for a Robin-boundary condition. If neg-
ative and no boundary segment is a Dirichlet-boundary, then the discrete right-hand side
will be forced to obey the mean-value zero compatibility condition. See Section 4.7.7.

Having fetched those basic parameters from the data file INIT/ellipt.dat we read the
macro triangulation and initialize the mesh (the basic geometric data structure). The subdi-
rectories Macro/ in the alberta-VERSION-demo/src/*d/ directories contain data for several
sample macro triangulations. How to read and write macro triangulation files is explained in
Section 3.2.15.

Now that the domain’s geometry is defined, we allocate standard Lagrange basis functions
and from them generate a finite element space through a call to get fe space(). The mesh
is globally refined if necessary. A call to graphics() displays the initial mesh, unless the
parameter do graphics has been initialized to false, in which case no graphical output at
all will appear.

Afterwards, the DOF vectors u h and f h, and the DOF matrix matrix are allocated. The
vector u h additionally is initialized with zeros and the function pointers for an automatic
interpolation during refinement and coarsening are adjusted to the predefined functions in
fe space->bas fcts. The load vector f h and the system matrix matrix are newly assembled
on each call of build(). Thus, there is no need for interpolation during mesh modifications or
initialization. Additionally, we initialize the global variable dirichlet mask, setting the bit
dirichlet bit to mark those parts of the boundary, which are subject to Dirichlet bound-
ary conditions. The variable dirichlet mask is later on used by several other routines: for
matrix assembly, to install Dirichlet boundary conditions into the load vector, and during the
computation of the error estimate.

The basic algorithmic data structure ADAPT STAT introduced in Section 4.8.1 specifies the
behaviour of the adaptive finite element method for stationary problems. A pre-initialized

2.2. POISSON EQUATION 7

data structure is accessed by the function get adapt stat(); the most important members
(adapt->tolerance, adapt->strategy, etc.) are automatically initialized with values from
the parameter file; other members can be also initialized by adding similar lines for these mem-
bers to the parameter file (compare Section 4.8.4). Eventually, function pointers for the prob-
lem dependent routines have to be set (estimate, get el est, build, solve). Since the as-
semblage is done in one step after all mesh modifications, only adapt->build after coarsen

is used, no assemblage is done before refinement or before coarsening. These additional as-
semblage steps are possible and may be needed in a more general application, for details see
Section 4.8.1.

The adaptive procedure is started by a call of adapt method stat(). This automatically
solves the discrete problem, computes the error estimate, and refines the mesh until the
given tolerance is met, or the maximal number of iterations is reached, compare Section 4.8.1.
Finally, WAIT REALLY allows an inspection of the final solution by preventing a direct program
exit with closure of the graphics windows. The WAIT REALLY-blocker is not necessary when
using the gltools package for the graphical output.

int main (int argc , char ∗∗ argv)
{

FUNCNAME(”main”) ;
MACRODATA ∗data ;
MESH ∗mesh ;
int n r e f i n e = 0 , dim , degree = 1 , d i r i c h l e t b i t = 1 ;
const BAS FCTS ∗ l ag range ;
stat ic ADAPT STAT ∗adapt ;
char f i l ename [PATHMAX] ;

/∗ ∗∗
∗ f i r s t o f a l l , i n i t i a l i z e the acces s to parameters o f the i n i t f i l e
∗∗∗ ∗/

parse parameter s (argc , argv , ”INIT/ e l l i p t . dat”) ;

GETPARAMETER(1 , ”mesh dimension ” , ”%d” , &dim) ;
GETPARAMETER(1 , ”macro f i l e name” , ”%s ” , f i l ename) ;
GETPARAMETER(1 , ” polynomial degree ” , ”%d” , °ree) ;
GETPARAMETER(1 , ” g l oba l r e f inement s ” , ”%d” , &n r e f i n e) ;
GETPARAMETER(1 , ” on l i n e g raph i c s ” , ”%B” , &do graph i c s) ;
GETPARAMETER(1 , ” d i r i c h l e t boundary” , ”%d” , &d i r i c h l e t b i t) ;
GETPARAMETER(1 , ” rob in f a c t o r ” , ”%f ” , &rob in a lpha) ;

/∗ ∗∗
∗ ge t a mesh , and read the macro t r i a n g u l a t i o n from f i l e
∗∗∗ ∗/

data = read macro (f i l ename) ;
mesh = GETMESH(dim , ”ALBERTA mesh” , data ,

NULL /∗ i n i t n o d e p r o j e c t i o n () ∗/ ,
NULL /∗ i n i t w a l l t r a f o s () ∗/) ;

f r e e macro data (data) ;

i n i t l e a f d a t a (mesh , s izeof (struct e l l i p t l e a f d a t a) ,
NULL /∗ r e f i n e l e a f d a t a () ∗/ ,
NULL /∗ c o a r s e n l e a f d a t a () ∗/) ;

8 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

/∗ ∗∗
∗ i n i t i a l i z e the g l o b a l v a r i a b l e s shared across b u i l d () , s o l v e ()
∗ and es t imate () .
∗∗∗ ∗/

l ag range = ge t l a g r ange (mesh−>dim , degree) ;
TEST EXIT(lagrange , ”no lagrange BAS FCTS\n”) ;
f e s p a c e = g e t f e s p a c e (mesh , lagrange−>name , lagrange , 1 /∗ rdim ∗/ ,

ADM FLAGS DFLT) ;

g l o b a l r e f i n e (mesh , n r e f i n e ∗ mesh−>dim , FILL NOTHING) ;

i f (do graph i c s) {
MSG(”Disp lay ing the mesh .\n”) ;
g raph i c s (mesh , NULL /∗ u h ∗/ , NULL /∗ g e t e s t () ∗/ , NULL /∗ u exac t ()

∗/ ,
HUGEVAL /∗ t ime ∗/) ;

}

matrix = ge t do f mat r i x (”A” , f e space , NULL /∗ c o l f e s p a c e ∗/) ;
f h = g e t d o f r e a l v e c (” f h ” , f e s p a c e) ;
u h = g e t d o f r e a l v e c (”u h” , f e s p a c e) ;
u h−>r e f i n e i n t e r p o l = f e space−>ba s f c t s−>r e a l r e f i n e i n t e r ;
u h−>c o a r s e r e s t r i c t = f e space−>ba s f c t s−>r e a l c o a r s e i n t e r ;
d o f s e t (0 . 0 , u h) ; /∗ i n i t i a l i z e u h ∗/

i f (d i r i c h l e t b i t > 0) {
BNDRY FLAGS SET(d i r i ch l e t mask , d i r i c h l e t b i t) ;

}

/∗ ∗∗
∗ i n i t adapt s t r u c t u r e and s t a r t adap t i v e method
∗∗∗ ∗/

adapt = ge t adap t s t a t (mesh−>dim , ” e l l i p t ” , ”adapt” , 2 ,
NULL /∗ ADAPT STAT s to rage area , o p t i ona l ∗/) ;

adapt−>es t imate = est imate ;
adapt−>g e t e l e s t = g e t e l e s t ;
adapt−>bu i l d a f t e r c o a r s e n = bu i ld ;
adapt−>s o l v e = so l v e ;

adapt method stat (mesh , adapt) ;

i f (do graph i c s) {
MSG(”Disp lay ing u h , u , (u h−u) and the f i n a l e s t imate .\n”) ;
g raph i c s (mesh , u h , g e t e l e s t , u , HUGEVAL /∗ t ime ∗/) ;

}
WAIT REALLY;

return 0 ;
}

2.2.3 The parameter file for the Poisson equation

The following parameter file INIT/ellipt.dat is used for the ellipt.c program in the 2d
case:

2.2. POISSON EQUATION 9

mesh dimension: 2

macro file name: Macro/macro.amc

global refinements: 1

polynomial degree: 3

dirichlet boundary: 1 % type of the Dirichlet boundary segment,

% must correspond to the boundary types used

% used in the macro triangulation. Use a value

% <= 0 to disable Dirichlet boundary

% conditions. Neumann boundary conditions will

% hold for all boundary segments with a type

% different from the value specified here.

robin factor: -1 % > 0: Robin b.c.

online graphics: true % global gfx kill-switch

% graphic windows: solution, estimate, mesh, and error if size > 0

graphic windows: 400 400 400 400

% for gltools graphics you can specify the range for the values of

% discrete solution for displaying: min max

% automatical scaling by display routine if min >= max

gltools range: 0.0 -1.0

solver: 2 % 1: BICGSTAB 2: CG 3: GMRES 4: ODIR 5: ORES

solver max iteration: 10000

solver restart: 10 % only used for GMRES

solver tolerance: 1.e-8

solver info: 2

solver precon: 2 % 0: no precon

% 1: diag precon

% 2: HB precon

% 3: BPX precon

% 4: SSOR, omega = 1.0, #iter = 3

% 5: SSOR, with control over omega and #iter

% 6: ILU(k)

precon ssor omega: 1.0 % for precon == 5

precon ssor iter: 1 % for precon == 5

precon ilu(k): 8 % for precon == 6

error norm: 1 % 1: H1_NORM, 2: L2_NORM

estimator C0: 0.1 % constant of element residual

estimator C1: 0.1 % constant of jump residual

estimator C2: 0.0 % constant of coarsening estimate

adapt->strategy: 1 % 0: no adaption / 1: GR / 2: MS / 3: ES / 4: GERS

adapt->tolerance: 1.e-4

adapt->MS_gamma: 0.5

adapt->MS_gamma_c: 0.1

adapt->ES_theta: 1.9

adapt->ES_theta_c: 0.2

adapt->GERS_theta_star: 0.6

adapt->GERS_nu: 0.1

adapt->GERS_theta_c: 0.1

10 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

adapt->coarsen_allowed: 1

adapt->max_iteration: 20

adapt->info: 8

WAIT: 1

The file Macro/macro.amc storing data about the macro triangulation for Ω = (0, 1)d

can be found in Section 3.2.15 for 2d and 3d. The polynomial degree parameter selects
the third order Lagrange elements. dirichlet boundary marks those parts of the bound-
ary which are subject to Dirichlet boundary conditions, see also Section 3.2.4. The value
of dirichlet boundary corresponds to the numbers assigned to boundary segments in the
macro-triangulation.

By graphic windows, the number and sizes of graphics output windows are selected.
This line is used by the graphics() routine. For gltools graphics, the range of function values
might be specified (used for graph coloring and height). If no graphical output at all is desired,
then online graphics can be set to false. Individual output windows can be disabled by
setting their size to 0. The size is specified in units of screen pixels.

The solver for the linear system of equations is selected (here: the conjugate gradient
solver), and corresponding parameters like preconditioner and tolerance. Some preconditioners
need additional parameters, these are specified here as well.

Parameters for the error estimator include values of different constants and selection of the
error norm to be estimated (H1- or L2-norm, selection leads to multiplication with different
powers of the local mesh size in the error indicators), see Section 4.9.1.

An error tolerance and selection of a marking strategy with corresponding parameters
are main data given to the adaptive method. For the meaning of the individual parameters
the reader is referred to the conceptional Section 1.5.2 and Section 1.5.3 in the book-part of
the manual, and to Section 1.5 which describes the implementation of adaptive methods in
ALBERTA.

Finally, the WAIT parameter specifies whether the program should wait for user inter-
action at additional breakpoints, whenever a WAIT statement is executed as in the routine
graphics(), for instance, in case the gltools package is not in use.

The solution and corresponding mesh in 2d for the above parameters are shown in Fig-
ure 2.1. As optimal parameter sets might differ for different space dimensions, separate pa-
rameter files exist in 1d/INIT/, 2d/INIT/, and 3d/INIT/.

2.2.4 Initialization of the finite element space

In contrast to prior versions of ALBERTA, finite element spaces may be newly allocated at any
time. Since this involves updating DOF information on all elements, however, it is advisable
to allocate finite element spaces before refining a mesh, see also Sections 3.3.6 and 3.6.2.

For the scalar elliptic problem we need one finite element space for the discretization. In
this example, we use Lagrange elements and we initialize the degree of the elements via a
parameter. The corresponding fe space is initialized by get fe space() which automatically
stores at the mesh information about the DOFs used by this finite element space.

It is possible to allocate several finite element spaces, for instance in a mixed finite element
method, compare Section 3.6.2.

2.2. POISSON EQUATION 11

2.2.5 Functions for leaf data

As explained in Section 3.2.10, we can “hide” information which is only needed on a leaf
element at the pointer to the second child. Such information, which we use here, is the local
error indicator on an element. For this elliptic problem we need one REAL for storing this
element indicator.

After mesh initialization by GET MESH() in the main program, we have to give information
about the size of leaf data to be stored and how to transform leaf data from parent to chil-
dren during refinement and vice versa during coarsening. The function init leaf data()

initializes the leaf data used for this problem. Here, leaf data is one structure struct

ellipt leaf data and no transformation during mesh modifications is needed. The details
of the LEAF DATA INFO data structure are stated in Section 3.2.10.

i n i t l e a f d a t a (mesh , s izeof (struct e l l i p t l e a f d a t a) ,
NULL /∗ r e f i n e l e a f d a t a () ∗/ ,
NULL /∗ c o a r s e n l e a f d a t a () ∗/) ;

The error estimation is done by the library function ellipt est(), see Section 4.9.1. For
ellipt est(), we need a function which gives read and write access to the local element error,
and for the marking function of the adaptive procedure, we need a function which returns the
local error indicator, see Section 4.8.1. The indicator is stored as the REAL member estimate
of struct ellipt leaf data and the function rw el est() returns for each element a pointer
to this member. The function get el est() returns the value stored at that member for each
element.

struct e l l i p t l e a f d a t a
{

REAL est imate ; /∗ one r e a l f o r the e s t imate ∗/
} ;

stat ic REAL ∗ rw e l e s t (EL ∗ e l)
{

i f (IS LEAF EL(e l))
return &((struct e l l i p t l e a f d a t a ∗)LEAF DATA(e l))−>es t imate ;

else
return NULL;

}

stat ic REAL g e t e l e s t (EL ∗ e l)
{

i f (IS LEAF EL(e l))
return ((struct e l l i p t l e a f d a t a ∗)LEAF DATA(e l))−>es t imate ;

else
return 0 . 0 ;

}

2.2.6 Data of the differential equation

Data for the Poisson problem are the right hand side f and boundary values g. For test
purposes it is convenient to have access to an exact solution of the problem. In this example

12 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

we use the function

u(x) = e−10 |x|2

as exact solution, resulting in

∇u(x) = −20x e−10 |x|2

and

f(x) = −∆u(x) = −(400 |x|2 − 20 d) e−10 |x|2 .

Here, d denotes the space dimension, Ω ⊂ Rd. The functions u() and grd u() are the im-
plementation of u and ∇u and are optional (and usually not known for a general problem).
The functions g(), gn() and f() are implementations of the boundary values and the right
hand side and are not optional. Of course, g() needs only to be implemented when Dirichlet
boundary conditions apply, likewise gn() only for inhomogeneous Robin or Neumann bound-
ary conditions (see Section 4.7.7.3 and Section 4.7.7.2.

#define GAUSS SCALE 10 .0

stat ic REAL u(const REAL D x)
{

return exp(−GAUSS SCALE∗SCPDOW(x , x)) ;
}

stat ic const REAL ∗ grd u (const REAL D x , REAL D grd)
{

stat ic REAL D bu f f e r ;
REAL ux = exp(−GAUSS SCALE∗SCPDOW(x , x)) ;
int n ;

i f (! grd) {
grd = bu f f e r ;

}

for (n = 0 ; n < DIMOFWORLD; n++)
grd [n] = −2.0∗GAUSS SCALE∗x [n]∗ ux ;

return grd ;
}

/∗ ∗∗
∗ problem data : r i g h t hand s ide , boundary va l u e s
∗∗∗ ∗/

stat ic REAL g (const REAL D x) /∗ boundary va lues , not op t i ona l ∗/
{

return u(x) ;
}

stat ic REAL gn (const REAL D x , const REAL D normal) /∗ Neumann b . c . ∗/
{

return rob in a lpha > 0 .0
? SCPDOW(grd u (x , NULL) , normal) + rob in a lpha ∗ u(x)
: SCPDOW(grd u (x , NULL) , normal) ;

}

2.2. POISSON EQUATION 13

stat ic REAL f (const REAL D x) /∗ −Del ta u , not op t i ona l ∗/
{

REAL r2 = SCPDOW(x , x) , ux = exp(−GAUSS SCALE∗ r2) ;
return −(4.0∗SQR(GAUSS SCALE) ∗ r2 − 2 .0∗GAUSS SCALE∗DIMOFWORLD) ∗ux ;

}

A common principle in the implementation of functions of the type grd u is that we store
the result either at the caller-specified pointer input, if provided, or overwrite a local static
buffer on each call.

2.2.7 The assemblage of the discrete system

For the assemblage of the discrete system we use the tools described in Sections 4.7.2, 4.7.6,
and 4.7.7.1. For the matrix assemblage we have to provide an element-wise description of
the differential operator. Following the description in Section 1.4.8 we provide the function
init element() for an initialization of the operator on an element and the function LALt()

for the computation of det |DFS |ΛAΛt on the actual element, where Λ is the Jacobian of the
barycentric coordinates, DFS the the Jacobian of the element parameterization, and A the
matrix of the second order term. For −∆, we have A = id and det |DFS |ΛΛt is the description
of the complete differential operator since no lower order terms are involved.

For passing information about the Jacobian Λ of the barycentric coordinates and det |DFS |
from the function init element() to the function LALt() we use the data structure struct

op data which stores the Jacobian and the determinant. The function init element() calcu-
lates the Jacobian and the determinant by the library functions el grd lambda ?d() and the
function LALt() uses these values in order to compute det |DFS |ΛΛt. The mesh dimension d
given by mesh->dim is always less than or equal to the world dimension n given by the macro
DIM OF WORLD, hence we comment out irrelevant parts of the code.

Pointers to these functions and to one structure struct op info are members of a struc-
ture OPERATOR INFO which is used for the initialization of a function for the automatic as-
semblage of the global system matrix (see also Example 4.7.3 in Section 4.7.2 for the access
to a structure matrix info). For more general equations with lower order terms, additional
functions Lb0, Lb1, and/or c have to be defined at that point. This initialization is done on
the first call of the function build() which is called by adapt method stat() during the
adaptive cycle (compare Section 4.8.1).

By calling dof compress(), unused DOF indices are removed such that the valid DOF
indices are consecutive in their range. This guarantees optimal performance of the BLAS1
routines used in the iterative solvers and admin->size used is the dimension of the current
finite element space. This dimension is printed for information.

On each call of build() the matrix is assembled by first clearing the matrix using the
function clear dof matrix() and then adding element contributions by update matrix().
This function will call init element() and LALt() on each element.

The load vector f h is then initialized with zeros and the right hand side is added by
L2scp fct bas(). Finally, the boundary conditions are installed into the load-vector, and
possibly also into the matrix in the case of Robin boundary conditions. Dirichlet boundary
values are also interpolated into the vector u h for the discrete solution. If only Dirichlet
boundary conditions are desired, then the call to boundary conditions() quoted below could
be replaced by a less complicated call to dirichlet bound():

d i r i c h l e t bound (f h , u h , NULL, d i r i ch l e t mask , g) ;

14 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

Analogously, if only inhomogeneous Neumann boundary conditions should be implemented,
then a call to bndry L2scp fct bas() could replace the call to boundary conditions().
Compare Sections 4.7.6, 4.7.7.1, 4.7.7.2, 4.7.7.3 and 4.7.7.

struct op data
{

REAL BD Lambda ; /∗ the g rad i en t o f the ba r y c en t r i c coord ina t e s ∗/
REAL det ; /∗ | de t D F S | ∗/
} ;

stat ic
bool i n i t e l emen t (const EL INFO ∗ e l i n f o , const QUAD ∗quad [3] , void ∗ud)
{

struct op data ∗ i n f o = (struct op data ∗)ud ;

/∗ . . . 0cd : co−dimension 0 ve r s i on o f e l g rd l ambda (dim , . . .) ∗/
i n fo−>det = e l grd lambda 0cd (e l i n f o , in fo−>Lambda) ;

return f a l s e ; /∗ not parametr ic ∗/
}

stat ic
const REAL B ∗LALt(const EL INFO ∗ e l i n f o , const QUAD ∗quad ,

int iq , void ∗ud)
{

stat ic REAL BB LALt ;
struct op data ∗ i n f o = (struct op data ∗)ud ;
int i , j , dim = e l i n f o −>mesh−>dim ;

for (i = 0 ; i < N VERTICES(dim) ; i++) {
LALt [i] [i] = in fo−>det ∗SCPDOW(in fo−>Lambda [i] , i n fo−>Lambda [i]) ;
for (j = i +1; j < N VERTICES(dim) ; j++) {

LALt [i] [j] = SCPDOW(in fo−>Lambda [i] , i n fo−>Lambda [j]) ;
LALt [i] [j] ∗= info−>det ;
LALt [j] [i] = LALt [i] [j] ;

}
}

return (const REAL B ∗)LALt ;
}

stat ic void bu i ld (MESH ∗mesh , U CHAR f l a g)
{

FUNCNAME(” bu i ld ”) ;
stat ic const EL MATRIX INFO ∗mat r i x i n f o ;

dof compress (mesh) ;
MSG(”%d DOFs f o r %s \n” , f e space−>admin−>s i z e u s ed , f e space−>name) ;

i f (! ma t r i x i n f o) {
/∗ in format ion f o r matrix assemb l ing (on ly once) ∗/
OPERATOR INFO o i n f o = { NULL, } ;
stat ic struct op data use r data ; /∗ s t o rage f o r de t and Lambda ∗/

o i n f o . r ow f e spac e = o i n f o . c o l f e s p a c e = f e s p a c e ;
o i n f o . i n i t e l emen t = in i t e l emen t ;

2.2. POISSON EQUATION 15

o i n f o . LALt . r e a l = LALt ;
o i n f o . LALt pw const = true ; /∗ pw cons t . assemblage i s f a s t e r

∗/
o i n f o . LALt symmetric = true ; /∗ symmetric assemblage i s f a s t e r

∗/
BNDRY FLAGS CPY(o i n f o . d i r i c h l e t bnd ry ,

d i r i c h l e t ma sk) ; /∗ D i r i c h l e t bndry cond i t i on s
∗/

o i n f o . u s e r data = (void ∗)&use r data ; /∗ app l i c a t i o n data ∗/
o i n f o . f i l l f l a g = CALL LEAF EL |FILL COORDS; /∗ only FILL BOUND i s added

∗ au t oma t i c a l l y .
∗/

mat r i x i n f o = f i l l m a t r i x i n f o (&o in f o , NULL) ;
}

/∗ assemb l ing o f matrix ∗/
c l e a r d o f ma t r i x (matrix) ;
update matr ix (matrix , mat r ix in fo , NoTranspose) ;

/∗ assemb l ing o f load vec t o r ∗/
do f s e t (0 . 0 , f h) ;
L2 s cp f c t ba s (f , NULL /∗ quadrature ∗/ , f h) ;

/∗ Boundary va lues , the combination a l pha r < 0.0 f l a g s automatic
∗ mean−va lue co r r e c t i on i f f f h has non−zero mean−va lue and no
∗ non−Neumann boundary cond i t i on s were d e t e c t e d during mesh
∗ t r a v e r s a l .
∗/

pure neumann =
! boundary cond i t ions (matrix , f h , u h , NULL /∗ bound ∗/ ,

d i r i ch l e t mask ,
g , gn ,
rob in a lpha , /∗ < 0 : mean−va lue co r r e c t i on ∗/
NULL /∗ wal l quad , use d e f a u l t ∗/) ;

}

2.2.8 The solution of the discrete system

The function solve() computes the solution of the resulting linear system. It is called by
adapt method stat() (compare Section 4.8.1). The system matrix for the Poisson equa-
tion is positive definite and symmetric for non-Dirichlet DOFs. Thus, the solution of the
resulting linear system is rather easy and we can use any preconditioned Krylov-space solver
(oem solve s()), compare Section 4.10.2. On the first call of solve(), the parameters for
the linear solver are initialized and stored in static variables. For the OEM solver we have
to initialize the solver, the tolerance tol for the residual, a maximal number of iterations
max iter, the level of information printed by the linear solver, and the use of a preconditioner
by the parameter icon, which may be 0 (no preconditioning), 1 (diagonal preconditioning), 2
(hierarchical basis preconditioning), 3 (BPX preconditioning), 4 (SSOR preconditioning, with
given omega = 1.0, #iter = 3), 5 (SSOR preconditioning, with control over omega and #iter

), or 6 (ILU(k) preconditioning). If GMRes is used, then the dimension of the Krylov-space
for the minimizing procedure is needed, too. If ILU(k) is used, then the level k is needed, too
(ILU(k) denotes the ILU-flavour described in [3]).

16 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

After solving the discrete system, the discrete solution (and mesh) is displayed by calling
graphics().

stat ic void s o l v e (MESH ∗mesh)
{

FUNCNAME(” so l v e ”) ;
stat ic REAL t o l = 1 . e−8, ssor omega = 1 . 0 ;
stat ic int max iter = 1000 , i n f o = 2 , r e s t a r t = 0 ;
stat ic int s s o r i t e r = 1 , i l u k = 8 ;
stat ic OEMPRECON icon = DiagPrecon ;
stat ic OEMSOLVER so l v e r = NoSolver ;
const PRECON ∗precon ;

i f (s o l v e r == NoSolver) {
GETPARAMETER(1 , ” s o l v e r ” , ”%d” , &s o l v e r) ;
GETPARAMETER(1 , ” s o l v e r t o l e r an c e ” , ”%f ” , &t o l) ;
GETPARAMETER(1 , ” s o l v e r precon” , ”%d” , &icon) ;
GETPARAMETER(1 , ” s o l v e r max i t e r a t i o n ” , ”%d” , &max iter) ;
GETPARAMETER(1 , ” s o l v e r i n f o ” , ”%d” , &i n f o) ;
i f (i con == SSORPrecon) {

GETPARAMETER(1 , ” precon s s o r omega” , ”%f ” , &ssor omega) ;
GETPARAMETER(1 , ” precon s s o r i t e r ” , ”%d” , &s s o r i t e r) ;

}
i f (i con == ILUkPrecon)

GETPARAMETER(1 , ” precon i l u (k) ” , ”%d” , &i l u k) ;
i f (s o l v e r == GMRes) {
GETPARAMETER(1 , ” s o l v e r r e s t a r t ” , ”%d” , &r e s t a r t) ;

}
}

i f (i con == ILUkPrecon)
precon = in i t oem precon (matrix , NULL, in fo , ILUkPrecon , i l u k) ;

else
precon = in i t oem precon (matrix , NULL, in fo , icon , ssor omega ,

s s o r i t e r) ;
o em so lve s (matrix , NULL, f h , u h ,

so lve r , to l , precon , r e s t a r t , max iter , i n f o) ;

i f (do graph i c s) {
MSG(”Disp lay ing u h , u and (u h−u) .\n”) ;
g raph i c s (mesh , u h , NULL /∗ g e t e l e s t ∗/ , u , HUGEVAL /∗ t ime ∗/) ;

}

return ;
}

2.2.9 Error estimation

The last ingredient missing for the adaptive procedure is a function for an estimation of the
error. For an elliptic problem with constant coefficients in the second order term this can done
by the library function ellipt est() which implements the standard residual type error esti-
mator and is described in Section 4.9.1. ellipt est() needs a pointer to a function for writing
the local error indicators (the function rw el est() described above in Section 2.2.5) and a
function r() for the evaluation of the lower order terms of the element residuals at quadrature
nodes. For the Poisson equation, this function has to return the negative value of the right

2.2. POISSON EQUATION 17

hand side f at that node (which is implemented in r()). Since we only have to evaluate the
right hand side f , the init flag r flag is zero. For an equation with lower order term involving
the discrete solution or its derivative this flag has to be INIT UH and/or INIT GRD UH, if needed
by r(), compare Example 4.9.1. Finally, for inhomogeneous Neumann or Robin boundary
conditions we must pass a pointer to yet another function est gn() to ellipt est() which
describes the inhomogeneity. The information about which boundaries are subject to Dirichlet
boundary conditions is provided through the bit-mask dirichlet mask, which is passed to
ellipt est(), compare Section 3.2.4.

The function estimate(), which is called by adapt method stat(), first initializes param-
eters for the error estimator, like the estimated norm and constants in front of the residuals.
On each call the error estimate is computed by ellipt est(). The degrees for quadrature
formulas are chosen according to the degree of finite element basis functions. Additionally, as
the exact solution for our test problem is known (defined by u() and grd u()), the true error
between discrete and exact solutions is calculated by the function H1 err() or L2 err(),
and the ratio of the true and estimated errors is printed (which should be approximately
constant). The experimental orders of convergence of the estimated and exact errors are cal-
culated, which should both be, when using global refinement with d bisection refinements,
fe space->bas fcts->degree for the H1 norm and fe space->bas fcts->degree+1 for the
L2 norm. Finally, the error indicators are displayed by calling graphics().

stat ic REAL r (const EL INFO ∗ e l i n f o , const QUAD ∗quad , int iq ,
REAL uh at qp , const REAL D grd uh at qp)

{
REAL D x ;

coord to wor ld (e l i n f o , quad−>lambda [i q] , x) ;

return −f (x) ;
}

stat ic REAL es t gn (const EL INFO ∗ e l i n f o ,
const QUAD ∗quad ,
int qp ,
REAL uh at qp ,
const REAL D normal)

{
/∗ we simply re turn gn () , e x p l o i t i n g the f a c t t h a t the geometry cache
∗ o f the quadrature a l r eady conta ins the world−coord ina t e s o f the
∗ quadrature po in t s .
∗/

const QUAD EL CACHE ∗ qe l c =
f i l l q u a d e l c a c h e (e l i n f o , quad , FILL EL QUAD WORLD) ;

i f (rob in a lpha > 0 . 0) {
return gn (qe lc−>world [qp] , normal) − rob in a lpha ∗ uh at qp ;

} else {
return gn (qe lc−>world [qp] , normal) ;

}
}

#define EOC(e , eo) l og (eo/MAX(e , 1 . 0 e−15)) /M LN2

18 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

stat ic REAL est imate (MESH ∗mesh , ADAPT STAT ∗adapt)
{

FUNCNAME(” es t imate ”) ;
stat ic int norm = −1;
stat ic REAL C[3] = {1 . 0 , 1 . 0 , 0 . 0 } ;
stat ic REAL e s t o l d = −1.0 , e r r o l d = −1.0;
REAL est , e r r ;
REAL DD A = {{0 . 0}} ;
int n ;

for (n = 0 ; n < DIMOFWORLD; n++) {
A[n] [n] = 1 . 0 ; /∗ s e t d iagona l o f A; a l l o ther e lements are zero ∗/

}

i f (norm < 0) {
norm = H1 NORM;
GETPARAMETER(1 , ” e r r o r norm” , ”%d” , &norm) ;
GETPARAMETER(1 , ” e s t imator C0” , ”%f ” , &C[0]) ;
GETPARAMETER(1 , ” e s t imator C1” , ”%f ” , &C[1]) ;
GETPARAMETER(1 , ” e s t imator C2” , ”%f ” , &C[2]) ;

}

e s t = e l l i p t e s t (u h , adapt , rw e l e s t , NULL /∗ rw e s t c () ∗/ ,
−1 /∗ quad degree ∗/ ,
norm , C,
(const REAL D ∗) A,
d i r i ch l e t mask ,
r , 0 /∗ (INIT UH | INIT GRD UH) , i f needed by r () ∗/ ,
e s t gn , rob in a lpha > 0 .0 ? INIT UH : 0) ;

MSG(” es t imate = %.8 l e ” , e s t) ;
i f (e s t o l d >= 0)

pr int msg (” , EOC: %.2 l f \n” , EOC(est , e s t o l d)) ;
else

pr int msg (”\n”) ;
e s t o l d = e s t ;

i f (norm == L2 NORM)
e r r = L2 er r (u , u h , NULL /∗ quad ∗/ ,

f a l s e /∗ r e l a t i v e error ∗/ ,
pure neumann /∗ mean−va lue ad j u s t ∗/ ,
NULL /∗ rw e r r e l () ∗/ , NULL /∗ max err e l2 ∗/) ;

else
e r r = H1 err (grd u , u h , NULL /∗ quad ∗/ ,

f a l s e /∗ r e l a t i v e error ∗/ ,
NULL /∗ rw e r r e l () ∗/ , NULL /∗ max err e l2 ∗/) ;

MSG(” | | u−uh | |% s = %.8 l e ” , norm == L2 NORM ? ”L2” : ”H1” , e r r) ;
i f (e r r o l d >= 0)

pr int msg (” , EOC: %.2 l f \n” , EOC(err , e r r o l d)) ;
else

pr int msg (”\n”) ;
e r r o l d = e r r ;
MSG(” | | u−uh | |% s/ es t imate = %.2 l f \n” , norm == L2 NORM ? ”L2” : ”H1” ,

e r r /MAX(est , 1 . e−15)) ;

i f (do graph i c s) {

2.3. NONLINEAR REACTION–DIFFUSION EQUATION 19

MSG(”Disp lay ing the es t imate .\n”) ;
g raph i c s (mesh , NULL /∗ u h ∗/ , g e t e l e s t , NULL /∗ u exac t () ∗/ ,

HUGEVAL /∗ t ime ∗/) ;
}

return adapt−>err sum ;
}

2.3 Nonlinear reaction–diffusion equation

In this section, we discuss the implementation of a stationary, nonlinear problem. Due to
the nonlinearity, the computation of the discrete solution is more complex. The solver for
the nonlinear reaction–diffusion equation and the solver for Poisson equation, described in
Section 2.2, thus mainly differ in the routines build() and solve().

Here we describe the solution by a Newton method, which involves the assemblage and
solution of a linear system in each iteration. Hence, we do not split the assemble and solve rou-
tines in build() and solve() as in the solver for the Poisson equation (compare Sections 2.2.7
and 2.2.8), but only set Dirichlet boundary values for the initial guess in build() and solve
the nonlinear equation (including the assemblage of linearized systems) in solve(). The ac-
tual solution process is implemented by several subroutines in the separate file nlsolve.c,
see Sections 2.3.5 and 2.3.6.

Additionally we describe a simple way to handle different problem data easily, see Sections
2.3.1 and 2.3.8.

We consider the following nonlinear reaction–diffusion equation:

−k∆u+ σ u4 = f + σ u4
ext in Ω ⊂ Rd, (2.1a)

u = g on ∂Ω. (2.1b)

For Ω ⊂ R2, this equation models the heat transport in a thin plate Ω which radiates heat
and is heated by an external heat source f . Here, k is the constant heat conductivity, σ
the Stefan–Boltzmann constant, g the temperature at the edges of the plate and uext the
temperature of the surrounding space (absolute temperature in ◦K).

The solver is applied to following data:

• For testing the solver we again use the ‘exponential peak’

u(x) = e−10 |x|2 , x ∈ Ω = (−1, 1)d, k = 1, σ = 1, uext = 0.

• In general (due to the nonlinearity), the problem is not uniquely solvable; depending on
the initial guess for the nonlinear solver at least two discrete solutions can be obtained
by using data

Ω = (0, 1)d, k = 1, σ = 1, f ≡ 1, g ≡ 0, uext = 0.

and the interpolant of

u0(x) = 4d U0

d∏
i=1

xi(1− xi) with U0 ∈ [−5.0, 1.0].

as initial guess for the discrete solution on the coarsest grid.

20 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

• The last application now addresses a physical problem in 2d with following data:

Ω = (−1, 1)2, k = 2, σ = 5.67e-8, g ≡ 300, uext = 273, f(x) =

{
150, if x ∈ (−1

2 ,
1
2)2,

0, otherwise.

2.3.1 Program organization and header file

The implementation is split into three source files:

nonlin.c main program with all subroutines for the adaptive procedure; initializes DOFs,
leaf data and problem dependent data in main() and the solve() routine calls the non-
linear solver;

nlprob.c definition of problem dependent data;

nlsolve.c implementation of the nonlinear solver.

Data structures used in all source files, and prototypes of functions are defined in the header
file nonlin.h, which includes the alberta.h header file on the first line. This file is included
by all three source files.

typedef struct prob_data PROB_DATA;

struct prob_data

{

MACRO_DATA *data;

REAL k, sigma;

REAL (*g)(const REAL_D x);

REAL (*f)(const REAL_D x);

REAL (*u0)(const REAL_D x);

REAL (*u)(const REAL_D x);

const REAL *(*grd_u)(const REAL_D x, REAL_D input);

};

/*--- file nlprob.c --*/

const PROB_DATA *init_problem(MESH *mesh);

/*--- file nlsolve.c ---*/

int nlsolve(DOF_REAL_VEC *, REAL, REAL, REAL (*)(const REAL_D));

The data structure PROB DATA yields following information:

data pointer to a macro triangulation object;

k diffusion coefficient (constant heat conductivity);

sigma reaction coefficient (Stefan–Boltzmann constant);

g pointer to a function for evaluating boundary values;

f pointer to a function for evaluating the right-hand side (f + σ u4
ext);

u0 pointer to a function for evaluating an initial guess for the discrete solution on the macro
triangulation, if not NULL;

u pointer to a function for evaluating the true solution, if not NULL (only for test purpose);

grd u pointer to a function for evaluating the gradient of the true solution, if not NULL

(only for test purpose).

2.3. NONLINEAR REACTION–DIFFUSION EQUATION 21

The function init problem() initializes problem data, like boundary values, right hand
side, etc. which is stored in a PROB DATA structure and reads data of the macro triangulation
for the actual problem. The function nlsolve() implements the nonlinear solver by a Newton
method including the assemblage and solution of the linearized sub-problems.

2.3.2 Global variables

In the main source file for the nonlinear solver nonlin.c we use the following global variables:

#include "nonlin.h"

#include "alberta-demo.h" /* proto-types for support functions */

static bool do_graphics = true; /* global graphics switch */

static const FE_SPACE *fe_space; /* initialized by init_dof_admin() */

static DOF_REAL_VEC *u_h; /* initialized by build() */

static const PROB_DATA *prob_data; /* initialized by main() */

static BNDRY_FLAGS dirichlet_mask; /* bit-mask for Dirichlet segments */

As in the solver for the linear Poisson equation, we have a pointer to the used fe space and
the discrete solution u h. In this file, we do not need a pointer to a DOF MATRIX for storing the
system matrix and a pointer to a DOF REAL VEC for storing the right hand side. The system
matrix and right hand side are handled by the nonlinear solver nlsolve(), implemented
in nlsolve.c. Data about the problem is handled via the prob data pointer. The variable
dirichlet mask marks those segments on which Dirichlet boundary conditions are imposed,
see Section 3.2.4. It is initialized by the main() function.

2.3.3 The main program for the nonlinear reaction–diffusion equation

The main program is very similar to the main program of the Poisson problem described in
Section 2.2.2.

After initializing the access to the parameter file and processing command-line parameters
(see Section 2.1.2), the mesh with the used leaf data is initialized, problem dependent data,
including the macro triangulation, are initialized by init problem(mesh) (see Section 2.3.8),
a finite element space is allocated, the structure for the adaptive method is filled, and finally
the adaptive method is started.

int main(int argc, char **argv)

{ FUNCNAME("main"); MESH *mesh; const BAS_FCTS *lagrange; ADAPT_STAT

*adapt; int dim, degree = 1, n_refine;

/***

* first of all, initialize the access to parameters of the init file

**/

parse_parameters(argc, argv, "INIT/nonlin.dat");

GET_PARAMETER(1, "global refinements", "%d", &n_refine);

GET_PARAMETER(1, "polynomial degree", "%d", °ree);

GET_PARAMETER(1, "mesh dimension", "%d", &dim);

GET_PARAMETER(1, "online graphics", "%d", &do_graphics);

22 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

BNDRY_FLAGS_ALL(dirichlet_mask); /* Only Dirichlet b.c. supported here */

/***

* init problem dependent data and read macro triangulation

**/

prob_data = init_problem();

/***

* get a mesh with DOFs and leaf data

**/

mesh = GET_MESH(dim,"Nonlinear problem mesh", prob_data->data, NULL, NULL);

free_macro_data(prob_data->data);

init_leaf_data(mesh, sizeof(LEAF_DAT),

NULL /* refine_leaf_data() */,

NULL /* coarsen_leaf_data() */);

lagrange = get_lagrange(mesh->dim, degree);

TEST_EXIT(lagrange, "no lagrange BAS_FCTS\n");

fe_space = get_fe_space(mesh, lagrange->name, lagrange, 1, ADM_FLAGS_DFLT);

global_refine(mesh, n_refine*mesh->dim, FILL_NOTHING);

/***

* init adapt structure and start adaptive method

**/

adapt = get_adapt_stat(dim, "nonlin", "adapt", 1, NULL);

adapt->estimate = estimate;

adapt->get_el_est = get_el_est;

adapt->build_after_coarsen = build;

adapt->solve = solve;

adapt_method_stat(mesh, adapt);

WAIT_REALLY;

return 0;

}

2.3.4 Initialization of leaf data

The functions for initializing leaf data (init leaf data()), and for accessing leaf data
(rw el est(), get el est()) are exactly the same as in the solver for the linear Poisson
equation, compare Section 2.2.5.

2.3.5 The build routine

As mentioned above, inside the build routine we only access one vector for storing the discrete
solution. On the coarsest grid, the discrete solution is initialized with zeros, or by interpolating

2.3. NONLINEAR REACTION–DIFFUSION EQUATION 23

the function prob data->u0, which implements an initial guess for the discrete solution. On a
refined grid we do not initialize the discrete solution again. Here, we use the discrete solution
from the previous step, which is interpolated during mesh modifications, as an initial guess.

In each adaptive cycle, Dirichlet boundary values are set for the discrete solution. This
ensures u0 ∈ gh + X̊h for the initial guess of the Newton method.

static void build(MESH *mesh, U_CHAR flag)

{

FUNCNAME("build");

dof_compress(mesh);

MSG("%d DOFs for %s\n", fe_space->admin->size_used, fe_space->name);

if (!u_h) /* access and initialize discrete solution */

{

u_h = get_dof_real_vec("u_h", fe_space);

u_h->refine_interpol = fe_space->bas_fcts->real_refine_inter;

u_h->coarse_restrict = fe_space->bas_fcts->real_coarse_inter;

if (prob_data->u0)

interpol(prob_data->u0, u_h);

else

dof_set(0.0, u_h);

}

/* set boundary values */

dirichlet_bound(u_h, NULL, NULL, dirichlet_mask, prob_data->g);

return;

}

2.3.6 The solve routine

The solve() routine solves the nonlinear equation by calling the function nlsolve() which
is implemented in nlsolve.c and described below in Section 2.3.10. After solving the discrete
problem, the new discrete solution and true error is displayed via the graphics() routine.
The true error can be computed only for the first application, where the true solution is known
(prob data->u() and prob data->grd u() are not NULL).

static void solve(MESH *mesh)

{

nlsolve(u_h, prob_data->k, prob_data->sigma, prob_data->f, dirichlet_mask);

if (do_graphics) {

graphics(mesh, u_h, NULL, prob_data->u, HUGE_VAL /* time */);

}

return;

}

24 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

2.3.7 The estimator for the nonlinear problem

In comparison to the Poisson program, the function r() which implements the lower order
term in the element residual changes due to the term σu4 in the differential operator, com-
pare Section 4.9.1. The right hand side f + σu4

ext is already implemented in the function
prob data->f().

In the function estimate() we have to initialize the diagonal of A with the heat conduc-
tivity prob data->k and for the function r() we need the values of uh at the quadrature
node, thus r flag = INIT UH is set. The initialization of parameters for the estimator is the
same as in Section 2.2.9. Finally, the error indicator is displayed by graphics().

static REAL r(const EL_INFO *el_info, const QUAD *quad, int iq, REAL uh_iq,

const REAL_D grd_uh_iq)

{

REAL_D x;

REAL uhx2 = SQR(uh_iq);

coord_to_world(el_info, quad->lambda[iq], x);

return(prob_data->sigma*uhx2*uhx2 - (*prob_data->f)(x));

}

#define EOC(e,eo) log(eo/MAX(e,1.0e-15))/M_LN2

static REAL estimate(MESH *mesh, ADAPT_STAT *adapt)

{

FUNCNAME("estimate");

static int degree, norm = -1;

static REAL C[3] = {1.0, 1.0, 0.0};

static REAL est, est_old = -1.0, err = -1.0, err_old = -1.0;

static REAL r_flag = INIT_UH;

REAL_DD A = {{0.0}};

int n;

for (n = 0; n < DIM_OF_WORLD; n++)

A[n][n] = prob_data->k; /* set diagonal of A; other elements are zero */

if (norm < 0)

{

norm = H1_NORM;

GET_PARAMETER(1, "error norm", "%d", &norm);

GET_PARAMETER(1, "estimator C0", "%f", C);

GET_PARAMETER(1, "estimator C1", "%f", C+1);

GET_PARAMETER(1, "estimator C2", "%f", C+2);

}

degree = 2*u_h->fe_space->bas_fcts->degree;

est = ellipt_est(u_h, adapt, rw_el_est, NULL, degree, norm, C,

(const REAL_D *) A, r, r_flag);

MSG("estimate = %.8le", est);

if (est_old >= 0)

print_msg(", EOC: %.2lf\n", EOC(est,est_old));

2.3. NONLINEAR REACTION–DIFFUSION EQUATION 25

else

print_msg("\n");

est_old = est;

if (norm == L2_NORM && prob_data->u)

err = L2_err(prob_data->u, u_h, NULL, 0, NULL, NULL);

else if (norm == H1_NORM && prob_data->grd_u)

err = H1_err(prob_data->grd_u, u_h, NULL, 0, NULL, NULL);

if (err >= 0)

{

MSG("||u-uh||%s = %.8le", norm == L2_NORM ? "L2" : "H1", err);

if (err_old >= 0)

print_msg(", EOC: %.2lf\n", EOC(err,err_old));

else

print_msg("\n");

err_old = err;

MSG("||u-uh||%s/estimate = %.2lf\n", norm == L2_NORM ? "L2" : "H1",

err/MAX(est,1.e-15));

}

if (do_graphics) {

graphics(mesh, NULL, get_el_est, NULL, HUGE_VAL /* time */);

}

return adapt->err_sum;

}

2.3.8 Initialization of problem dependent data

The file nlprob.c contains all problem dependent data. On the first line, nonlin.h is in-
cluded and then two variables for storing the values of the heat conductivity and the Stefan
–Boltzmann constant are declared. These values are used by several functions:

#include "nonlin.h"

static REAL k = 1.0, sigma = 1.0;

The following functions are used in the first example for testing the nonlinear solver
(problem number: 0):

static REAL u_0(const REAL_D x)

{

REAL x2 = SCP_DOW(x,x);

return(exp(-10.0*x2));

}

static const REAL *grd_u_0(const REAL_D x, REAL_D input)

{

static REAL_D buffer = {};

REAL *grd = input ? input : buffer;

REAL ux = exp(-10.0*SCP_DOW(x,x));

int n;

for (n = 0; n < DIM_OF_WORLD; n++)

26 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

grd[n] = -20.0*x[n]*ux;

return(grd);

}

static REAL f_0(const REAL_D x)

{

REAL r2 = SCP_DOW(x,x), ux = exp(-10.0*r2), ux4 = ux*ux*ux*ux;

return(sigma*ux4 - k*(400.0*r2 - 20.0*DIM_OF_WORLD)*ux);

}

For the computation of a stable and an unstable (but non-physical) solution, depending
on the initial choice of the discrete solution, the following functions are used, which also use
a global variable U0. Such an unstable solution in 3d is shown in Figure 2.2. Data is given as
follows (problem number: 1):

static REAL U0 = 0.0;

static REAL g_1(const REAL_D x)

{

#if DIM_OF_WORLD == 1

return(4.0*U0*x[0]*(1.0-x[0]));

#endif

#if DIM_OF_WORLD == 2

return(16.0*U0*x[0]*(1.0-x[0])*x[1]*(1.0-x[1]));

#endif

#if DIM_OF_WORLD == 3

return(64.0*U0*x[0]*(1.0-x[0])*x[1]*(1.0-x[1])*x[2]*(1.0-x[2]));

#endif

}

static REAL f_1(const REAL_D x)

{

return(1.0);

}

The last example needs functions for boundary data and right hand side and variables for
the temperature at the edges, and σ u4

ext. A solution to this problem is depicted in Figure 2.3
and problem data is (problem number: 2):

static REAL g2 = 300.0, sigma_uext4 = 0.0;

static REAL g_2(const REAL_D x)

{

return(g2);

}

static REAL f_2(const REAL_D x)

{

if (x[0] >= -0.25 && x[0] <= 0.25 && x[1] >= -0.25 && x[1] <= 0.25)

return(150.0 + sigma_uext4);

else

return(sigma_uext4);

}

2.3. NONLINEAR REACTION–DIFFUSION EQUATION 27

-9.13

xy-plane, x=0 y=0 z=0.5

-8.22

-2.74

-1.83

+6.66e-16

-0.913

-3.65

-6.39

-7.3

-4.57

-5.48

-3.65

xy-plane, x=0 y=0 z=0.5

-4.57

-1.83

-2.74

+6.66e-16

-0.913

-6.39

-7.3

-8.22

-5.48

-9.13

Figure 2.2: Graph of the unstable solution with corresponding mesh of the nonlinear reaction-
diffusion problem in 3d on the clipping plane z = 0.5. The pictures were produced by the
gltools.

+291

+292

+298

+299

+291

+296

+297

+295

+293

rotation: x=-48.08 y=0.00 z=1.77

+294

+300

+296

+295

+294

+300

+299

+298

+297

+291

rotation: x=-48.08 y=0.00 z=1.77

+291

+293

+292

Figure 2.3: Graph of the solution to the physical problem with corresponding mesh of the
nonlinear reaction-diffusion problem in 2d. The pictures were produced by the gltools.

Depending on the chosen problem via the parameter problem number, the function
init problem() initializes the entries of a PROB DATA structure, adjusts the corresponding
function pointers, reads the macro triangulation, and returns a pointer to the filled PROB DATA

28 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

structure. Information stored in PROB DATA is then used in the build() and the nlsolve()

routines.

const PROB_DATA *init_problem(MESH *mesh)

{

FUNCNAME("init_problem");

static PROB_DATA prob_data;

int pn = 2;

GET_PARAMETER(1, "problem number", "%d", &pn);

switch (pn)

{

case 0: /*--- problem with known true solution -----------------------*/

k = 1.0;

sigma = 1.0;

prob_data.g = u_0;

prob_data.f = f_0;

prob_data.u = u_0;

prob_data.grd_u = grd_u_0;

prob_data.data = read_macro("Macro/macro-big.amc");

break;

case 1: /*--- problem for computing a stable and an unstable sol. ----*/

k = 1.0;

sigma = 1.0;

prob_data.g = g_1;

prob_data.f = f_1;

prob_data.u0 = g_1;

GET_PARAMETER(1, "U0", "%f", &U0);

prob_data.data = read_macro("Macro/macro.amc");

break;

case 2: /*--- physical problem ---------------------------------------*/

k = 2.0;

sigma = 5.67e-8;

sigma_uext4 = sigma*273*273*273*273;

prob_data.g = g_2;

prob_data.f = f_2;

prob_data.data = read_macro("Macro/macro-big.amc");

break;

default:

ERROR_EXIT("no problem defined with problem no. %d\n", pn);

}

prob_data.k = k;

prob_data.sigma = sigma;

return &prob_data;

}

2.3. NONLINEAR REACTION–DIFFUSION EQUATION 29

2.3.9 The parameter file for the nonlinear reaction–diffusion equation

The following parameter file INIT/nonlin.dat is read by main() for 2d.

mesh dimension: 2

problem number: 2

global refinements: 1

polynomial degree: 2

online graphics: false

U0: -5.0 % height of initial guess for Problem 1

% graphic windows: solution, estimate, mesh, and error if size > 0

graphic windows: 500 500 0 0

% for gltools graphics you can specify the range for the values of

% discrete solution for displaying: min max

% automatical scaling by display routine if min >= max

gltools range: 1.0 0.0

newton tolerance: 1.e-6 % tolerance for Newton

newton max. iter: 50 % maximal number of iterations of Newton

newton info: 6 % information level of Newton

newton restart: 10 % number of iterations for step size control

linear solver max iteration: 1000

linear solver restart: 10 % only used for GMRES

linear solver tolerance: 1.e-8

linear solver info: 0

linear solver precon: 2 % 0: no precon 1: diag precon

% 2: HB precon 3: BPX precon

error norm: 1 % 1: H1_NORM, 2: L2_NORM

estimator C0: 0.1 % constant of element residual

estimator C1: 0.1 % constant of jump residual

estimator C2: 0.0 % constant of coarsening estimate

adapt->strategy: 2 % 0: no adaption 1: GR 2: MS 3: ES 4:GERS

adapt->tolerance: 1.e-2

adapt->MS_gamma: 0.5

adapt->max_iteration: 15

adapt->info: 4

WAIT: 1

Besides the parameters for the Newton solver and the height of the initial guess U0 in
Problem 1, the file is very similar to the parameter file ellipt.dat for the Poisson prob-
lem, compare Section 2.2.3. As mentioned above, additional parameters may be defined or
overwritten by command line arguments, see Section 2.3.3.

30 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

2.3.10 Implementation of the nonlinear solver

In this section, we now describe the solution of the nonlinear problem which differs most from
the solver for the Poisson equation. It is the last module missing for the adaptive solver. We
use the abstract Newton methods of Section 4.10.9 for solving

uh ∈ gh + X̊h : F (uh) = 0 in X̊∗h,

where gh ∈ Xh is an approximation to boundary data g. Using the classical Newton method,
we start with an initial guess u0 ∈ gh + X̊h, where Dirichlet boundary values are set in the
build() routine (compare Section 2.3.5). For m ≥ 0 we compute

dm ∈ X̊h : DF (um)dm = F (um) in X̊∗h

and set
um+1 = um − dm

until some suitable norm ‖dm‖ or ‖F (um+1)‖ is sufficiently small. Since the correction dm
satisfies dm ∈ X̊h, all Newton iterates um satisfy um ∈ gh+ X̊h, m ≥ 0. Newton methods with
step size control solve similar defect equations and perform similar update steps, compare
Section 4.10.9.

For v ∈ gh + X̊h the functional F (v) ∈ X̊∗h of the nonlinear reaction–diffusion equation is
defined by〈
F (v), ϕj

〉
X̊∗h×X̊h

=

∫
Ω
k∇ϕj∇v + σ ϕj v

4 dx−
∫

Ω
(f + u4

ext)ϕj dx for all ϕj ∈ X̊h, (2.2)

and the Frechet derivative DF (v) of F is given by〈
DF (v)ϕi, ϕj

〉
X̊∗h×X̊h

=

∫
Ω
k∇ϕj∇ϕi + 4σ v3 ϕj ϕi dx for all ϕi, ϕj ∈ X̊h. (2.3)

The Newton solvers need a function for assembling the right hand side vector of the
discrete system (2.2), and the system matrix of the linearized equation (2.3) for some given
v in Xh. The system matrix is always symmetric. It is positive definite, if v ≥ 0, and is then
solved by the conjugate gradient method. For v 6≥ 0 BiCGStab is used. We choose the H1

semi–norm as problem dependent norm ‖.‖.

2.3.10.1 Problem dependent data structures for assembling and solving

Similar to the assemblage of the system matrix for the Poisson problem, we define a data
structure struct op info in order to pass information to the routines which describe the
differential operator. In the assembling of the linearized system around a given finite element
function v we additionally need the diffusion coefficient k and reaction coefficient σ. In general,
v is not constant on the elements, thus we have to compute the zero order term by numerical
quadrature on each element. For this we need access to the used quadrature for this term,
and a vector storing the values of v for all quadrature nodes.

struct op_info

{

REAL_BD Lambda; /* the gradient of the barycentric coordinates */

REAL det; /* |det D F_S| */

2.3. NONLINEAR REACTION–DIFFUSION EQUATION 31

REAL k, sigma; /* diffusion and reaction coefficient */

const QUAD_FAST *quad_fast; /* quad_fast for the zero order term */

const REAL *v_qp; /* v at all quadrature nodes of quad_fast */

};

The general Newton solvers pass data about the actual problem by void pointers to the
problem dependent routines. Information that is used by these routines are collected in the
data structure NEWTON DATA

typedef struct newton_data NEWTON_DATA;

struct newton_data

{

const FE_SPACE *fe_space; /* used finite element space */

BNDRY_FLAGS dirichlet_mask;

REAL k; /* diffusion coefficient */

REAL sigma; /* reaction coefficient */

REAL (*f)(const REAL_D); /* for evaluation f + sigma u_ext^4 */

DOF_MATRIX *DF; /* pointer to system matrix */

/*--- parameters for the linear solver -----------------------------------*/

OEM_SOLVER solver; /* used solver: CG (v >= 0) else BiCGStab */

REAL tolerance;

REAL ssor_omega;

int max_iter;

int ssor_iter;

int ilu_k;

int restart;

int info;

OEM_PRECON icon;

const PRECON *precon;

};

All entries of this structure besides solver are initialized in the function nlsolve(). The
entry solver is set every time the linearized matrix is assembled.

2.3.10.2 The assembling routine

Denote by {ϕ0, . . . , ϕN̊} the basis of X̊h, by {ϕ0, . . . , ϕN} the basis of Xh. Let A be the
stiffness matrix, i.e.

Aij =

{∫
Ω k∇ϕj∇ϕi dx i = 0, . . . , N̊ , j = 0, . . . , N,

δij i = N̊ + 1, . . . , N, j = 0, . . . , N,

and M = M(v) the mass matrix, i.e.

Mij =

{∫
Ω σ v

3 ϕj ϕi dx i = 0, . . . , N̊ , j = 0, . . . , N,

0 i = N̊ + 1, . . . , N, j = 0, . . . , N.

32 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

The system matrix L, representing DF (v), of the linearized equation is then given as

L = A + 4M .

The right hand side vector F , representing F (v) is for all non–Dirichlet DOFs j given by

Fj =

∫
Ω
k∇v∇ϕj + σ v4 ϕj dx−

∫
Ω

(f + σu4
ext)ϕj dx

= (Av + M v)j −
∫

Ω
(f + σu4

ext)ϕj dx, (2.4)

where v denotes the coefficient vector of v. Thus, we want to use information assembled into
A and M for both system matrix and right hand side vector.

Unfortunately, this can not be done after assembling A + 4M into the system matrix L
due to the different scaling of M in the system matrix (factor 4) and right hand side (factor
1). Storing both matrices A and M is too costly, since matrices are the objects in finite
element codes which need most memory.

The solution to this problem comes from the observation, that (2.4) holds also element–
wise for the element contributions of the right hand side and element matrices AS and MS

when replacing v by the local coefficient vector vS . Hence, on elements S we compute the
element contributions of AS and MS , add them to the system matrix, and use them and the
local coefficient vector vS for adding the right hand side contribution to the load vector.

The resulting assembling routine is more complicated in comparison to the very simple
routine used for the linear Poisson problem. On the other hand, using ALBERTA routines
for the computation of element matrices, extracting local coefficient vectors, and boundary
information, the routine is still rather easy to implement. The implementation still does not
depend on the actually used set of local basis functions.

The function update() which is now described in detail, can be seen as an example for the
very flexible implementation of rather complex nonlinear and time dependent problems which
often show the same structure (compare the implementation of the assembling routine for the
time dependent heat equation, Section 2.4.8). It demonstrates the functionality and flexibility
of the ALBERTA tools: the assemblage of complex problems is still quite easy, whereas the
resulting code is quite efficient.

Similar to the linear Poisson solver, we provide a function LALt() for the second order
term. Besides the additional scaling by the heat conductivity k, it is exactly the same as for
the Poisson problem. For the nonlinear reaction–diffusion equation we also need a function
c() for the zero order term. This term is assembled using element-wise quadrature and thus
needs information about the function v used in the linearization at all quadrature nodes.
Information for LALt() and c() is stored in the data structure struct op info, see above.
The members of this structure are initialized during mesh traversal in update().

static const REAL_B *LALt(const EL_INFO *el_info,

const QUAD *quad,

int iq, void *ud)

{

struct op_data *info = (struct op_data *)ud;

REAL fac = info->k*info->det;

int i, j, k, dim = el_info->mesh->dim;

static REAL_BB LALt;

2.3. NONLINEAR REACTION–DIFFUSION EQUATION 33

for (i = 0; i <= dim; i++) {

for (j = i; j <= dim; j++) {

for (LALt[i][j] = k = 0; k < DIM_OF_WORLD; k++)

LALt[i][j] += info->Lambda[i][k]*info->Lambda[j][k];

LALt[i][j] *= fac;

LALt[j][i] = LALt[i][j];

}

}

return (const REAL_B *)LALt;

}

static REAL c(const EL_INFO *el_info, const QUAD *quad, int iq, void *ud)

{

struct op_data *info = (struct op_data *)ud;

REAL v3;

DEBUG_TEST_EXIT(info->quad_fast->quad == quad, "quads differ\n");

v3 = info->v_qp[iq]*info->v_qp[iq]*info->v_qp[iq];

return(info->sigma*info->det*v3);

}

As mentioned above, we use a general Newton solver and a pointer to the update()

routine is adjusted inside the function nlsolve() in the data structure for this solver. Such
a solver does not have any information about the actual problem, nor information about the
ALBERTA data structures for storing DOF vectors and matrices. This is also reflected in the
arguments of update():

static void update(void *ud, int dim, const REAL *v, int up_DF, REAL *F);

Here, dim is the dimension of the discrete nonlinear problem, v is a vector storing the co-
efficients of the finite element function which is used for the linearization, up DF is a flag
indicating whether DF (v) should be assembled or not. If F is not NULL, then F (v) should be
assembled and stored in the vector F. Information about the ALBERTA finite element space, a
pointer to a DOF matrix, etc. can be passed to update() by the ud pointer. The declaration

NEWTON_DATA *data = (NEWTON_DATA *)ud;

converts the void * pointer ud into a pointer data to a structure NEWTON DATA which gives
access to all information, used for the assembling (see above). This structure is initialized in
nlsolve() before starting the Newton method.

The update() routine contains three parts: an initialization of the assembling functions
(only done on the first call), a conversion of the vectors that are arguments to the routine
into DOF vectors, and finally the assembling.

Initialization of the assembling functions. The initialization of ALBERTA functions
for the assembling is similar to the initialization in the build() routine of the linear Poisson
equation (compare Section 2.2.7). There are minor differences:

1. In addition to the assemblage of the 2nd order term (see the function LALt()), we now
have to assemble the zero order term too (see the function c()). The integration of the

34 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

zero order term has to be done by using an element wise quadrature which needs the
values of v3 at all quadrature nodes. The two element matrices are computed separately.
This makes it possible to use them for the system matrix and right hand side.

2. In the solver for the Poisson problem, we have filled an OPERATOR INFO structure
with information about the differential operator. This structure is an argument to
fill matrix info() which returns a pointer to a structure EL MATRIX INFO. This
pointer is used for the complete assemblage of the system matrix by some ALBERTA
routine. A detailed description of this structures and the general assemblage routines
for matrices can be found in Section 4.7.2. Here, we want to use only the function for
computing the element matrices. Thus, we only need the entries el matrix fct() and
fill info of the EL MATRIX INFO structure, which are used to compute the element
matrix (fill info is the second argument to el matrix fct()). We initialize a func-
tion pointer fill a with data pointer a info for the computation of the element matrix
AS and a function pointer fill c with data pointer c info for the computation MS .

All other information inside the EL MATRIX INFO structure is used for the automatic
assembling of element matrices into the system matrix by update matrix(). Such in-
formation can be ignored here, since this is now done in update().

3. For the assembling of the element matrix into the system matrix and the element contri-
bution of the right hand side into the load vector we need information about the num-
ber of local basis functions, n phi, and how to access global DOFs from the elements,
get dof(). This function uses the DOF administration admin of the finite element
space. We also need information about the boundary type of the local basis functions,
get bound(), and for the computation of the values of v at quadrature nodes, we have
to extract the local coefficient vector from the global one, get v loc(). These functions
and the number of local basis functions can be accessed via the bas fcts inside the
data->fe space structure. The used admin is the admin structure in data->fe space.
For details about these functions we refer to Sections 3.5.1, 3.3.6, and 1.4.3.

Conversion of the vectors into DOF vectors. The input vector v of update() is a
vector storing the coefficients of the function used for the linearization. It is not a DOF
vector, but ALBERTA routines for extracting a local coefficient vector need a DOF vector.
Thus, we have to “convert” v into some DOF vector dof v. This is done by calls

i n i t d o f r e a l v e c s k e l (dof v , ”v” , data−>f e s p a c e) ;
d i s t r i b u t e t o d o f r e a l v e c s k e l (dof v , v) ;

We refer the reader to Section 3.7.3 for a more detailed discussion.

In the same way we have to convert F to a DOF vector dof F if F is not NULL.

The assemblage of the linearized system. If the system matrix has to be assembled,
then the DOF matrix data->DF is cleared and we check which solver can be used for solving
the linearized equation.

If the right hand side has to be assembled, then this vector is initialized with values

−
∫

Ω
(f + σu4

ext)ϕj dx.

2.3. NONLINEAR REACTION–DIFFUSION EQUATION 35

For the assemblage of the element contributions we use the non–recursive mesh traversal
routines. On each element we access the local coefficient vector v loc, the global DOFs dof

and boundary types bound of the local basis functions.
Next, we initialize the Jacobian of the barycentric coordinates and compute the values

of v at the quadrature node by uh at qp(). Hence v3 can easily be calculated in c() at all
quadrature nodes. Routines for evaluating finite element functions and their derivatives are
described in detail in Section 4.3.

Now, all members of struct op info are initialized, and we compute the element matrices
AS by the function fill a() and MS by the function fill c().

These contributions are added to the system matrix if up DF is not zero. Finally, the right
hand side contributions for all non Dirichlet DOFs are computed, and zero Dirichlet boundary
values are set for Dirichlet DOFs, if F is not NULL.

The following sources code listing quotes the entire update() sub-routine:

static void update(void *ud, int dim, const REAL *v, bool up_DF, REAL *F)

{

/* Some quantities remembered across calls. Think of this routine

* like being a "library function" ... The stuff is re-initialized

* whenever the finite element space changes. We use fe_space->admin

* to check for changes in the finite element space because

* DOF_ADMIN’s are persisitent within ALBERTA, while fe-space are

* not.

*/

static EL_MATRIX_INFO elmi2, elmi0;

static const DOF_ADMIN *admin = NULL;

static struct op_data op_data[1]; /* storage for det and Lambda */

/* Remaining (non-static) variables. */

const BAS_FCTS *bas_fcts = NULL;

int n_phi;

int mesh_dim;

NEWTON_DATA *data = (NEWTON_DATA *)ud;

FLAGS fill_flag;

DOF_REAL_VEC dof_v[1];

DOF_REAL_VEC dof_F[1];

/*--*/

/* init functions for assembling DF(v) and F(v) */

/*--*/

bas_fcts = data->fe_space->bas_fcts;

n_phi = bas_fcts->n_bas_fcts;

mesh_dim = bas_fcts->dim;

if (admin != data->fe_space->admin) {

OPERATOR_INFO o_info2 = { NULL, }, o_info0 = { NULL, };

const QUAD *quad;

admin = data->fe_space->admin;

quad = get_quadrature(mesh_dim, 2*bas_fcts->degree-2);

o_info2.row_fe_space = data->fe_space;

36 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

o_info2.quad[2] = quad;

o_info2.LALt.real = LALt;

o_info2.LALt_pw_const = true;

o_info2.LALt_symmetric = true;

o_info2.user_data = op_data;

fill_matrix_info(&o_info2, &elmi2);

o_info0.row_fe_space = data->fe_space;

o_info0.quad[0] = quad;

o_info0.c.real = c;

o_info0.c_pw_const = false;

o_info0.user_data = op_data;

fill_matrix_info(&o_info0, &elmi0);

op_data->quad_fast = get_quad_fast(bas_fcts, quad, INIT_PHI);

}

/*--*/

/* make a DOF vector from input vector v_vec */

/*--*/

init_dof_real_vec_skel(dof_v, "v", data->fe_space);

distribute_to_dof_real_vec_skel(dof_v, v);

/*--*/

/* make a DOF vector from F, if not NULL */

/*--*/

if (F) {

init_dof_real_vec_skel(dof_F, "F(v)", data->fe_space);

distribute_to_dof_real_vec_skel(dof_F, F);

}

/*--*/

/* and now assemble DF(v) and/or F(v) */

/*--*/

op_data->k = data->k;

op_data->sigma = data->sigma;

if (up_DF)

{

/*--- if v_vec[i] >= 0 for all i => matrix is positive definite (p=1) ----*/

data->solver = dof_min(dof_v) >= 0 ? CG : BiCGStab;

clear_dof_matrix(data->DF);

}

if (F)

{

dof_set(0.0, dof_F); //!! Seggi

L2scp_fct_bas(data->f, op_data->quad_fast->quad, dof_F);

dof_scal(-1.0, dof_F);

}

2.3. NONLINEAR REACTION–DIFFUSION EQUATION 37

fill_flag = CALL_LEAF_EL|FILL_COORDS|FILL_BOUND;

TRAVERSE_FIRST(data->fe_space->mesh, -1, fill_flag) {

const EL_REAL_VEC *v_loc;

const EL_DOF_VEC *dof;

const EL_BNDRY_VEC *bndry_bits;

EL_SCHAR_VEC bound[n_phi];

const EL_MATRIX *elmat2, *elmat0;

v_loc = fill_el_real_vec(NULL, el_info->el, dof_v);

dof = get_dof_indices(NULL, data->fe_space, el_info->el);

bndry_bits = get_bound(NULL, bas_fcts, el_info);

/*--*/

/* initialization of values used by LALt and c */

/*--*/

op_data->det = el_grd_lambda_0cd(el_info, op_data->Lambda);

op_data->v_qp = uh_at_qp(NULL, op_data->quad_fast, v_loc);

elmat2 = elmi2.el_matrix_fct(el_info, elmi2.fill_info);

elmat0 = elmi0.el_matrix_fct(el_info, elmi0.fill_info);

/* Translate the geometric boundary classification into

* Dirichlet/Neumann/Interior boundary condition

* interpretation. Inside the loop over the mesh-elements we need

* only to care about Dirichlet boundary conditions.

*/

dirichlet_map(bound, bndry_bits, data->dirichlet_mask);

if (up_DF) /*--- add element contribution to matrix DF(v) ----------*/

{

/*--*/

/* add a(phi_i,phi_j) + 4*m(u^3*phi_i,phi_j) to matrix */

/*--*/

add_element_matrix(data->DF, 1.0, elmat2, NoTranspose, dof, dof, bound);

add_element_matrix(data->DF, 4.0, elmat0, NoTranspose, dof, dof, bound);

}

if (F) /*--- add element contribution to F(v) --------------------*/

{

int i;

/*--*/

/* F(v) += a(v, phi_i) + m(v^4, phi_i) */

/*--*/

bi_mat_el_vec(1.0, elmat2, 1.0, elmat0, v_loc, 1.0, dof_F, dof, bound);

for (i = 0; i < n_phi; i++) {

if (bound->vec[i] >= DIRICHLET) {

F[dof->vec[i]] = 0.0; /*--- zero Dirichlet boundary conditions! -*/

}

}

}

38 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

} TRAVERSE_NEXT();

/* Record that the boundary conditions are built into the matrix, needed

* e.g. by the hierarchical preconditioners.

*/

BNDRY_FLAGS_CPY(data->DF->dirichlet_bndry, data->dirichlet_mask);

2.3.10.3 The linear sub–solver

For the solution of the linearized problem we use the oem solve s() function, which is also
used in the solver for the linear Poisson equation (compare Section 2.2.8). Similar to the
update() function, we have to convert the right hand side vector F and the solution vector
d to DOF vectors. Information about the system matrix and parameters for the solver are
passed by ud. The member data->solver is initialized in update().

static int solve(void *ud, int dim, const REAL *F, REAL *d)

{

NEWTON_DATA *data = (NEWTON_DATA *)ud;

int iter;

DOF_REAL_VEC dof_F[1];

DOF_REAL_VEC dof_d[1];

/*--*/

/* make DOF vectors from F and d */

/*--*/

init_dof_real_vec_skel(dof_F, "F", data->fe_space);

distribute_to_dof_real_vec_skel(dof_F, F);

init_dof_real_vec_skel(dof_d, "d", data->fe_space);

distribute_to_dof_real_vec_skel(dof_d, d);

if (data->icon == ILUkPrecon)

data->precon = init_oem_precon(data->DF, NULL, data->info, ILUkPrecon, data->ilu_k);

else

data->precon = init_oem_precon(data->DF, NULL, data->info, data->icon,

data->ssor_omega, data->ssor_iter);

iter = oem_solve_s(data->DF, NULL, dof_F, dof_d, data->solver,

data->tolerance, data->precon, data->restart,

data->max_iter, data->info);

return iter;

}

2.3.10.4 The computation of the H1 semi norm

The H1 semi norm can easily be calculated by converting the input vector v into a DOF-vector
and then calling the ALBERTA routine H1 norm uh() (compare Section 4.4).

static REAL norm(void *ud, int dim, const REAL *v)

2.3. NONLINEAR REACTION–DIFFUSION EQUATION 39

{

NEWTON_DATA *data = (NEWTON_DATA *)ud;

DOF_REAL_VEC dof_v[1]; /* = {NULL, NULL, "v"};*/

init_dof_real_vec_skel(dof_v, "v", data->fe_space);

distribute_to_dof_real_vec_skel(dof_v, v);

return H1_norm_uh(NULL, dof_v);

}

2.3.10.5 The nonlinear solver

The function nlsolve() initializes the structure NEWTON DATA with problem dependent in-
formation. Here, we have to allocate a DOF matrix for storing the system matrix (only on
the first call), and initialize parameters for the linear sub–solver and problem dependent data
(like heat conductivity k, etc.)

The structure NLS DATA is filled with information for the general Newton solver (the
problem dependent routines update(), solve(), and norm() described above). All these
routines use the same structure NEWTON DATA for problem dependent information.

The dimension of the discrete equation is

dim = u0->fe_space->admin->size_used;

where u0 is a pointer to a DOF vector storing the initial guess. Note, that after the
call to dof compress() in the build() routine, dim holds the true dimension of the
discrete equation. Without a dof compress() there may be holes in DOF vectors, and
u0->fe_space->admin->size_used bigger than the last used index, and again dim is the
dimension of the discrete equation for the Newton solver. The ALBERTA routines do not
operate on unused indices, whereas the Newton solvers do operate on unused indices too,
because they do not know about used and unused indices. In this situation, all unused DOFs
would have to be cleared for the initial solution u0 by

FOR_ALL_FREE_DOFS(u0->fe_space->admin, u0->vec[dof] = 0.0);

The same applies to the vector storing the right hand side in update(). The dof set()

function only initializes used indices.

Finally, we reallocate the workspace used by the Newton solvers (compare Section 4.10.9)
and start the Newton method.

int nlsolve(DOF_REAL_VEC *u0, REAL k, REAL sigma, REAL (*f)(const REAL_D),

const BNDRY_FLAGS dirichlet_mask)

{

FUNCNAME("nlsolve");

static NEWTON_DATA data =

{ NULL, { 0, }, 0, 0, NULL, NULL, CG, 1.e-8, 1.0, 1000, 1, 8, 0, 2, 0, NULL };

static NLS_DATA nls_data;

int iter, dim = u0->fe_space->admin->size_used;

if (!data.fe_space)

{

/*--*/

/*-- init parameters for newton --*/

40 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

/*--*/

nls_data.update = update;

nls_data.update_data = &data;

nls_data.solve = solve;

nls_data.solve_data = &data;

nls_data.norm = norm;

nls_data.norm_data = &data;

nls_data.tolerance = 1.e-4;

GET_PARAMETER(1, "newton tolerance", "%e", &nls_data.tolerance);

nls_data.max_iter = 50;

GET_PARAMETER(1, "newton max. iter", "%d", &nls_data.max_iter);

nls_data.info = 8;

GET_PARAMETER(1, "newton info", "%d", &nls_data.info);

nls_data.restart = 0;

GET_PARAMETER(1, "newton restart", "%d", &nls_data.restart);

/*--*/

/*-- init data for update and solve --------------------------------------*/

/*--*/

data.fe_space = u0->fe_space;

data.DF = get_dof_matrix("DF(v)", u0->fe_space, NULL);

data.tolerance = 1.e-2*nls_data.tolerance;

GET_PARAMETER(1, "linear solver tolerance", "%f", &data.tolerance);

GET_PARAMETER(1, "linear solver max iteration", "%d", &data.max_iter);

GET_PARAMETER(1, "linear solver info", "%d", &data.info);

GET_PARAMETER(1, "linear solver precon", "%d", &data.icon);

if (data.icon == __SSORPrecon) {

GET_PARAMETER(1, "linear precon ssor omega", "%f", &data.ssor_omega);

GET_PARAMETER(1, "linear precon ssor iter", "%d", &data.ssor_iter);

}

if (data.icon == ILUkPrecon)

GET_PARAMETER(1, "linear precon ilu(k)", "%d", &data.ilu_k);

GET_PARAMETER(1, "linear solver restart", "%d", &data.restart);

}

TEST_EXIT(data.fe_space == u0->fe_space, "can’t change f.e. spaces\n");

BNDRY_FLAGS_CPY(data.dirichlet_mask, dirichlet_mask);

/*--*/

/*-- init problem dependent parameters -----------------------------------*/

/*--*/

data.k = k;

data.sigma = sigma;

data.f = f;

/*--*/

/*-- enlarge workspace used by newton(_fs), and solve by Newton ----------*/

/*--*/

if (nls_data.restart)

{

2.4. HEAT EQUATION 41

nls_data.ws = REALLOC_WORKSPACE(nls_data.ws, 4*dim*sizeof(REAL));

iter = nls_newton_fs(&nls_data, dim, u0->vec);

}

else

{

nls_data.ws = REALLOC_WORKSPACE(nls_data.ws, 2*dim*sizeof(REAL));

iter = nls_newton(&nls_data, dim, u0->vec);

}

return iter;

}

2.4 Heat equation

In this section we describe a model implementation for the (linear) heat equation

∂tu−∆u = f in Ω ⊂ Rd × (0, T),

u = g on ∂Ω× (0, T),

u = u0 on Ω× {0}.

We describe here only differences to the implementation of the linear Poisson problem.
For common (or similar) routines we refer to Section 2.2.

2.4.1 Global variables

Additionally to the finite element space fe space, the matrix matrix, the vectors u h and
f h and the bit-mask dirichlet mask for marking Dirichlet boundary-segments, we need a
vector for storage of the solution Un from the last time step. This one is implemented as a
global variable, too. All these global variables are initialized in main().

stat ic DOF REAL VEC ∗ u o ld ;

A global pointer to the ADAPT INSTAT structure is used for access in the build() and
estimate() routines, see below.

stat ic ADAPT INSTAT ∗ adap t i n s t a t ;

Finally, a global variable theta is used for storing the parameter θ and err L2 for storing the
actual L2 error between true and discrete solution in the actual time step.

stat ic REAL theta = 0 . 5 ; /∗−−− parameter o f the time d i s c r e t i z a t i o n
−−−∗/

stat ic REAL err L2 = 0 . 0 ; /∗−−− s p a t i a l e r ror in a s i n g l e time s t ep
−−−∗/

2.4.2 The main program for the heat equation

The main function initializes all program parameters from file and command line (compare
Section 2.1.2), generates a mesh and a finite element space, the DOF matrix and vectors, and

42 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

allocates and fills the parameter structure ADAPT INSTAT for the adaptive method for time
dependent problems. This structure is accessed by get adapt instat() which already initial-
izes besides the function pointers all members of this structure from the program parameters,
compare Sections 4.8.4 and 2.2.2.

The (initial) time step size, read from the parameter file, is reduced when an initial global
mesh refinement is performed. This reduction is automatically adapted to the order of time
discretization (2nd order when θ = 0.5, 1st order otherwise) and space discretization. For
stability reasons, the time step size is scaled by a factor 10−3 if θ < 0.5, see also Section 2.4.6.

Finally, the function pointers for the adapt instat() structure are adjusted to the prob-
lem dependent routines for the heat equation and the complete numerical simulation is per-
formed by a call to adapt method instat().

The heat.c demo-program only implements Dirichlet boundary conditions by setting all
bits of dirichlet mask to 1. The implementation of more complicated boundary conditions
is exemplified in the explanation for the ellipt.c program, see Section 2.2.

int main (int argc , char ∗∗ argv)
{

FUNCNAME(”main”) ;
MACRODATA ∗data ;
MESH ∗mesh ;
const BAS FCTS ∗ l ag range ;
int n r e f i n e = 0 , p = 1 , dim ;
char f i l ename [PATHMAX] ;
REAL fac = 1 . 0 ;

/∗ ∗∗
∗ f i r s t o f a l l , i n i t i a l i z e the acces s to parameters o f the i n i t f i l e
∗∗∗ ∗/

parse parameter s (argc , argv , ”INIT/heat . dat”) ;

GETPARAMETER(1 , ”mesh dimension ” , ”%d” , &dim) ;
GETPARAMETER(1 , ”macro f i l e name” , ”%s ” , f i l ename) ;
GETPARAMETER(1 , ” g l oba l r e f inement s ” , ”%d” , &n r e f i n e) ;
GETPARAMETER(1 , ”parameter theta ” , ”%e” , &theta) ;
GETPARAMETER(1 , ” polynomial degree ” , ”%d” , &p) ;
GETPARAMETER(1 , ” on l i n e g raph i c s ” , ”%d” , &do graph i c s) ;

/∗ ∗∗
∗ ge t a mesh , and read the macro t r i a n g u l a t i o n from f i l e
∗∗∗ ∗/
data = read macro (f i l ename) ;
mesh = GETMESH(dim , ”ALBERTA mesh” , data ,

NULL /∗ i n i t n o d e p r o j e c t i o n () ∗/ ,
NULL /∗ i n i t w a l l t r a f o s () ∗/) ;

f r e e macro data (data) ;

i n i t l e a f d a t a (mesh , s izeof (struct h e a t l e a f d a t a) ,
NULL /∗ r e f i n e l e a f d a t a () ∗/ ,
NULL /∗ c o a r s e n l e a f d a t a () ∗/) ;

/∗ Fin i t e e lement spaces can be added at any time , but i t i s more
∗ e f f i c i e n t to do so b e f o r e r e f i n i n g the mesh a l o t .
∗/

l ag range = ge t l a g r ange (mesh−>dim , p) ;
TEST EXIT(lagrange , ”no lagrange BAS FCTS\n”) ;

2.4. HEAT EQUATION 43

f e s p a c e = g e t f e s p a c e (mesh , lagrange−>name , lagrange , 1 , ADM FLAGS DFLT) ;

g l o b a l r e f i n e (mesh , n r e f i n e ∗ dim , FILL NOTHING) ;

/∗ ∗∗
∗ i n i t i a l i z e the g l o b a l v a r i a b l e s shared across b u i l d () , s o l v e ()
∗ and es t imate () .
∗∗∗ ∗/

matrix = ge t do f mat r i x (”A” , f e space , NULL) ;
f h = g e t d o f r e a l v e c (” f h ” , f e s p a c e) ;
u h = g e t d o f r e a l v e c (”u h” , f e s p a c e) ;
u h−>r e f i n e i n t e r p o l = f e space−>ba s f c t s−>r e a l r e f i n e i n t e r ;
u h−>c o a r s e r e s t r i c t = f e space−>ba s f c t s−>r e a l c o a r s e i n t e r ;
u o ld = g e t d o f r e a l v e c (” u o ld ” , f e s p a c e) ;
u old−>r e f i n e i n t e r p o l = f e space−>ba s f c t s−>r e a l r e f i n e i n t e r ;
u old−>c o a r s e r e s t r i c t = f e space−>ba s f c t s−>r e a l c o a r s e i n t e r ;
d o f s e t (0 . 0 , u h) ; /∗ i n i t i a l i z e u h ! ∗/

BNDRY FLAGS ALL(d i r i c h l e t ma sk) ; /∗ Only D i r i c h l e t b . c . suppor ted here ∗/

/∗ ∗∗
∗ i n i t a d a p t i n s t a t s t r u c t u r e
∗∗∗ ∗/

adap t i n s t a t = g e t adap t i n s t a t (dim , ”heat ” , ”adapt” , 2 , adap t i n s t a t) ;

/∗ Some animation in between . . . ∗/
i f (do graph i c s) {

graph i c s (mesh , NULL, NULL, NULL, adapt in s ta t−>s t a r t t ime) ;
}

/∗ ∗∗
∗ adapt time s t ep s i z e to re f inement l e v e l and po lynomia l degree ,
∗ based on the known L2−error error e s t ima t e s .
∗∗∗ ∗/

i f (theta < 0 . 5) {
WARNING(”You are us ing the e x p l i c i t Euler scheme\n”) ;
WARNING(”Use a s u f f i c i e n t l y smal l time step s i z e ! ! ! \ n”) ;
f a c = 1 .0 e−3;

}

i f (theta == 0 . 5) {
adapt in s ta t−>t imestep ∗= fac ∗pow(2 , −(REAL) (p∗(n r e f i n e)) /2 . 0) ;

} else {
adapt in s ta t−>t imestep ∗= fac ∗pow(2 , −(REAL) (p∗(n r e f i n e))) ;

}
MSG(” us ing i n i t i a l t imestep s i z e = %.4 l e \n” , adapt in s ta t−>t imestep) ;

eva l t ime u0 = adapt in s ta t−>s t a r t t ime ;

adapt in s ta t−>a d ap t i n i t i a l−>g e t e l e s t = g e t e l e s t ;
adapt in s ta t−>a d ap t i n i t i a l−>es t imate = e s t i n i t i a l ;
adapt in s ta t−>a d ap t i n i t i a l−>s o l v e = in t e r p o l u 0 ;

adapt in s ta t−>adapt space−>g e t e l e s t = g e t e l e s t ;
adapt in s ta t−>adapt space−>g e t e l e s t c = g e t e l e s t c ;
adapt in s ta t−>adapt space−>es t imate = est imate ;

44 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

adapt in s ta t−>adapt space−>bu i l d a f t e r c o a r s e n = bu i ld ;
adapt in s ta t−>adapt space−>s o l v e = so l v e ;

adapt in s ta t−>i n i t t im e s t e p = i n i t t im e s t e p ;
adapt in s ta t−>s e t t ime = se t t ime ;
adapt in s ta t−>g e t t ime e s t = g e t t ime e s t ;
adapt in s ta t−>c l o s e t ime s t e p = c l o s e t ime s t e p ;

/∗ ∗∗
∗ . . . o f f we go . . .
∗∗∗ ∗/

adapt method instat (mesh , adap t i n s t a t) ;

WAIT REALLY;

return 0 ;
}

2.4.3 The parameter file for the heat equation

The parameter file for the heat equation INIT/heat.dat (here for the 2d simulations) is
similar to the parameter file for the Poisson problem. The main differences are additional
parameters for the adaptive procedure, see Section 4.8.3. These additional parameters may
also be optimized for 1d, 2d, and 3d.

Via the parameter write finite element data storage of meshes and finite element
solution for post-processing purposes can be done. The parameter write statistical data

selects storage of files containing number of DOFs, estimate, error, etc. versus time. Finally,
data path can prescribe an existing path for storing such data.

mesh dimension: 2

macro file name: Macro/macro.amc

global refinements: 4

polynomial degree: 1

online graphics: 1

% graphic windows: solution, estimate, mesh, and error if size > 0

graphic windows: 400 400 400 400

% for gltools graphics you can specify the range for the values of

% discrete solution for displaying: min max

% automatical scaling by display routine if min >= max

gltools range: -1.0 1.0

solver: 2 % 1: BICGSTAB 2: CG 3: GMRES 4: ODIR 5: ORES

solver max iteration: 1000

solver restart: 10 % only used for GMRES

solver tolerance: 1.e-12

solver info: 2

solver precon: 1 % 0: no precon 1: diag precon

% 2: HB precon 3: BPX precon

% 4: SSOR, omega = 1.0, #iter = 3

2.4. HEAT EQUATION 45

% 5: SSOR, with control over omega and #iter

% 6: ILU(k)

precon ssor omega: 1.0 % for precon == 5

precon ssor iter: 1 % for precon == 5

precon ilu(k): 8 % for precon == 6

parameter theta: 1.0

adapt->start_time: 0.0

adapt->end_time: 2.0

adapt->tolerance: 1.0e-3

adapt->timestep: 1.0e-1

adapt->rel_initial_error: 0.5

adapt->rel_space_error: 0.5

adapt->rel_time_error: 0.5

adapt->strategy: 0 % 0=explicit, 1=implicit

adapt->max_iteration: 10

adapt->info: 2

adapt->initial->strategy: 3 % 0=none, 1=GR, 2=MS, 3=ES, 4=GERS

adapt->initial->MS_gamma: 0.5

adapt->initial->max_iteration: 10

adapt->initial->info: 2

adapt->space->strategy: 3 % 0=none, 1=GR, 2=MS, 3=ES, 4=GERS

adapt->space->ES_theta: 0.9

adapt->space->ES_theta_c: 0.2

adapt->space->max_iteration: 10

adapt->space->coarsen_allowed: 1 % 0|1

adapt->space->info: 2

estimator C0: 0.1

estimator C1: 0.1

estimator C2: 0.1

estimator C3: 0.1

write finite element data: 1 % write data for post-processing or not

write statistical data: 0 % write statistical data or not

data path: ./data % path for data to be written

WAIT: 0

Figures 2.4 and 2.5 show the variation of time step sizes and number of DOFs over
time, automatically generated by the adaptive method in two and three space dimensions
for a problem with time-periodic data. The number of DOFs is depicted for different spatial
discretization order and shows the strong benefit from using a higher order method. The size
of time steps was nearly the same for all spatial discretizations. Parameters for the adaptive
procedure can be taken from the corresponding parameter files in 2d and 3d in the distribution.

46 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

0.5 1.0 1.5 2.0
time

0.000

0.005

0.010

0.015

tim
es

te
p

si
ze

0.5 1.0 1.5 2.0
time

0

5000

10000

15000

nu
m

be
r o

f D
O

Fs

p = 1
p = 2
p = 3
p = 4

Figure 2.4: Time step size (left) and number of DOFs for different polynomial degree (right)
over time in 2d.

0.5 1.0 1.5 2.0
time

0.000

0.005

0.010

0.015

0.020

tim
es

te
p

si
ze

0.5 1.0 1.5 2.0
time

0

10000

20000

30000

40000

nu
m

be
r o

f D
O

Fs

p = 1
p = 2
p = 3
p = 4

Figure 2.5: Time step size (left) and number of DOFs for different polynomial degree (right)
over time in 3d.

2.4.4 Functions for leaf data

For time dependent problems, mesh adaption usually also includes coarsening of previously
(for smaller t) refined parts of the mesh. For storage of local coarsening error estimates, the
leaf data structure is enlarged by a second REAL. Functions rw el estc() and get el estc()

are provided for access to that storage location, in addition to the functions rw el est() and
get el est() which were already defined in ellipt.c.

struct h e a t l e a f d a t a
{

REAL est imate ; /∗ one r e a l f o r the e lement i n d i c a t o r
∗/

REAL e s t c ; /∗ one r e a l f o r the coarsen ing i n d i c a t o r
∗/

} ;

stat ic REAL ∗ rw e l e s t (EL ∗ e l)
{

i f (IS LEAF EL(e l))
return &((struct h e a t l e a f d a t a ∗)LEAF DATA(e l))−>es t imate ;

else
return NULL;

}

stat ic REAL g e t e l e s t (EL ∗ e l)
{

2.4. HEAT EQUATION 47

i f (IS LEAF EL(e l))
return ((struct h e a t l e a f d a t a ∗)LEAF DATA(e l))−>es t imate ;

else
return 0 . 0 ;

}

stat ic REAL ∗ rw e l e s t c (EL ∗ e l)
{

i f (IS LEAF EL(e l))
return &((struct h e a t l e a f d a t a ∗)LEAF DATA(e l))−>e s t c ;

else
return NULL;

}

stat ic REAL g e t e l e s t c (EL ∗ e l)
{

i f (IS LEAF EL(e l))
return ((struct h e a t l e a f d a t a ∗)LEAF DATA(e l))−>e s t c ;

else
return 0 . 0 ;

}

2.4.5 Data of the differential equation

Data for the heat equation are the initial values u0, right hand side f , and boundary values
g. When the true solution u is known, it can be used for computing the true error between
discrete and exact solution.

The sample problem is defined such that the exact solution is

u(x, t) = sin(πt)e−10|x|2 on (0, 1)d × [0, 1].

All library subroutines which evaluate a given data function (for integration, e.g.) are
defined for space dependent functions only and do not know about a time variable. Thus, such
a ‘simple’ space dependent function fspace(x) has to be derived from a space–time dependent
function f(x, t). We do this by keeping the time in a global variable, and setting

fspace(x) := f(x, t).

stat ic REAL eva l t ime u = 0 . 0 ;
stat ic REAL u(const REAL D x)
{

return s i n (M PI∗ eva l t ime u) ∗exp (−10.0∗SCPDOW(x , x)) ;
}

stat ic REAL eva l t ime u0 = 0 . 0 ;
stat ic REAL u0 (const REAL D x)
{

eva l t ime u = eva l t ime u0 ;
return u(x) ;

}

stat ic REAL eva l t ime g = 0 . 0 ;

48 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

stat ic REAL g (const REAL D x) /∗ boundary va lues , not op t i ona l
∗/

{
eva l t ime u = eva l t ime g ;
return u(x) ;

}

stat ic REAL eva l t im e f = 0 . 0 ;
stat ic REAL f (const REAL D x) /∗ −Del ta u , not op t i ona l

∗/
{

REAL r2 = SCPDOW(x , x) , ux = s i n (M PI∗ e v a l t im e f) ∗exp (−10.0∗ r2) ;
REAL ut = M PI∗ cos (M PI∗ e v a l t im e f) ∗exp (−10.0∗ r2) ;
return ut − (400 .0∗ r2 − 20 .0∗DIM) ∗ux ;

}

As indicated, the times for evaluation of boundary data and right hand side may be
chosen independent of each other depending on the kind of time discretization. The value of
eval time f and eval time g are set by the function set time(). Similarly, the evaluation
time for the exact solution is set by estimate() where also the evaluation time of f is set
for the evaluation of the element residual. In order to start the simulation not only at t = 0,
we have introduced a variable eval time u0, which is set in main() at the beginning of the
program to the value of adapt instat->start time.

2.4.6 Time discretization

The model implementation uses a variable time discretization scheme. Initial data is interpo-
lated on the initial mesh,

U0 = I0u0.

For θ ∈ [0, 1], the solution Un+1 ≈ u(·, tn+1) is given by Un+1 ∈ In+1g(·, tn+1) + X̊n+1 such
that

1

τn+1
(Un+1,Φ) + θ(∇Un+1,∇Φ) =

1

τn+1
(In+1Un,Φ)− (1− θ)(∇In+1Un,∇Φ) (2.5)

+ (f(·, tn + θτn+1),Φ) for all Φ ∈ X̊n+1.

For θ = 0, this is the forward (explicit) Euler scheme, for θ = 1 the backward (implicit) Euler
scheme. For θ = 0.5, we obtain the Cranck–Nicholson scheme, which is of second order in
time. For θ ∈ [0.5, 1.0], the scheme is unconditionally stable, while for θ < 0.5 stability is only
guaranteed if the time step size is small enough. For that reason, the time step size is scaled
by an additional factor of 10−3 in the main program if θ < 0.5. But this might not be enough
for guaranteeing stability of the scheme! We do recommend to use θ = 0.5, 1 only.

2.4.7 Initial data interpolation

Initial data u0 is just interpolated on the initial mesh, thus the solve() entry in
adapt instat->adapt initial will point to a routine interpol u0() which implements this
by the library interpolation routine. No build() routine is needed by the initial mesh adaption
procedure.

2.4. HEAT EQUATION 49

stat ic void i n t e r p o l u 0 (MESH ∗mesh)
{

dof compress (mesh) ;
i n t e r p o l (u0 , u h) ;

return ;
}

2.4.8 The assemblage of the discrete system

Using a matrix notation, the discrete problem (2.5) can be written as(1

τn+1
M + θA

)
Un+1 =

(1

τn+1
M − (1− θ)A

)
Un + F n+1.

Here, M = (Φi,Φj) denotes the mass matrix and A = (∇Φi,∇Φj) the stiffness matrix (up to
Dirichlet boundary DOFs). The system matrix on the left hand side is not the same as the one
applied to the old solution on the right hand side. But we want to compute the contribution
of the solution form the old time step Un to the right hand side vector efficiently by a simple
matrix–vector multiplication and thus avoiding additional element-wise integration. For doing
this without storing both matrices M and A we are using the element-wise strategy explained
and used in Section 2.3.6 when assembling the linearized equation in the Newton iteration
for solving the nonlinear reaction–diffusion equation.

The subroutine assemble() generates both the system matrix and the right hand side at
the same time. The mesh elements are visited via the non-recursive mesh traversal routines.
On every leaf element, both the element mass matrix c mat and the element stiffness matrix
a mat are calculated using the el matrix fct() provided by fill matrix info(). For this
purpose, two different operators (the mass and stiffness operators) are defined and applied
on each element. The stiffness operator uses the same LALt() function for the second order
term as described in Section 2.2.7; the mass operator implements only the constant zero order
coefficient c = 1/τn+1, which is passed in struct op data and evaluated in the function c().
The initialization and access to these operators is done in the same way as in Section 2.3.6
where this is described in detail. During the non-recursive mesh traversal, the element stiffness
matrix and the mass matrix are computed and added to the global system matrix. Then, the
contribution to the right hand side vector of the solution from the old time step is computed
by a matrix–vector product of these element matrices with the local coefficient vector on the
element of Un and added to the global load vector (see Table 4.2 for bi mat el vec()).

After this step, the the right hand side f and Dirichlet boundary values g are treated by
the standard routines.

2.4.1 Compatibility Note. In contrast to previous ALBERTA versions, the element-vectors
and -matrices are no longer flat C-arrays, but “cooked” data-structures, with some support
routines doing basis linear algebra. See Section 4.7.1.1.

struct op data /∗ app l i c a t i o n data (resp . ” use r da ta ”) ∗/
{

REAL BD Lambda ; /∗ the g rad i en t o f the ba r y c en t r i c coord ina t e s ∗/
REAL det ; /∗ | de t D F S | ∗/

50 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

REAL tau 1 ;
} ;

stat ic REAL c (const EL INFO ∗ e l i n f o , const QUAD ∗quad , int iq , void ∗ud)
{

struct op data ∗ i n f o = (struct op data ∗)ud ;

return i n fo−>tau 1 ∗ i n fo−>det ;
}

stat ic void assemble (DOFMATRIX ∗matrix , DOF REAL VEC ∗ fh , DOF REAL VEC ∗uh ,
const DOF REAL VEC ∗u old ,
REAL theta , REAL tau ,
REAL (∗ f) (const REAL D) , REAL (∗ g) (const REAL D) ,
const BNDRY FLAGS d i r i c h l e t ma sk)

{
/∗ Some q u a n t i t i e s remembered across c a l l s . Think o f t h i s rou t ine
∗ l i k e be ing a ” l i b r a r y func t i on ” . . . The s t u f f i s re− i n i t i a l i z e d
∗ whenever the f i n i t e e lement space changes . We use f e space−>admin
∗ to check f o r changes in the f i n i t e e lement space because
∗ DOF ADMIN’ s are p e r s i s i t e n t w i th in ALBERTA, wh i l e fe−space are
∗ not .
∗/

stat ic EL MATRIX INFO s t i f f e l m i , mass e lmi ;
stat ic const DOF ADMIN ∗admin = NULL;
stat ic const QUAD ∗quad = NULL;
stat ic struct op data op data [1] ; /∗ s t o rage f o r de t and Lambda ∗/

/∗ Remaining (non−s t a t i c) v a r i a b l e s . ∗/
const BAS FCTS ∗ b a s f c t s ;
FLAGS f i l l f l a g ;
REAL ∗ f v e c ;
int nbf ;
EL SCHAR VEC ∗bound ;

/∗ I n i t i a l i z e p e r s i s t e n t v a r i a b l e s . ∗/
i f (admin != uh−>f e space−>admin) {
OPERATOR INFO s t i f f o p i = { NULL, } , mass opi = { NULL, } ;

admin = uh−>f e space−>admin ;

s t i f f o p i . r ow f e spac e = uh−>f e s p a c e ;
s t i f f o p i . quad [2] = quad ;
s t i f f o p i . LALt . r e a l = LALt ;
s t i f f o p i . LALt pw const = true ;
s t i f f o p i . LALt symmetric = true ;
s t i f f o p i . u s e r data = op data ;

f i l l m a t r i x i n f o (& s t i f f o p i , &s t i f f e l m i) ;

mass opi . r ow f e spac e = uh−>f e s p a c e ;
mass opi . quad [0] = quad ;
mass opi . c . r e a l = c ;
mass opi . c pw const = true ;
mass opi . u s e r data = op data ;

2.4. HEAT EQUATION 51

f i l l m a t r i x i n f o (&mass opi , &mass elmi) ;

quad = get quadrature (uh−>f e space−>ba s f c t s−>dim ,
2∗uh−>f e space−>ba s f c t s−>degree) ;

}

op data−>tau 1 = 1.0/ tau ;

/∗ Assemble the matrix and the r i g h t hand s i d e . The idea i s to
∗ assemble the l o c a l mass and s t i f f n e s s matr ices on ly once , and to
∗ use i t to update both , the system matrix and the c on t r i b u t i on o f
∗ the time d i s c r e t i s a t i o n to the RHS.
∗/

c l e a r d o f ma t r i x (matrix) ;
d o f s e t (0 . 0 , fh) ;
f v e c = fh−>vec ;

b a s f c t s = uh−>f e space−>b a s f c t s ;
nbf = ba s f c t s−>n b a s f c t s ;

bound = g e t e l s c h a r v e c (b a s f c t s) ;

f i l l f l a g = CALL LEAF EL |FILL COORDS |FILL BOUND;
TRAVERSE FIRST(uh−>f e space−>mesh , −1, f i l l f l a g) {

const EL REAL VEC ∗ u o l d l o c ;
const EL DOF VEC ∗dof ;
const EL BNDRY VEC ∗ bndry b i t s ;
const EL MATRIX ∗ s t i f f l o c , ∗mass loc ;

/∗ Get the l o c a l c o e f f i c i e n t s o f u o ld , boundary in fo , dof−mapping ∗/
u o l d l o c = f i l l e l r e a l v e c (NULL, e l i n f o −>e l , u o ld) ;
dof = g e t d o f i n d i c e s (NULL, uh−>f e space , e l i n f o −>e l) ;
bndry b i t s = get bound (NULL, ba s f c t s , e l i n f o) ;

/∗ I n i t i a l i z a t i o n o f va l u e s used by LALt and c . I t i s not
∗ necessary to in t roduce an ex t ra ” i n i t e l emen t () ” hook f o r our
∗ OPERATOR INFO s t r u c t u r e s ; the l i n e be low i s j u s t what would be
∗ conta ined in t ha t f unc t i on (compare wi th e l l i p t . c) .
∗
∗ Beware to r ep l a c e the ” . . . 0cd () ” f o r co−dimension 0 by i t s
∗ proper . . . dim () va r i an t i f ever ” por t i ng ” t h i s s t u f f to
∗ parametr ic meshes on mani fo lds .
∗/

op data−>det = e l grd lambda 0cd (e l i n f o , op data−>Lambda) ;

/∗ Obtain the l o c a l (i . e . per−element) matr ices . ∗/
s t i f f l o c = s t i f f e l m i . e l m a t r i x f c t (e l i n f o , s t i f f e l m i . f i l l i n f o) ;
mass loc = mass elmi . e l m a t r i x f c t (e l i n f o , mass e lmi . f i l l i n f o) ;

/∗ Trans la te the geometr ic boundary c l a s s i f i c a t i o n in t o
∗ D i r i c h l e t /Neumann/ I n t e r i o r boundary cond i t i on
∗ i n t e r p r e t a t i o n . In s i d e the loop over the mesh−e lements we need
∗ only to care about D i r i c h l e t boundary cond i t i on s .
∗/

d i r i ch l e t map (bound , bndry bi t s , d i r i c h l e t ma sk) ;

/∗ add t h e t a ∗a (p s i i , p s i j) + 1/ tau ∗m(4∗uˆ3∗ p s i i , p s i j) ∗/

52 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

i f (theta) {
add element matr ix (matrix ,

theta , s t i f f l o c , NoTranspose , dof , dof , bound) ;
}
add element matr ix (matrix , 1 . 0 , mass loc , NoTranspose , dof , dof , bound) ;

/∗ compute the c on t r i b u t i on s from the o ld time−s t ep :
∗
∗ f += −(1− t h e t a)∗a (u o ld , p s i i) + 1/ tau ∗m(u old , p s i i)
∗/

b i ma t e l v e c (−(1.0 − theta) , s t i f f l o c ,
1 . 0 , mass loc , u o l d l o c ,
1 . 0 , fh , dof , bound) ;

} TRAVERSENEXT() ;

f r e e e l s c h a r v e c (bound) ;

/∗ I nd i c a t e t ha t the boundary cond i t i on s are b u i l t i n t o the matrix ,
∗ needed e . g . by the h i e r a r c h i c a l p r e cond i t i one r s .
∗/

BNDRY FLAGS CPY(matrix−>d i r i c h l e t bnd ry , d i r i c h l e t ma sk) ;

/∗ Add the ” force−term” to the r i g h t hand s i d e (L2scp . . . () i s a d d i t i v e) ∗/
L2s cp f c t ba s (f , quad , fh) ;

/∗ Close the system by imposing s u i t a b l e boundary cond i t i on s . Have a
∗ l ook at e l l i p t . c f o r how to impose more compl ica ted s t u f f ; here
∗ we only use D i r i c h l e t b . c .
∗/

d i r i c h l e t bound (fh , uh , NULL, d i r i ch l e t mask , g) ;
}

The build() routine for one time step of the heat equation is nearly a dummy routine
and just calls the assemble() routine described above. In order to avoid holes in vectors and
matrices, as a first step, the mesh is compressed. This guarantees optimal performance of the
BLAS1 routines used in the iterative solvers.

stat ic void bu i ld (MESH ∗mesh , U CHAR f l a g)
{

FUNCNAME(” bu i ld ”) ;

dof compress (mesh) ;

INFO(adapt in s ta t−>adapt space−>i n fo , 2 ,
”%d DOFs f o r %s \n” , f e space−>admin−>s i z e u s ed , f e space−>name) ;

assemble (matrix , f h , u h , u old , theta , adapt in s ta t−>t imestep ,
f , g , d i r i c h l e t ma sk) ;

}

The resulting linear system is solved by calling the oem solve s() library routine. This
is done via the solve() subroutine described in Section 2.2.8.

2.4. HEAT EQUATION 53

2.4.9 Error estimation

The initial error ‖U0 − u0‖L2(Ω) is calculated exactly (up to quadrature error) by a call to
L2 err(). Local error contributions are written via rw el est() to the estimate value in
struct heat leaf data. The err max and err sum of the ADAPT STAT structure (which will
be adapt instat->adapt initial, see below) are set accordingly.

stat ic REAL e s t i n i t i a l (MESH ∗mesh , ADAPT STAT ∗adapt)
{

e r r L2 = adapt−>err sum =
L2 er r (u0 , u h , NULL, f a l s e , f a l s e , rw e l e s t , &adapt−>err max) ;

return adapt−>err sum ;
}

In each time step, error estimation is done by the library routine heat est(), which
generates both time and space discretization indicators, compare Section 2.4.9. Similar to
the estimator for elliptic problems, a function r() is needed for computing contributions of
lower order terms and the right hand side. The flag for passing information about the discrete
solution Un+1 or its gradient to r() is set to zero in estimate() since no lower order term is
involved.

Local element indicators are stored to the estimate or est c entries inside the data struc-
ture struct heat leaf data via rw el est() and rw el estc(). The err max and err sum

entries of adapt->adapt space are set accordingly. The temporal error indicator is the return
value by heat est() and is stored in a global variable for later access by get time est(). In
this example, the true solution is known and thus the true error ‖u(·, tn+1) − Un+1‖L2(Ω) is
calculated additionally for comparison.

stat ic REAL r (const EL INFO ∗ e l i n f o ,
const QUAD ∗quad , int iq ,
REAL uh at qp , const REAL D grd uh at qp ,
REAL t)

{
REAL D x ;

coord to wor ld (e l i n f o , quad−>lambda [i q] , x) ;
e v a l t im e f = t ;

return −f (x) ;
}

stat ic REAL est imate (MESH ∗mesh , ADAPT STAT ∗adapt)
{

FUNCNAME(” es t imate ”) ;
stat ic REAL C[4] = {−1.0 , 1 . 0 , 1 . 0 , 1 . 0 } ;
stat ic REAL DD A = {{0 . 0}} ;
FLAGS r f l a g = 0 ; /∗ = (INIT UH | INIT GRD UH) , i f needed by r ()

∗/
int n ;
REAL spa c e e s t ;

eva l t ime u = adapt in s ta t−>time ;

i f (C[0] < 0) {

54 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

C[0] = 1 . 0 ;
GETPARAMETER(1 , ” e s t imator C0” , ”%f ” , &C[0]) ;
GETPARAMETER(1 , ” e s t imator C1” , ”%f ” , &C[1]) ;
GETPARAMETER(1 , ” e s t imator C2” , ”%f ” , &C[2]) ;
GETPARAMETER(1 , ” e s t imator C3” , ”%f ” , &C[3]) ;

for (n = 0 ; n < DIMOFWORLD; n++) {
A[n] [n] = 1 . 0 ; /∗ s e t d iogona l o f A; a l l o ther e lements are zero ∗/

}
}

t ime e s t = hea t e s t (u h , u old , adapt in s ta t , rw e l e s t , rw e l e s t c ,
−1 /∗ quad degree ∗/ ,
C, (const REAL D ∗)A, d i r i ch l e t mask ,
r , r f l a g , NULL /∗ gn () ∗/ , 0 /∗ g n f l a g ∗/) ;

s p a c e e s t = adapt in s ta t−>adapt space−>err sum ;
er r L2 = L2 er r (u , u h , NULL, f a l s e , f a l s e , NULL, NULL) ;

INFO(adapt in s ta t−>i n fo , 2 ,
”−−−8<−−−\n”) ;

INFO(adapt in s ta t−>i n fo , 2 , ” time = %.4 l e with t imestep = %.4 l e \n” ,
adapt in s ta t−>time , adapt in s ta t−>t imestep) ;

INFO(adapt in s ta t−>i n fo , 2 , ” e s t imate = %.4 le , max = %.4 l e \n” , space e s t ,
s q r t (adapt in s ta t−>adapt space−>err max)) ;

INFO(adapt in s ta t−>i n fo , 2 , ” | | u−uh | | L2 = %.4 le , r a t i o = %.2 l f \n” , err L2 ,
e r r L2 /MAX(space e s t , 1 . e−20)) ;

return adapt in s ta t−>adapt space−>err sum ;
}

2.4.10 Time steps

Time dependent problems are calculated step by step in single time steps. In a fully implicit
time-adaptive strategy, each time step includes an adaptation of the time step size as well as
an adaptation of the corresponding spatial discretization. First, the time step size is adapted
and then the mesh adaptation procedure is performed. This second part may again push the
estimate for the time discretization error over the corresponding tolerance. In this case, the
time step size is again reduced and the whole procedure is iterated until both, time and space
discretization error estimates meet the prescribed tolerances (or until a maximal number of
iterations is performed). For details and other time-adaptive strategies see Section 4.8.3.

Besides the build(), solve(), and estimate() routines for the adaptation of the initial
grid and the grids in each time steps, additional routines for initializing time steps, setting
time step size of the actual time step, and finalizing a time step are needed. For adaptive
control of the time step size, the function get time est() gives information about the size
of the time discretization error. The actual time discretization error is stored in the global
variable time est and its value is set in the function estimate().

During the initialization of a new time step in init timestep(), the discrete solution u h

from the old time step (or from interpolation of initial data) is copied to u old. In the function
set time() evaluation times for the right hand side f and Dirichlet boundary data g are set
accordingly to the chosen time discretization scheme. Since a time step can be rejected by the
adaptive method by a too large time discretization error, this function can be called several

2.4. HEAT EQUATION 55

times during the computation of a single time step. On each call, information about the actual
time and time step size is accessed via the entries time and timestep of the adapt instat

structure.

After accepting the current time step size and current grid by the adaptive method,
the time step is completed by close time step(). The variables space est, time est, and
err L2 now hold the final estimates resp. error, and u h the accepted finite element solution
for this time step. The final mesh and discrete solution can now be written to file for post-
processing purposes, depending on the parameter value of write finite element data. The
file name for the mesh/solution consists of the data path, the base name mesh/u h, and the
iteration counter of the actual time step. Such a composition can be easily constructed by the
function generate filename(), described in Section 3.1.6. Mesh and finite element solution
are then exported to file by the write * xdr() routines in a portable binary format. Using
this procedure, the sequence of discrete solutions can easily be visualized by the program
alberta movi which is an interface to GRAPE and comes with the distribution of ALBERTA,
compare Section 4.11.3.

Depending on the parameter value of write statistical data, the evolution of esti-
mates, error, number of DOFs, size of time step size, etc. are written to files by the function
write statistical data(), which is included in heat.c but not described here. It produces
for each quantity a two-column data file where the first column contains time and the second
column estimate, error, etc. Such data can easily be evaluated by standard (graphic) tools.

Finally, a graphical output of the solution and the mesh is generated via the graphics()

routine already used in the previous examples.

stat ic REAL t ime e s t = 0 . 0 ;

stat ic REAL ge t t ime e s t (MESH ∗mesh , ADAPT INSTAT ∗adapt)
{

return (t ime e s t) ;
}

stat ic void i n i t t im e s t e p (MESH ∗mesh , ADAPT INSTAT ∗adapt)
{

FUNCNAME(” i n i t t im e s t e p ”) ;

INFO(adapt in s ta t−>i n fo , 1 ,
”−−−8<−−−\n”) ;

INFO(adapt in s ta t−>i n fo , 1 , ” s t a r t i n g new t imestep \n”) ;

dof copy (u h , u o ld) ;
return ;

}

stat ic void s e t t ime (MESH ∗mesh , ADAPT INSTAT ∗adapt)
{

FUNCNAME(” s e t t ime ”) ;

INFO(adapt−>i n fo , 1 ,
”−−−8<−−−\n”) ;

i f (adapt−>time == adapt−>s t a r t t ime)
{

INFO(adapt−>i n fo , 1 , ” s t a r t time : %.4 l e \n” , adapt−>time) ;

56 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

}
else
{

INFO(adapt−>i n fo , 1 , ” t imestep f o r (%.4 l e %.4 l e) , tau = %.4 l e \n” ,
adapt−>time−adapt−>t imestep , adapt−>time ,
adapt−>t imestep) ;

}

e v a l t im e f = adapt−>time − (1 − theta) ∗adapt−>t imestep ;
eva l t ime g = adapt−>time ;

return ;
}

stat ic void c l o s e t ime s t e p (MESH ∗mesh , ADAPT INSTAT ∗adapt)
{

FUNCNAME(” c l o s e t ime s t e p ”) ;
stat ic REAL err max = 0 . 0 ; /∗ max space−t ime error

∗/
stat ic REAL est max = 0 . 0 ; /∗ max space−t ime es t imate

∗/
stat ic int wr i t e f e d a t a = 0 , w r i t e s t a t d a t a = 0 ;
stat ic int s tep = 0 ;
stat ic char path [2 5 6] = ” . / ” ;

REAL spa c e e s t = adapt−>adapt space−>err sum ;
REAL to l e r an c e = adapt−>r e l t im e e r r o r ∗adapt−>t o l e r an c e ;

err max = MAX(err max , e r r L2) ;
est max = MAX(est max , s p a c e e s t + t ime e s t) ;

INFO(adapt−>i n fo , 1 ,
”−−−8<−−−\n”) ;

i f (adapt−>time == adapt−>s t a r t t ime)
{

t o l e r an c e = adapt−>a d ap t i n i t i a l−>t o l e r an c e ;
INFO(adapt−>i n fo , 1 , ” s t a r t time : %.4 l e \n” , adapt−>time) ;

}
else
{

t o l e r an c e += adapt−>adapt space−>t o l e r an c e ;
INFO(adapt−>i n fo , 1 , ” t imestep f o r (%.4 l e %.4 l e) , tau = %.4 l e \n” ,

adapt−>time−adapt−>t imestep , adapt−>time ,
adapt−>t imestep) ;

}
INFO(adapt−>i n fo , 2 , ”max . e s t . = %.4 le , t o l e r an c e = %.4 l e \n” ,

est max , t o l e r an c e) ;
INFO(adapt−>i n fo , 2 , ”max . e r r o r = %.4 le , r a t i o = %.2 l f \n” ,

err max , err max/MAX(est max , 1 . 0 e−20)) ;

i f (! s tep) {
GETPARAMETER(1 , ” wr i t e f i n i t e element data” , ”%d” , &wr i t e f e d a t a) ;
GETPARAMETER(1 , ” wr i t e s t a t i s t i c a l data” , ”%d” , &wr i t e s t a t d a t a) ;
GETPARAMETER(1 , ”data path” , ”%s ” , path) ;

}

2.5. INSTALLATION OF ALBERTA AND FILE ORGANIZATION 57

/∗ ∗∗
∗ wr i t e mesh and d i s c r e t e s o l u t i o n to f i l e f o r post−proce s s ing
∗∗∗ ∗/

i f (w r i t e f e d a t a) {
const char ∗ fn ;

fn= gene r a t e f i l e name (path , ”mesh” , s tep) ;
wr i te mesh xdr (mesh , fn , adapt−>time) ;
fn= gene r a t e f i l e name (path , ”u h” , s tep) ;
w r i t e d o f r e a l v e c x d r (u h , fn) ;

}

s tep++;

/∗ ∗∗
∗ wr i t e data about es t imate , error , time s t ep s i z e , e t c .
∗∗∗ ∗/

i f (w r i t e s t a t d a t a) {
int n dof = f e space−>admin−>s i z e u s e d ;
w r i t e s t a t i s t i c s (path , adapt , n dof , space e s t , t ime es t , e r r L2) ;

}

i f (do graph i c s) {
graph i c s (mesh , u h , g e t e l e s t , u , adapt−>time) ;

}

return ;
}

2.5 Installation of ALBERTA and file organization

2.5.1 Installation

The ALBERTA-distribution comes in form a compressed tar archives

alberta-VERSION.tar.bz2

or

alberta-VERSION.tar.gz,

where VERSION has to be replaced by the respective version of the distribution, as you might
have guessed. It includes all sources of ALBERTA, the model implementations of the examples
described in Chapter 2, and tools for the installation. ALBERTA can only be installed on a
Unix-like operating system.

The file alberta-VERSION.tar.{gz|bz2} has to be unpacked. This creates a sub-directory
alberta-VERSIONS/ in the current directory with all data of ALBERTA. Changing to this
sub-directory, the installation procedure is fully explained in the README. For a platform
independent installation the GNU configure tools are used, documented in the file INSTALL.
Installation options for the configure script can be added on the command line and are
described in the README file or printed with the command configure --help.

58 CHAPTER 2. IMPLEMENTATION OF MODEL PROBLEMS

If ALBERTA should use one of the visualization packages gltools, GRAPE, OpenDX, or
GMV, these have to be installed first, see the corresponding web sites

http://www.wias-berlin.de/software/gltools/

http://www.iam.uni-bonn.de/sfb256/grape/

http://www-xdiv.lanl.gov/XCM/gmv/GMVHome.html

http://www.opendx.org/

for obtaining the software. Paths to their installation directories must be passed as arguments
to the configure script. As a hint: the simplest way is to install add-on packages following
the layout advocated by the GNU tools, i.e. libraries go to PREFIX/lib/, header files to
PREFIX/include/ and so on, where PREFIX stands for a leading path-component common
to all installation directories. There is also support for other visualization packages, but the
packages mentioned above have to be installed prior to the ALBERTA package, because AL-
BERTA needs access to header-files and software libraries that come with those packages to
use them.

2.5.2 File organization

Using the ALBERTA library, the global dimension n enters in an application only as a symbolic
constant DIM OF WORLD. Thus, the code is usually the same, regardless of the dimension of the
ambient space. Nevertheless, the object files do depend on the dimension, since DIM OF WORLD

is preprocessor macro constant (defining the length of vectors, e.g.). Hence, all object files
have to be rebuilt, when changing the dimension. To make sure that this is done automatically
we use the following file organization, which is also reflected in the structure of DEMO/src/
sub-directory with the implementation of the model problems. We use the sub-directories

./1d/ ./2d/ ./3d/ ./4d/ ./5d/ ./Common/

for organizing files. The directory Common/ contains all source files and header files that do
not (or only slightly) depend on the dimension. The directories 1d/, 2d/, 3d/, 4d/ and 5d/

contain dimension-dependent data, like macro triangulations files and parameter files. Finally,
a dimension-dependent Makefile is automatically created in DEMO/src/*d during installation
of ALBERTA. These Makefiles contain all information about ALBERTA header files and all
libraries used. In the 1d, 2d, or 3d sub-directories, the programs of the model problems for the
corresponding space dimension are then generated by executing make ellipt, make nonlin,
and make heat. There are additional demo programs, some of them are tied to a specific
value of DIM OF WORLD. This is described in the file README in the top-level directory of the
demo-package.

http://www.wias-berlin.de/software/gltools/
http://www.iam.uni-bonn.de/sfb256/grape/
http://www-xdiv.lanl.gov/XCM/gmv/GMVHome.html
http://www.opendx.org/

Chapter 3

Data structures and
implementation

The ALBERTA toolbox provides two header files alberta util.h and alberta.h, which
contain the definitions of all data structures, macros, and subroutine prototypes. The file
alberta util.h is included in the header file alberta.h.

3.1 Basic types, utilities, and parameter handling

The file alberta util.h contains some type definitions and macro definitions for memory
(de-) allocation and messages, which we describe briefly in this section. The following system
header files are included in alberta util.h

#include <stdlib.h>

#include <stddef.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <float.h>

3.1.1 Basic types

ALBERTA uses the following elementary symbolic constants and macro definitions:

#define true 1

#define false 0

#define nil NULL

#define MAX(a, b) ((a) > (b) ? (a) : (b))

#define MIN(a, b) ((a) < (b) ? (a) : (b))

#define ABS(a) ((a) >= 0 ? (a) : -(a))

#define SQR(a) ((a)*(a))

In order to store information in a compact way, we define two bit fields U CHAR and S CHAR:

typedef unsigned char U_CHAR;

typedef signed char S_CHAR;

The mesh traversal routines need flags which are stored in the data type FLAGS:

59

60 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

typedef unsigned long FLAGS;

By the data type REAL the user can specify to store floating point values in the type float

or double. All pointers to variables or vectors of floating point values have to be defined as
REAL!

typedef double REAL;

The use of float is also possible, but it is not guaranteed to work and may lead to problems
when using other libraries (like libraries for linear solver or graphics, e.g.).

3.1.2 Message macros

There are several macros to write messages and error messages. Especially for error messages
the exact location of the error is of interest. Thus, error messages are preceded by the name
of the source file and the line number where this error was detected. Such information is
produced by the C-preprocessor. Additionally, the name of the function is printed. Since there
is no symbolic constant defined by the C-preprocessor holding the function name, in each
function a string funcName containing the name of the function has to be defined. This is
usually done by the macro FUNCNAME

#define FUNCNAME(nn) const char *funcName = nn

as the first declaration:

3.1.1 Example (FUNCNAME).

static void refine_element(EL *el)

{

FUNCNAME("refine_element");

...

}

All message macros use this local variable funcName and it has to be defined in each
function using message macros.

Usual output to stdout is done by the macro MSG() which has the same arguments as
printf():

MSG(const char *format, ...);

The format string should be ended with the newline character ‘\n’. MSG() usually precedes
the message by the function’s name. If the previous message was produced by the same
function, the function’s name is omitted and the space of the name is filled with blanks.

If the format string of MSG() does not end with the newline character, and one wants to
print more information to the same line, this can be done by print msg() which again has
the same arguments as printf():

print_msg(const char *format, ...);

3.1.2 Example (MSG(), print msg()).

static void refine_element(EL *el)

{

3.1. BASIC TYPES, UTILITIES, AND PARAMETER HANDLING 61

FUNCNAME("refine_element");

...

MSG("refining element %d\n", INDEX(el));

MSG("neighbours of element: ");

for (i = 0; i < N_VERTICES-1; i++)

print_msg("%d, ", INDEX(NEIGH(el)[i]));

print_msg("%d\n", INDEX(NEIGH(el)[N_VERTICES-1]));

}

produces for instance output

refine_element: refining element 10

neighbours of element: 0, 14, 42

A simpler way to print vectors of integer or real numbers is provided by the macros
PRINT INT VEC and PRINT REAL VEC.

PRINT_INT_VEC(const char *s, const int *vec, int no);

PRINT_REAL_VEC(const char *s, const REAL *vec, int no);

Based on the MSG() and print msg() mechanisms, a comma-separated list of the no vector
elements is produced.

3.1.3 Example (PRINT REAL VEC()).

{

FUNCNAME("test_routine");

REAL_D point;

...

PRINT_REAL_VEC("point coordinates", point, DIM_OF_WORLD);

}

generates for the second unit vector in 3D the output

test_routine: point coordinates = (0.00000, 1.00000, 0.00000)

Often it is useful to suppress messages or to give only information up to a suitable level.
There are two ways for defining such a level of information. The first one is a local level,
which is determined by some variable in a function; the other one is a global restriction for
information. For this global restriction a global variable

int msg_info = 10;

is defined with an default value of 10. Using one of the macros

#define INFO(info,noinfo, ...) \

do { \

if (msg_info&&(MIN(msg_info,(info))>=(noinfo))) { \

print_funcname(funcName); print_msg(__VA_ARGS__); \

} \

} while (0)

#define PRINT_INFO(info,noinfo, ...) \

62 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

do { \

if (msg_info&&(MIN(msg_info,(info))>=(noinfo))) { \

print_msg(__VA_ARGS__); \

} \

} while (0)

only messages are produced by INFO() or PRINT INFO() if msg info is non zero and the value
MIN(msg info, info) is greater or equal noinfo, where noinfo denotes some local level of
information. Thus after setting msg info = 0, no further messages are produced. Changing
the value of this variable via a parameter file is described below in Section 3.1.5.

3.1.4 Example (INFO(), PRINT INFO()).

static void refine_element(EL *el)

{

FUNCNAME("refine_element");

...

INFO(info,4,"refining element %d\n", INDEX(el));

INFO(info,6,"neighbours of element: ");

for (i = 0; i < N_VERTICES-1; i++)

PRINT_INFO(info,6,"%d, ", INDEX(NEIGH(el)[i]));

PRINT_INFO(info,6,"%d\n", INDEX(NEIGH(el)[N_VERTICES-1]));

}

will print the element index, if the value of the global variable info ≥ 4 and additionally the
indices of neighbours if info ≥ 6.

For error messages macros ERROR and ERROR EXIT are defined. ERROR has the same func-
tionality as the MSG macro but the output is piped to stderr. ERROR EXIT exits the program
with return value 1 after using the ERROR:

ERROR(const char *format, ...);

ERROR_EXIT(const char *format, ...);

Furthermore, two macros for testing boolean values are available:

#define TEST(test, ...) \

do { \

if (!(test)) { \

print_error_funcname(funcName, __FILE__, __LINE__); \

print_error_msg(__VA_ARGS__); \

} \

} while (0)

#define TEST_EXIT(test, ...) \

do { \

if (!(test)) { \

print_error_funcname(funcName, __FILE__, __LINE__); \

print_error_msg_exit(__VA_ARGS__); \

} \

} while (0)

If test is not true both macros will print the specified error message. TEST will continue the
program afterwards, meanwhile TEST EXIT will exit the program with return value 1.

3.1. BASIC TYPES, UTILITIES, AND PARAMETER HANDLING 63

Error messages can not be suppressed and the information variable msg info does not
influence these error functions.

3.1.5 Example (TEST(), TEST EXIT()).

static void refine_element(EL *el)

{

FUNCNAME("refine_element");

TEST_EXIT(el, "no element for refinement\n");

...

}

Finally, there exists a macro WARNING for writing warnings to the same stream as for
messages. Each warning is preceeded by the word WARNING. Warnings can not be suppressed
by the information variable msg info.

WARNING(const char *format, ...);

Sometimes it may be very useful to write messages to file, or write parts of messages to
file. By the functions

void change_msg_out(FILE *fp);

void open_msg_file(const char *filename, const char *type);

the user can select a new stream or file for message output. Using the first routine, the
user directly specifies the new stream fp. If this stream is non nil, all messages are flushed
to this stream, otherwise ALBERTA will use the old stream furthermore. The function
open msg file() acts like change msg out(fopen(filename, type)).

Similar functions are available for error messages and they act in the same manner on the
output stream for error messages:

void change_error_out(FILE *fp);

void open_error_file(const char *filename, const char *type);

For setting breakpoints in the program two macros

WAIT

WAIT_REALLY

are defined.

WAIT this macro uses a global variable msg wait and if the value of this variable is not zero
the statement WAIT; will produce the message

wait for <enter> ...

and will continue after pressing the enter or return key. If the value of msg wait is zero,
no message is produced and the program continues. The value of msg wait can be modified
by the parameter tools (see Section 3.1.5).

WAIT REALLY the statement WAIT REALLY will always produce the above message and will
wait for pressing the enter or return key.

If not disabled by the installer, ALBERTA libraries are also available in versions suited
for debugging of code. In the debugging version the macro ALBERTA DEBUG set to 1. The
functionality of some ALBERTA routines and macros is changed in the debugging versions.

64 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

Specifically, more safety tests are carried out that are normally unnecessary in optimized
production versions of code. We provide the following additional message macros which are
only active in the debug versions of ALBERTA:

DEBUG_TEST

DEBUG_TEST_EXIT

These macros have the same behaviour as the corresponding macros without the DEBUG-prefix
if ALBERTA DEBUG is set, and are ignored otherwise.

3.1.3 Memory allocation and deallocation

ALBERTA keeps track of the amount of memory which is allocated and de–allocated by the
routines described below. Information about the currently used amount of allocated memory
can be obtained by calling the function

void print_mem_use();

3.1.3.1 General Allocation

Various functions and macros for memory allocation and deallocation are implemented. The
basic ones are

void *alberta_alloc(size_t, const char *, const char *,int);

void *alberta_realloc(void *, size_t, size_t, const char *, const char *, int);

void *alberta_calloc(size_t, size_t, const char *, const char *,int);

void alberta_free(void *, size_t);

In the following name is a pointer to the string holding the function name of the calling
function (defined by the FUNCNAME macro, e.g.), file a pointer to the string holding the
name of the source file (generated by the FILE CPP macro) and line is the line number of
the call (generated by the LINE CPP macro). All functions will exit the running program
with an error message, if the size to be allocated is 0 or the memory allocation by the system
functions fails.

alberta alloc(size, name, file, line) returns a pointer to a block of memory of
at least the number of bytes specified by size.

alberta realloc(ptr, o size, n size, name, file, line) changes the size of the
block of memory pointed to by the pointer ptr to the number of bytes specified by n size,
and returns a pointer to the block. The contents of the block remain unchanged up to the
lesser of the o size and n size; if necessary, a new block is allocated, and data is copied
to it; if the ptr is a NULL pointer, the alberta realloc() function allocates a new block
of the requested size.

alberta calloc(n el, el size, name, file, line) returns a pointer to a vector
with the n el number of elements, where each element is of the size el size; the space is
initialized to zeros.

alberta free(ptr, size) frees the block of memory pointed to by the argument ptr for
further allocation; ptr must have been previously allocated by either alberta alloc(),
alberta realloc(), or alberta calloc().

A more comfortable way to use these functions, is the use of the following macros:

3.1. BASIC TYPES, UTILITIES, AND PARAMETER HANDLING 65

TYPE* MEM_ALLOC(size_t, TYPE);

TYPE* MEM_REALLOC(TYPE *, size_t, size_t, TYPE);

TYPE* MEM_CALLOC(size_t, TYPE);

TYPE* MEM_FREE(TYPE *, size_t, TYPE);

They supply the above described functions with the function name, file name and line number
automatically. For an allocation by these macros, the number of elements and the data type
have to be specified; the actual size in bytes is computed automatically. Additionally, casting
to the correct type is performed.

MEM ALLOC(n, TYPE) returns a pointer to a vector of type TYPE with the n number of
elements.

MEM REALLOC(ptr, n old, n new, TYPE) reallocates the vector of type TYPE at pointer
ptr with n old elements for n new elements; values of the vector are not changed for all
elements up to the minimum of n old and n new; returns a pointer to the new vector.

MEM CALLOC(n, TYPE) returns a pointer to a vector of type TYPE with the n number of
elements; the elements are initialized to zeros.

MEM FREE(ptr, n, TYPE) frees a vector of type TYPE with n number of elements at ptr,
allocated previously by either MEM ALLOC(), MEM REALLOC(), or MEM CALLOC().

3.1.6 Example (MEM ALLOC(), MEM FREE()).

REAL *u = MEM_ALLOC(10, REAL);

...

MEM_FREE(u, 10, REAL);

allocates a vector of 10 REALs and frees this vector again.

3.1.3.2 Allocation of matrices

For some applications matrices are needed too. Matrices can be allocated and freed by the
functions

void **alberta_matrix(size_t, size_t, size_t, const char *, const char *, int);

void free_alberta_matrix(void **, size_t, size_t, size_t);

alberta matrix(nr, nc, el size, name, file, line) returns a pointer **ptr to a
matrix with nr number of rows and nc number of columns, where each element is of size
el size; name is a string holding the name of the calling function, file a string holding
the name of the source file and line the line number of the call.

free alberta matrix(ptr, nr, nc, el size) frees the matrix pointed to by ptr, pre-
viously allocated by alberta matrix().

Again, the following macros simplify the use of the above functions:

TYPE** MAT_ALLOC(size_t, size_t, TYPE);

void MAT_FREE(TYPE **, size_t, size_t, TYPE);

They supply the above described functions with the function name, file name and line number
automatically. These macros need the type of the matrix elements instead of the size. Casting
to the correct type is performed.

MAT ALLOC(nr, nc, type) returns a pointer **ptr to a matrix with elements ptr[i][j]
of type TYPE and indices in the range 0 ≤ i < nr and 0 ≤ j < nc.

66 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

MAT FREE(ptr, nr, nc, type) frees a matrix allocated by MAT ALLOC().

3.1.3.3 Allocation and management of workspace

Many subroutines need additional workspace for storing vectors, etc. (linear solvers like con-
jugate gradient methods, e.g.). Many applications need such kinds of workspaces for several
functions. In order to make handling of such workspaces easy, a data structure WORKSPACE

is available. In this data structure a pointer to the workspace and the actual size of the
workspace is stored.

typedef struct workspace WORKSPACE;

struct workspace

{

size_t size;

void *work;

};

The members yield following information:

size actual size of the workspace in bytes.

work pointer to the workspace.

The following functions access and enlarge workspaces:

WORKSPACE *get_workspace(size_t, const char *, const char *, int);

WORKSPACE *realloc_workspace(WORKSPACE *,size_t,const char *,const char *,int);

Description:

get workspace(size, name, file, line) return value is a pointer to a WORKSPACE

structure holding a vector of length size bytes; name is a string holding the name of
the calling function, file a string holding the name of the source file and line the line
number of the call.

realloc workspace(work space, size, name, file, line) return value is a pointer
to a WORKSPACE structure holding a vector of at least length size bytes; the member size
holds the true length of the vector work; if work space is a NULL pointer, a new WORKSPACE

structure is allocated; name is a string holding the name of the calling function, file a
string holding the name of the source file and line the line number of the call.

The macros

WORKSPACE* GET_WORKSPACE(size_t)

WORKSPACE* REALLOC_WORKSPACE(WORKSPACE*, size_t)

simplify the use of get workspace() and realloc workspace() by supplying the function
with name, file, and line.

GET WORKSPACE(ws, size) returns a pointer to WORKSPACE structure holding a vector of
length size bytes.

REALLOC WORKSPACE(ws, size) returns a pointer to WORKSPACE structure holding a vec-
tor of at least length size bytes; the member size holds the true length of the vector
work; if ws is a NULL pointer, a new WORKSPACE structure is allocated.

The functions

3.1. BASIC TYPES, UTILITIES, AND PARAMETER HANDLING 67

void clear_workspace(WORKSPACE *);

void free_workspace(WORKSPACE *);

are used for WORKSPACE deallocation. Description:

clear workspace(ws) frees the vector ws->work and sets ws->work to NULL and ws->size

to 0; the structure ws is not freed.

free workspace(ws) frees the vector ws->work and then the structure ws.

For convenience, the corresponding macros are defined as well.

void CLEAR_WORKSPACE(WORKSPACE *)

void FREE_WORKSPACE(WORKSPACE *)

3.1.3.4 Allocation of “scratch” memory with easy cleanup

Sometimes it is convenient to allocate a lot of objects dynamically; afterwards one always has
the dilemma that one has to keep track of each object individually, in order to avoid memory
leaks. The following support macros allow the allocation of many small objects of different
size from a single pool, with the option to free up the memory for the entire pool at once.
Individual object, however, may not be freed individually.

typedef struct obstack SCRATCHMEM[1] ;
typedef struct obstack ∗SCRATCHMEMPTR; /∗ A re f e r ence to an e x i s t i n g poo l ∗/

As can be seen, currently these “scratch” memory regions are based on the GNU obstack
framework, but an application should not rely on this fact.

Initialization of such a scratch memory area:

SCRATCHMMEM handle ;

SCRATCH MEM INIT(handle) ;

Allocation from a scratch-memory pool:

ptr = SCRATCHMEMALLOC(handle , n elem , type) ;
ptr = SCRATCHMEMCALLOC(handle , n elem , type) ;

Cleaning up:

SCRATCHMEMZAP(handle) ;

Afterwards, handle has to be reinitialized before it can be used again, calling
SCRATCH MEM INIT(handle).

Copying of scratch-memory handles:

SCRATCHMEM to ;
SCRATCHMEM from ;

SCRATCH MEM INIT(from) ;

SCRATCHMEMCPY(to , from) ;

Note that this is a shallow copy: only the administrative data structures are copied, not
the underlying data. Calling SCRATCH MEM ZAP() with interchangeably either to or from as
argument will destroy the underlying data.

68 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

3.1.4 Parameters and parameter files

Many procedures need parameters, for example the maximal number of iterations for an itera-
tive solver, the tolerance for the error in the adaptive procedure, etc. It is often very helpful to
change the values of these parameters without recompiling the program by initializing them
from a parameter file.

In order to avoid a fixed list of parameters, we use the following concept: Every parameter
consists of two strings: a key string by which the parameter is identified, and a second string
containing the parameter values. These values are stored as ASCII-characters and can be
converted to int, REAL, etc. according to a format specified by the user (see below). Using
this concept, parameters can be accessed at any point of the program.

Usually parameters are initialized from parameter files. Each line of the file describes
either a single parameter: the key definition terminated by a ’:’ character followed by the
parameter values, or specifies another parameter file to be included at that point (this can
also be done recursively). The syntax of these files is described below and an example is given
at the end of this section.

3.1.4.1 Parameter files

The definition of a parameter has the following syntax:

key: parameter values % optional comment

Lines are only read up to the first occurrence of the comment sign ’%’. All characters behind
this sign in the same line are ignored. The comment sign may be a character of the specified
filename in an include statement (see below). In this case, ’%’ is treated as a usual character.

The definition of a new parameter consists out of a key string and a string containing
the parameter values. The definition of the key for a new parameter has to be placed in one
line before the first comment sign. For the parameter values a continuation line can be used
(see below). The key string is a sequence of arbitrary characters except ’:’ and the comment
character. It is terminated by ’:’, which does not belong to the key string. A key may contain
blanks. Optional white space characters as blanks, tabs, etc. in front of a key and in between
’:’ and the first character of the parameter value are discarded.

Each parameter definition must have at least one parameter value, but it can have more
than one. If there are no parameter values specified, i.e. the rest of the line (and all continu-
ation lines) contain(s) only white-space characters (and the continuation character(s)). Such
a parameter definition is ignored and the line(s) is (are) skipped.

One parameter value is a sequence of non white-space characters. We will call such a
sequence of non white-space characters a word. Two parameter values are separated by at
least one white-space character. A string as a parameter value must not contain white-space
characters. Strings enclosed in single or double quotes are not supported at the moment.
These quotes are treated as usual characters.

Parameter values are stored as a sequence of words in one string. The words are separated
by exactly one blank, although parameter values in the parameter file may be separated by
more than one white-space character.

The key definition must be placed in one line. Parameter values can also be specified in so
called continuation lines. A line is a continuation line if the last two characters in the preceding
line are a ’\’ followed directly by the newline character. The ’\’ and the newline character

3.1. BASIC TYPES, UTILITIES, AND PARAMETER HANDLING 69

are removed and the line is continued at the beginning of the next line. No additional blank
is inserted.

Lines containing only white-space characters (if they are not continuation lines!) are
skipped.

Besides a parameter definition we can include another parameter file with name filename:

#include "filename"

The effect of an include statement is the similar to an include statement in a C-program. Using
the function init parameters() (see below) for reading the parameter file, the named file
is read by a recursive call of the function init parameters(). Thus, the included parameter
file may also contain an include statement. The rest of line behind the closing " is skipped.
Initialization then is continued from the next line on. An include statement must not have a
continuation line.

If a parameter file can not be opened for reading, an error message is produced and the
reading of the file is skipped.

Errors occur and are reported if a key definition is not terminated in the same line by
’:’, no parameter values are specified, filename for include files are not specified correctly
in between " ". The corresponding lines are ignored. No parameter is defined, or no file is
included.

A parameter can be defined more than once but only the latest definition is valid. All
previous definitions are ignored.

3.1.4.2 Reading of parameter files

Initializing parameters from such files is done by

void init_parameters(int, const char *);

Description:

init parameters(info, filename) initializes parameters from a file; filename is a
string holding the name of the file and if values of the argument info and the global
variable msg info are not zero, a list of all defined parameters is printed to the message
stream; if init parameters() can not open the input file, or filename is a pointer to
NULL, no parameters are defined.

One call of this function should be the first executable statement in the main program. Sev-
eral calls of init parameters() are possible. If a key is defined more than once, parameter
values from the latest definition are valid. Parameter values from previous definition(s) are
ignored.

3.1.4.3 Adding of parameters or changing of parameter values

Several calls of init parameters() are possible. This may add new parameters or change
the value of an existing parameter since only the values from the latest definition are valid.
Examples for giving parameter values from the command line and integrating them into the
set of parameters are shown in Sections 2.3.3 and 2.4.2.

Parameters can also be defined or modified by the function or the macro

void add_parameter(int, const char *, const char *);

ADD_PARAMETER(int, const char *, const char *);

70 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

Description:

add parameter(info, key, value) initializes a parameter identified by key with values
value; if the parameter already exists, the old values are replaced by the new one; if info
is not zero information about the initialization is printed; This message can be suppressed
by a global level of parameter information (see the parameter parameter information in
Section 3.1.5).

ADD PARAMETER(info, key, value) acts like add parameter(info, key, value) but
the function is additionally supplied with the name of the calling function, source file and
line, which results in more detailed messages during parameter definition.

3.1.4.4 Display and saving of parameters and parameter values

All a list of all parameters together with the actual parameter values can be printed to stdout

using the function

void print_parameters(void);

For long time simulations it is important to write all parameters and their values to file;
using this file the simulation can be re–done with exactly the same parameter values although
the original parameter file was changed. Thus, after the initialization of parameters in a long
time simulation, they should be written to a file by the following function:

void save_parameters(const char *, int);

Description:

save parameters(file, info) writes all successfully initialized parameters to file ac-
cording to the above described parameter file format; if the value of info is different from
zero, the location of the initialization is supplied for each parameter as a comment; no
original comment is written, since these are not stored.

3.1.4.5 Getting parameter values

After initializing parameters by init parameters() we can access the values of a parameter
by a call of

int get_parameter(int, const char *, const char *, ...);

int GET_PARAMETER(int, const char *, const char *, ...)

Description:

get parameter(info, key, format, ...) looks for a parameter which matches the
identifying key string key and converts the values of the corresponding string contain-
ing the parameter values according to the control string format. Pointers to variable(s) of
suitable types are placed in the unnamed argument list (compare the syntax of scanf()).
The first argument info defines the level of information during the initialization of pa-
rameters with a range of 0 to 4: no to full information. The return value is the number of
successfully matched and assigned input items.

If there is no parameter key matching key, get parameter() returns without an initial-
ization. The return value is zero. It will also return without an initialization and return
value zero if no parameter has been defined by init parameters().

3.1. BASIC TYPES, UTILITIES, AND PARAMETER HANDLING 71

In the case that a parameter matching the key is found, get parameter() acts like a
simplified version of sscanf(). The input string is the string containing the parameter
values. The function reads characters from this string, interprets them according to a
format, and stores the results in its arguments. It expects, as arguments, a control string,
format (described below) and a set of pointer arguments indicating where the converted
input should be stored. If there are insufficient arguments for the format, the behavior is
undefined. If the format is exhausted while arguments remain, the excess arguments are
simply ignored. The return value is the number of converted arguments.

The control string must only contain the following characters used as conversion specifica-
tion: %s, %c, %d, %e, %f, %g, %U, %S, or %*. All other characters are ignored. In contrast to
scanf(), a numerical value for a field width is not allowed. For each element of the control
string the next word of the parameter string is converted as follows:

%s a character string is expected; the corresponding argument should be a character
pointer pointing to an array of characters large enough to accept the string and a
terminating ‘\0’, which will be added automatically; the string is one single word of
the parameter string; as mentioned above strings enclosed in single or double quotes
are not supported at the moment.

%c matches a single character; the corresponding argument should be a pointer to a char

variable; if the corresponding word of the parameter string consists of more than one
character, the rest of the word is ignored; no space character is possible as argument.

%d matches a decimal integer, whose format is the same as expected for the subject
sequence of the atoi() function; the corresponding argument should be a pointer to an
int variable.

%i matches a decimal integer, whose format is the same as expected for the subject
sequence of the strtol(arg, NULL, 0) function; the corresponding argument should
be a pointer to an int variable.

%e,%f,%g matches an optionally signed floating point number, whose format is the same
as expected for the subject string of the atof() function; the corresponding argument
should be a pointer to a REAL variable.

%U matches an unsigned decimal integer in the range [0,255], whose format is the same as
expected for the subject sequence of the atoi() function; the corresponding argument
should be a pointer to an U CHAR variable.

%S matches an optionally signed decimal integer in the range [-128,127], whose format is
the same as expected for the subject sequence of the atoi() function; the corresponding
argument should be a pointer to an S CHAR variable.

%B matches a boolean value; the corresponding argument should be a pointer to a bool

variable. The boolean value may be specified as any of the following strings: true, t,
yes, y, 1, false, f, no, n, 0, nil, with the obvious meaning concerning the translation
into the value for the bool data type of C.

%* next word of parameter string should be skipped; there must not be a corresponding
argument.

get parameter() will always finish its work, successfully or not. It may fail if a misspelled
key is handed over or there are not so many parameter values as format specifiers (the
remaining variables are not initialized!). If info is zero, get parameter() works silently; no
error message is produced. Otherwise the key and the initialized values and error messages

72 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

are printed. The second way to influence messages produced by get parameter() is a
parameter parameter information specified in a parameter file, see Section 3.1.5.

GET PARAMETER(info, key, format, ...) is a macro and acts in the same way as the
function get parameter(info, key, format, ...) but the function is additionally sup-
plied with the name of the calling function, source file and line, which results in more
detailed messages during parameter definition.

In order to prevent the program from working with uninitialized variables, all parameters
should be initialized beforehand! By the return value the number of converted arguments can
be checked.

3.1.7 Example (init parameters(), GET PARAMETER()). Consider the following parameter
file init.dat:

adapt info: 3 % level of information of the adaptive method

adapt tolerance: 0.001 % tolerance for the error

Then

init_parameters(0, "init.dat");

...

tolerance = 0.1;

GET_PARAMETER(0, "adapt tolerance", "%e", &tolerance);

initializes the REAL variable tolerance with the value 0.001.

3.1.5 Parameters used by the utilities

The utility tools use the following parameters initialized with default values given in ():

level of information (10) the global level of information; can restrict the local level
of information (compare Section 3.1.2).

parameter information (1) enforces more/less information than specified by the argu-
ment info of the routine get parameter(info, ...):

0 no message at all is produced, although the value info may be non zero;

1 gives only messages if the value of info is non zero;

2 all error messages are printed, although the value of info may be zero;

4 all messages are printed, although the value of info may be zero.

WAIT (1) sets the value of the global variable msg wait and changes by that the behaviour
of the macro WAIT (see Section 3.1.2).

3.1.6 Generating filenames for meshes and finite element data

During simulation of time-dependent problems one often wants to store meshes and finite
element data for the sequence of time steps. A routine is provided to automatically generate
file names composed from a given data path, a base-name for the file and a number which
is iteration counter of the actual time step in time-dependent problems. Such a function
simplifies the handling of a sequence of data for reading and writing. It also ensures that files
are listed alphabetically in the given path (up to 1 million files with the same base-name).

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 73

const char *generate_filename(const char *, const char *, int);

Description:

generate filename(path, file, index) composes a filename from the given path, the
base-name file of the file and the (iteration counter) index. When no path is given, the
current directory "./" is used, if the first character of path is ’~’, path is assumed to be
located in the home directory and the name of the path is expanded accordingly, using the
environment variable HOME. A pointer to a string containing the full filename is the return
value; this string is overwritten on the next call to generate filename().

generate_filename("./output", "mesh",1) returns "./output/mesh000001", for in-
stance. An example how to use generate filename() in a time dependent problem is
given in Section 2.4.10.

3.2 Data structures for the hierarchical mesh

3.2.1 Dimension of the mesh

The current version of ALBERTA supports meshes triangulated using d-dimensional simplices
where d ∈ {1, 2, 3}. These are embedded in Rn, with n ≥ d. For most applications we have
d = n. However, for finite element methods on curves (d = 1) or surfaces (d = 2) embedded
in Rn (like mean curvature flow [9]), the vertex coordinates of the simplices have n > d
components. There are three principal constants which affect the storage layout of various
data-types, from alberta.h:

/∗ DIM OFWORLD i s a compi le time constant , not de f i ned in a l b e r t a . h ∗/
#define DIM LIMIT 3 /∗ l im i t i n g mesh−dimension ∗/
#define DIMMAX MIN(DIM OFWORLD, DIM LIMIT)

DIM LIMIT Defined to the limit for the mesh-dimension. More than tetrahedral meshes are
not supported, so this is defined to 3.

DIM OF WORLD Defined to the dimension of the ambient space, i.e. n in the notation used
above.

DIM MAX Defined to the maximum value of the mesh-dimension, given the current value of
DIM OF WORLD.

Derived dimension dependent constants ALBERTA provides some expressions for the
number of face-simplices of each possible co-dimension. In ALBERTA, the name “face” is re-
served for the faces of tetrahedra; to denote the co-dimension 1 face-simplex for simplices of
arbitrary dimensions the name “wall” is used. Besides that, there are expressions for the pos-
sible number of neighbours, the faculty of the mesh-dimension and the number of barycentric
co-ordinates of given dimension. alberta.h defines the following generic macros:

#define N VERTICES(DIM) ((DIM)+1)
#define N EDGES(DIM) ((DIM) ∗ ((DIM)+1)/2)
#define NWALLS(DIM) ((DIM)+1)
#define N FACES(DIM) (((DIM) == 3) ∗ NWALLS(DIM))
#define N NEIGH(DIM) (((DIM) != 0) ∗ NWALLS(DIM))

74 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

#define NLAMBDA(DIM) N VERTICES(DIM)
#define DIM FAC(DIM) ((DIM) < 2 ? 1 : (DIM) == 2 ? 2 : 6)

N VERTICES() number of vertices of a simplex

N EDGES() number of edges of a simplex

N WALLS() number of co-dimension 1 face-simplices of a simplex

N FACES() number of co-dimension 1 face-simplices of a simplex of dimension 3

N NEIGH() possible number of neighbour elements across walls

N LAMBDA() number barycentric co-ordinates

DIM FAC() faculty of the mesh-dimension

From these generic macros alberta.h specializes variants with the suffixes:

MAX maximum value given DIM OF WORLD

LIMIT limiting value ever supported

0D, 1D, 2D, 3D special value given the mesh-dimension

For example, the N VERTICES macro exists with the following variants:

#define N VERTICES 0D 1
#define N VERTICES 1D 2
#define N VERTICES 2D 3
#define N VERTICES 3D 4
#define N VERTICES MAX N VERTICES(DIMMAX)
#define N VERTICES LIMIT N VERTICES(DIM LIMIT)

Finally we use the following definitions describing possible positions of degrees of freedom on
an element:

typedef enum node types {
VERTEX = 0 ,
CENTER,
EDGE,
FACE,
N NODE TYPES

} NODE TYPES;

The symbols refer to DOFs located at the face-simplices with the following meanings:

VERTEX The vertex of a simplex. In 1d the vertices are treated as the “walls” of an element.

CENTER The interior of an element. The DOFs of discontinuous basis-functions, e.g., are always
treated as CENTER-DOFs.

EDGE The edges of an element. Note that 1d simplices do not have edges in ALBERTA as long
as it concerns the location of DOFs. So 1d-meshes have only VERTEX and CENTER DOFs.

FACE The faces of an element. This is reserved for 3d only. Note that the co-dimension 1
face-simplex is denoted as “wall-simplex” within ALBERTA.

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 75

3.2.2 The local indexing on elements

For the handling of higher order discretizations where besides vertices DOFs can be located
at edges (in 2d and 3d), faces (in 3d), or center, we also need a local numbering for edges, and
faces. Finally, a local numbering of neighbours for handling neighbour information is needed,
used for instance in the refinement algorithm itself and for error estimator calculation.

The i-th neighbour is always the element opposite the i-th vertex. The i-th edge/face is
the edge/face opposite the i-th vertex in 2d respectively 3d; edges in 3d are numbered in the
following way (compare Figure 3.1):

edge 0: between vertex 0 and 1, edge 3: between vertex 1 and 2,
edge 1: between vertex 0 and 2, edge 4: between vertex 1 and 3,
edge 2: between vertex 0 and 3, edge 5: between vertex 2 and 3.

0 1

2

2

1 0

1

20

3

0

1

2

3

4

5

Figure 3.1: Local indices of edges/neighbours in 2d and local indices of edges in 3d.

The data structures described in the subsequent sections are based on this local numbering
of vertices, edges, faces, and neighbours.

3.2.3 BLAS-like routines for DIM OF WORLD- and N LAMBDA MAX-arrays

The term “BLAS” stands for “Basic Linear Algebra Subroutines”, see [14, 6]. There are
several vector and array data-types associated with DIM OF WORLD and N LAMBDA MAX. The
basic array types are

typedef REAL REAL D[DIMOFWORLD] ;
typedef REAL REAL B[NLAMBDAMAX] ;

REAL D An array of the dimension of the ambient space.

REAL B An array of the size of the maximum mesh-dimension at given DIM OF WORLD. Note
that for a given mesh only the first N LAMBDA(mesh->dim) components of a REAL B-
vector are actually used. Excess elements should be cleared to 0.

To support the static initialization of REAL B-arrays there are macros INIT BARY ?D(). The
definitions of these macros depend on the values of DIM MAX, we have the following defines in
alberta.h:

#i f DIMMAX == 0
define INIT BARY 0D(a) { 1 .0 }
define INIT BARY 1D(a , b) { 1 .0 }

76 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

define INIT BARY 2D(a , b , c) { 1 .0 }
define INIT BARY 3D(a , b , c , d) { 1 .0 }
define INIT BARY MAX(a , b , c , d) INIT BARY 0D(a)
#e l i f DIMMAX == 1
define INIT BARY 0D(a) { (a) , 0 . 0 }
define INIT BARY 1D(a , b) { (a) , (b) }
define INIT BARY 2D(a , b , c) { (a) , (b) }
define INIT BARY 3D(a , b , c , d) { (a) , (b) }
define INIT BARY MAX(a , b , c , d) INIT BARY 1D(a , b)
#e l i f DIMMAX == 2
define INIT BARY 0D(a) { (a) , 0 . 0 , 0 . 0 }
define INIT BARY 1D(a , b) { (a) , (b) , 0 . 0 }
define INIT BARY 2D(a , b , c) { (a) , (b) , (c) }
define INIT BARY 3D(a , b , c , d) { (a) , (b) , (c) }
define INIT BARY MAX(a , b , c , d) INIT BARY 2D(a , b , c)
#e l i f DIMMAX == 3
define INIT BARY 0D(a) { (a) , 0 . 0 , 0 . 0 , 0 . 0 }
define INIT BARY 1D(a , b) { (a) , (b) , 0 . 0 , 0 . 0 }
define INIT BARY 2D(a , b , c) { (a) , (b) , (c) , 0 . 0 }
define INIT BARY 3D(a , b , c , d) { (a) , (b) , (c) , (d) }
define INIT BARY MAX(a , b , c , d) INIT BARY 3D(a , b , c , d)
#else
error Unsupported DIMMAX
#endif

To have array-types for matrices like Jacobians and Hessians there is bunch of data-types in
alberta.h. The suffixes which are composed from the two letters D and B code the ordering
of the array dimensions, e.g. a REAL BD is an array which’s first index ranges from 0 to
(N LAMBDA MAX-1) and which’s second index ranges from 0 to (DIM OF WORLD-1). Currently,
the following types are defined:

typedef REAL REAL B[NLAMBDAMAX] ;
typedef REAL B REAL BB[NLAMBDAMAX] ;
typedef REAL REAL D[DIMOFWORLD] ;
typedef REAL D REAL DD[DIMOFWORLD] ;
typedef REAL D REAL BD[NLAMBDAMAX] ;
typedef REAL BD REAL BBD[NLAMBDAMAX] ;
typedef REAL DD REAL DDD[DIMOFWORLD] ;
typedef REAL DD REAL BDD[NLAMBDAMAX] ;
typedef REAL BDD REAL BBDD[NLAMBDAMAX] ;
typedef REAL B REAL DB[DIMOFWORLD] ;
typedef REAL BB REAL DBB[DIMOFWORLD] ;
typedef REAL BB REAL BBB[NLAMBDAMAX] ;
typedef REAL BBB REAL BBBB[NLAMBDAMAX] ;
typedef REAL BBB REAL DBBB[DIMOFWORLD] ;
typedef REAL BBBB REAL DBBBB[DIMOFWORLD] ;
typedef REAL DB REAL BDB[NLAMBDAMAX] ;
typedef REAL DBB REAL BDBB[NLAMBDAMAX] ;

To ease arithmetic with such vector- and matrix-types there is a variety of inline-
functions defined in alberta inlines.h (alberta inlines.h is automatically included by
alberta.h). We describe only a selection, for the full list we refer the reader to the header
alberta inlines.h. Some of the following functions are also available as matrix versions (e.g.
MAXEY DOW(a,x,y), MSCP DOW(x,y), ...), but they aren’t descripted seperately. The prefix M

means that they expect REAL DD matrices instead of REAL D vectors. A tabular overview can

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 77

be found in Table 3.1 and Table 3.2.

Prototypes

REAL SCPDOW(const REAL D x , const REAL D y)
REAL GRAMSCPDOW(const REAL DD A, const REAL D x , const REAL D y)
REAL NORMDOW(const REAL D x)
REAL NRM2DOW(const REAL D x)
REAL NORM1DOW(const REAL D x)
REAL NORM8DOW(const REAL D x)
REAL NRMPDOW(const REAL D x , REAL p)
REAL PNRMPDOW(const REAL D x , REAL p)
REAL DIST DOW(const REAL D x , const REAL D y)
REAL DST2 DOW(const REAL D x , const REAL D y)
REAL DIST1 DOW(const REAL D x , const REAL D y)
REAL DIST8 DOW(const REAL D x , const REAL D y)
REAL SUMDOW(const REAL D x)
REAL POWDOW(REAL a)

REAL ∗SETDOW(REAL a , REAL D x)
REAL ∗COPYDOW(const REAL D x , REAL D y)
REAL ∗SCALDOW(REAL a , REAL D x)
REAL ∗AXDOW(REAL a , REAL D x)
bool CMPDOW(REAL val , const REAL D a)

REAL ∗AXEYDOW(REAL a , const REAL D x , REAL D y)
REAL ∗AXPYDOW(REAL a , const REAL D x , REAL D y)
REAL ∗AXPBYDOW(REAL a , const REAL D x ,

REAL b , const REAL D y , REAL D z)
REAL ∗AXPBYPDOW(REAL a , const REAL D x ,

REAL b , const REAL D y , REAL D z)
REAL ∗AXPBYPCZDOW(REAL a , const REAL D x , REAL b , const REAL D y ,

REAL c , const REAL D z , REAL D w)
REAL ∗AXPBYPCZPDOW(REAL a , const REAL D x , REAL b , const REAL D y ,

REAL c , const REAL D z , REAL D w)
REAL WEDGEDOW(const REAL D x , const REAL D y)
REAL ∗WEDGEDOW(const REAL D x , const REAL D y , REAL D z)

EXPANDDOW(x)
FORMATDOW
SCANEXPANDDOW(v)
SCANFORMATDOW

REAL ∗GRADDOW(int dim , const REAL BD Lambda , const REAL B b grd , REAL D
x grd)

REAL ∗GRADPDOW(int dim , const REAL BD Lambda ,
const REAL B b grd , REAL D x grd)

REAL D ∗D2DOW(int dim , const REAL BD Lambda ,
const REAL BB b hesse , REAL DD x hes s e)

REAL D ∗D2 P DOW(int dim , const REAL BD Lambda ,
const REAL BB b hesse , REAL DD x hes s e)

REAL ∗MVDOW(const REAL DD m, const REAL D v , REAL D b)
REAL ∗MTVDOW(const REAL DD m, const REAL D v , REAL D b)
REAL ∗GEMVDOW(REAL a , const REAL DD m, const REAL D v , REAL beta , REAL D b)
REAL ∗GEMTVDOW(REAL a , const REAL DD m, const REAL D v , REAL beta , REAL D b)

78 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

REAL ∗AFFINE DOW(const AFF TRAFO ∗ t ra fo , const REAL D x , REAL D y)
REAL ∗AFFINVDOW(const AFF TRAFO ∗ t ra fo , const REAL D x , REAL D y)
AFF TRAFO ∗AFFAFFDOW(const AFF TRAFO ∗A, const AFF TRAFO ∗B, AFF TRAFO ∗C)
AFF TRAFO ∗INVAFFDOW(const AFF TRAFO ∗A, AFF TRAFO ∗B)

REAL MSCPDOW(const REAL DD x , const REAL DD y)
REAL MNORMDOW(const REAL DD m)
REAL MNRM2DOW(const REAL DD m)
REAL MDISTDOW(const REAL DD a , const REA DD b)
REAL MDST2DOW(const REAL DD a , const REAL DD b)

REAL D ∗MSETDOW(REAL val , REAL DD m)
REAL D ∗MCOPYDOW(const REAL DD x , REAL DD y)

REAL D ∗MSCALDOW(REAL a , REAL DD m)
REAL D ∗MAXDOW(REAL a , REAL DD m)
bool MCMPDOW(REAL val , const REAL DD a)

REAL D ∗MAXEYDOW(REAL a , const REAL DD x , REAL DD y)
REAL D ∗MAXPYDOW(REAL a , const REAL DD x , REAL DD y)
REAL D ∗MAXTPYDOW(REAL a , const REAL DD x , REAL DD y)
REAL D ∗MAXPBYDOW(REAL a , const REAL DD x ,

REAL b , const REAL DD y , REAL DD z)
REAL D ∗MAXPBYPDOW(REAL a , const REAL DD x ,

REAL b , const REAL DD y , REAL DD z)
REAL D ∗MAXPBYPCZDOW(REAL a , const REAL DD x , REAL b , const REAL DD y ,

REAL c , const REAL DD z , REAL DD w)
REAL D ∗MAXPBYPCZPDOW(REAL a , const REAL DD x , REAL b , const REAL DD y ,

REAL c , const REAL DD z , REAL DD w)

MEXPANDDOW(m)
MFORMATDOW

REAL D ∗MGRADDOW(int dim , const REAL BD Lambda , const REAL DB b grd ,
REAL DD x grd)

REAL D ∗MGRADPDOW(int dim , const REAL BD Lambda , const REAL DB b grd ,
REAL DD x grd)

REAL DD ∗MD2DOW(int dim , const REAL BD Lambda , const REAL BB ∗ b hesse ,
REAL DDD x hes s e)

REAL DD ∗MD2 PDOW(int dim , const REAL BD Lambda , const REAL BB ∗ b hesse ,
REAL DDD x hes s e)

REAL D ∗MINVERTDOW(const REAL DD m, REAL DD mi)
REAL D ∗MMDOW(const REAL DD a , const REAL DD b , REAL DD c)
REAL D ∗MTMDOW(const REAL DD a , const REAL DD b , REAL DD c)
REAL D ∗MMTDOW(const REAL DD a , const REAL DD b , REAL DD c)
REAL MDETDOW(const REAL DD m)

Descriptions
For a more compact presentation, refer to Table 3.1 and 3.2.

SCP DOW(x, y) returns the Euclidean scalar product of the two vectors x, y.

GRAMSCP DOW(A, x, y) in case A is a spd-matrix it returns the scalar product of the two
vectors x, y, defined by A: (x, y)A :=< x,Ay >

NORM DOW(x) returns the Euclidean norm of the vector x.

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 79

NRM2 DOW(x) returns the Euclidean scalar product of the vector x with itself. This means
it returns the square of the Euclidean norm of the vector x.

NORM1 DOW(x) returns the 1-norm of the vector x. This means it returns the sum of the
absolut values of the vector entries.

NORM8 DOW(x) returns the infinity norm or maximum norm of the vector x.

NRMP DOW(x, p) returns the p-norm of the vector x.

PNRMP DOW(x, p) returns the p-norm to the power of p of the vector x.

DIST DOW(x, y) returns the Euclidean distance between the two vectors x, y.

DST2 DOW(x, y) returns the square of the Euclidean distance between two vectors x, y.

DIST1 DOW(x, y) returns the 1-norm of the vector (x-y).

DIST8 DOW(x, y) returns the infinity norm of the vector (x-y).

SUM DOW(x) returns the sum of the vector entries of the vector x.

POW DOW(a) returns a to the power of DIM OF WORLD.

SET DOW(a, x) set all elements of vector x to a. Returns x

COPY DOW(x, y) copies all elements of vector x to y. Returns y.

SCAL DOW(a, x) scales all elements of the vector x with a. Returns x.

AX DOW(a, x) scales all elements of vector x with a. Returns x.

CMP DOW(val, a) returns true if all elements of the vector a have the same value val,
and it returns false if there is any element of the vector a with value !=val.

AXEY DOW(a, x, y) scales all elements of vector x with a and stores the resulting vector
in y. Returns y.

AXPY DOW(a, x, y) scales all elements of vector x with a and add it up to the vector y.
Returns y.

AXPBY DOW(a, x, b, y, z) scales all elements of vector x with a, scales all elements of
the vector y with b and add these two vectors. The result is stored in the vector z. Returns
z.

AXPBYP DOW(a, x, b, y, z) scales all elements of vector x with a, scales all elements of
vector y with b and add these two vectors up to the vector z. Returns z.

AXPBYPCZ DOW(a, x, b, y, c, z, w) scales all elements of vector x with a, scales all
elements of vector y with b, scales all elements of vector z with c and add these three
vectors. The result is stored in the vector w. Returns w.

AXPBYPCZP DOW(a, x, b, y, c, z, w) scales all elements of vector x with a, scales all
elements of vector y with b, scales all elements of vector z with c and add these three
vectors up to the vector w. Returns w.

WEDGE DOW(a, b) for DIM OF WORLD==2 returns the product a[0]*b[1]-a[1]*b[0].

WEDGE DOW(a, b, r) for DIM OF WORLD==3 fills r with the vector product a × b ∈ R3.
Returns r.

EXPAND DOW(x) returns every entry of the vector x seperated with a comma. It is used for
easier print-out of REAL D. An example is stated below.

FORMAT DOW Example for DIM OF WORLD == 2:

p r i n t f {” text ” FORMATDOW ”more text \n” , EXPANDDOW(x)) ;

80 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

equivalent to:

p r i n t f (” t ext ” ” [%10.5 le , %10.5 l e] ” ”more text \n” , x [0] , x [1]) ;

SCAN EXPAND DOW(v)

SCAN FORMAT DOW an example will explain both (DIM OF WORLD == 2):

p r i n t f {” text ” SCANFORMATDOW ”more text \n” , SCANEXPANDDOW(v)) ;

equivalent to:

p r i n t f (” t ext ” ”%f %f ” ”more text \n” , &v [0] , &v [1]) ;

GRAD DOW(dim, Lambda, b grd, x grd) convert a barycentric gradient b grd to a world
gradient and stores the resulting vector in x grd, given the gradient of the transformation
to the reference element Lambda. Whereas dim is the dimension of the mesh. Returns x grd.

GRAD P DOW(dim, Lambda, b grd, x grd) convert a barycentric gradient b grd to a
world gradient and add it up to the vector x grd, given the gradient of the transforma-
tion to the reference element Lambda. Whereas dim is the dimension of the mesh. Returns
x grd.

D2 DOW(dim, Lambda, b hesse, x hesse) convert a barycentric Hesse matrix b hesse

to a world Hesse matrix and stores the resulting matrix in x hesse, given the gradient of
the transformation to the reference element Lambda. Whereas dim is the dimension of the
mesh. Returns x hesse.

D2 P DOW(dim, Lambda, b hesse, x hesse) convert a barycentric Hesse matrix
b hesse to a world Hesse matrix and add it up to the matrix x hesse, given the gradient
of the transformation to the reference element Lambda. Whereas dim is the dimension of
the mesh. Returns x hesse.

MV DOW(m, v, b) calculates the matrix-vector multiplication of the matrix m and the vec-
tor v: b += m*v. Returns b.

MTV DOW(m, v, b) calculates the matrix-vector multiplication of the transpose of matrix
m and the vector v: b += mt*v. Returns b.

GEMV DOW(a, m, v, beta, b) returns b = beta*b + a*(m*v). Where a and beta are
scalar (type REAL), m a matrix (type REAL DD) and v and b are vectors (type REAL D).

GEMTV DOW(a, m, v, beta, b) returns b = beta*b + a*(mt*v). Where a and beta are
scalar (type REAL), m a matrix (type REAL DD) and v and b are vectors (type REAL D).

AFFINE DOW(trafo, x, y) calculates the affine transformation between the two vectors
x and y and returns the vector y. It consists of a linear transformation (matrix-vector
multiplication with the matrix trafo->M) followed by a translation (with the translation
vector trafo->t). Adequate formular: y = trafo->M * x + trafo->t.

AFFINV DOW(trafo, x, y) applies the inverse of the affine transformation between x and
y. Returns y.

AFFAFF DOW(A, B, C) returns ... A, B, C.

INVAFF DOW(A, B) returns ... A, B.

MINVERT DOW(m, mi) returns the inverted matrix mi of the matrix m.

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 81

MM DOW(a, b, c) returns the matrix matrix multiplication of a and b and stores the re-
sulting matrix in c. Returns c.

MTM DOW(a, b, c) returns the matrix matrix multiplication of the transposed matrix of
a and b and stores the resulting matrix in c. Returns c.

MMT DOW(a, b, c) returns the matrix matrix multiplication of a and the transposed ma-
trix of b and stores the resulting matrix in c. Returns c.

MDET DOW(m) returns the determinant of matrix m.

3.2.4 Boundary types

3.2.1 Compatibility Note. Previous versions of ALBERTA were fixing the boundary
conditions – Dirichlet, Neumann, others – in the macro-data file and data-structures.
This has changed: the new scheme is to assign only “street-numbers” to boundary seg-
ments in the macro-triangulation and leave the interpretation to the application program.
This section describes some of the implications of this change. Compare also Compatibil-
ity Note 3.2.8 and Compatibility Note 3.2.2. The reader is also referred to the documentation
for dirichlet bound...() Section 4.7.7.1, especially to Example 4.7.6.

In ALBERTA boundary conditions are first of all attached to boundary segments – and
thus to the boundary walls of an element. Boundary segments carry “street-numbers” which
are defined by the macro-triangulation. At the moment 255 different “boundary types” are
possible, where type 0 is reserved for interior walls.

typedef U CHAR BNDRYTYPE;

Note that this is an unsigned value, and does not carry any information about the nature of
a boundary condition (e.g. Dirichlet versus natural versus ...) imposed on a specific boundary
segment to “close” a specific differential equation or system of equations.

Of course, for doing the linear algebra implied by the need to solve a discretized PDE it is
often handy to assign boundary conditions to degrees of freedom (DOFs) of the finite element
spaces. For doing so ALBERTA uses signed characters – S CHAR – with the convention that
positive numbers flag Dirichlet boundary conditions, negative numbers flag natural boundary
conditions and 0 indicates an interior node. Specifically, there are three pre-defined constants

#define INTERIOR 0
#define DIRICHLET 1
#define NEUMANN −1

and some macro which may help the to make code more readable, namely

#define IS NEUMANN(bound) ((bound) <= NEUMANN)
#define IS DIRICHLET(bound) ((bound) >= DIRICHLET)
#define IS INTERIOR(bound) ((bound) == 0)

There are some issues for assigning boundary conditions to DOFs. One point is that a DOF

may belong to boundary segments with differing boundary classification, e.g. vertex DOFs in
2d and vertex and edge DOFs in 3d. To handle this point ALBERTA provides a boundary
bit-mask data type for such DOFs, together with some support macros:

82 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

REAL SCP_DOW(const REAL_D x, const REAL_D y) (X,Y) =
∑d−1

i=0 XiYi

REAL GRAMSCP_DOW(const REAL_DD A, (X,Y)A =
∑d−1

i,j=0XiAijYj

const REAL_D x, const REAL_D y)

REAL NORM_DOW(const REAL_D x) ‖X‖2 =
(∑d

i=0 |Xi|2
) 1

2

REAL NRM2_DOW(const REAL_D x) ‖X‖22 =
∑d−1

i=0 |Xi|2

REAL NORM1_DOW(const REAL_D x) ‖X‖1 =
∑d−1

i=0 |Xi|
REAL NORM8_DOW(const REAL_D x) ‖X‖∞ = maxd−1

i=0 |Xi|

REAL NRMP_DOW(const REAL_D x, REAL p) ‖X‖p =
(∑d−1

i=0 |Xi|p
) 1

p

REAL PNRMP_DOW(const REAL_D x, REAL p) ‖X‖pp =
∑d−1

i=0 |Xi|p

REAL DIST_DOW(const REAL_D x, const REAL_D y) dist =
(∑d−1

i=0 |Xi − Yi|2
) 1

2

REAL DST2_DOW(const REAL_D x, const REAL_D y) dst2 =
∑d−1

i=0 |Xi − Yi|2

REAL DIST1_DOW(const REAL_D x, const REAL_D y) dist1 =
∑d−1

i=0 |Xi − Yi|
REAL DIST8_DOW(const REAL_D x, const REAL_D y) dist8 = maxd−1

i=0 |Xi − Yi|
REAL SUM_DOW(const REAL_D x) sum =

∑d−1
i=0 Xi

REAL POW_DOW(REAL a) pow = ad

REAL *SCAL_DOW(REAL a, REAL_D x) X∗ = a

REAL *AX_DOW(REAL a, REAL_D x)

REAL *AXEY_DOW(REAL a, const REAL_D x, REAL_D y) Y = aX

REAL *AXPY_DOW(REAL a, const REAL_D x, REAL_D y) Y+= aX

REAL *AXPBY_DOW(REAL a, const REAL_D x, Z = aX + bY

REAL b, const REAL_D y, REAL_D z)

REAL *AXPBYP_DOW(REAL a, const REAL_D x, Z+= aX + bY

REAL b, const REAL_D y, REAL_D z)

REAL *AXPBYPCZ_DOW(REAL a, const REAL_D x, W = aX + bY + cZ

REAL b, const REAL_D y, REAL c,

const REAL_D z, REAL_D w)

REAL *AXPBYPCZP_DOW(REAL a, const REAL_D x, W+= aX + bY + cZ

REAL b, const REAL_D y, REAL c,

const REAL_D z, REAL_D w)

REAL WEDGE_DOW(const REAL_D x, const REAL_D y) X[0] ∗ Y [1]−X[1] ∗ Y [0]

(for DIM_OF_WORLD == 2)

REAL *WEDGE_DOW(const REAL_D x, const REAL_D y, REAL_D z) Z = X × Y
(for DIM_OF_WORLD == 3)

Table 3.1: Implemented BLAS routines for REAL D vectors (d = DIM OF WORLD, with the prefix
M for REAL DD matrices)

#define N BNDRY TYPES 256
typedef BITS 256 BNDRY FLAGS;

/∗ Some ” standard ” b i t− f i e l d opera t ions , meant to h ide the
∗ N BNDRY TYPES argument .
∗/

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 83

REAL *MV_DOW(const REAL_DD m, const REAL_D v, REAL_D b) b+= M ∗ v
REAL *MTV_DOW(const REAL_DD m, const REAL_D v, REAL_D b) b+= M t ∗ v
REAL *GEMV_DOW(REAL a, const REAL_DD m, b = beta ∗ b+ a ∗ (M ∗ v)

const REAL_D v, REAL beta, REAL_D b)

REAL *GEMTV_DOW(REAL a, const REAL_DD m, b = beta ∗ b+ a ∗ (M t ∗ v)

const REAL_D v, REAL beta, REAL_D b)

Table 3.2: Implemented BLAS routines for matrix-vectors multiplication.

#define BNDRY FLAGS INIT(f l a g s) b i t f i e l d z a p ((f l a g s) , N BNDRY TYPES)
#define BNDRY FLAGS ALL(f l a g s) b i t f i e l d f i l l ((f l a g s) , N BNDRY TYPES)
#define BNDRY FLAGS CPY(to , from) b i t f i e l d c p y ((to) , (from) , N BNDRY TYPES)
#define BNDRY FLAGS AND(to , from) b i t f i e l d a n d ((to) , (from) , N BNDRY TYPES)
#define BNDRY FLAGS OR(to , from) b i t f i e l d o r ((to) , (from) , N BNDRY TYPES)
#define BNDRY FLAGS XOR(to , from) b i t f i e l d x o r ((to) , (from) , N BNDRY TYPES)
#define BNDRY FLAGS CMP(a , b) b i t f i e l d cmp ((a) , (b) , N BNDRY TYPES)

/∗ b i t 0 f l a g s boundary segments , i f not s e t we are in the i n t e r i o r ∗/
#define BNDRY FLAGS IS INTERIOR(mask) (! b i t f i e l d t s t ((mask) , 0))

/∗ Set b i t 0 to mark t h i s as a boundary b i t−mask . ∗/
#define BNDRYFLAGSMARKBNDRY(f l a g s) b i t f i e l d s e t ((f l a g s) , INTERIOR)

/∗ Return TRUE i f SEGMENT has BIT s e t and BIT != 0. ∗/
#define BNDRY FLAGS IS AT BNDRY(segment , b i t) \

((b i t) && b i t f i e l d t s t ((segment) , (b i t)))

/∗ Set a b i t in the boundary−t ype mask . The p r e c i s e meaning o f BIT :
∗
∗ BIT == 0: c l e a r the boundary mask (meaning : i n t e r i o r node)
∗ BIT > 0 : s e t b i t BIT and a l s o b i t 0 (meaning : boundary node)
∗/

#define BNDRY FLAGS SET(f l a g s , b i t) \
i f ((b i t) != INTERIOR) { \

b i t f i e l d s e t ((f l a g s) , INTERIOR) ; \
b i t f i e l d s e t ((f l a g s) , (b i t)) ; \

} else { \
BNDRY FLAGS INIT(f l a g s) ; \

}

/∗ re turn TRUE i f SEGMENT and MASK have non−zero ove r l ap ∗/
#define BNDRY FLAGS IS PARTOF(segment , mask) \

b i t f i e l d a ndp ((segment) , (mask) , 1 /∗ o f f s e t ∗/ , N BNDRY TYPES)

/∗ FindFirstBoundaryBit , re turn INTERIOR fo r i n t e r i o r nodes , o the rw i s e the
∗ number o f the f i r s t b i t s e t in MASK.
∗/

#define BNDRY FLAGS FFBB(mask) b i t f i e l d f f s (mask , 1 /∗ o f f s e t ∗/ ,
N BNDRY TYPES)

There is also a support function which returns for a given finite element space on a
given element the boundary classification of all local DOFs in terms of such bit-masks, namely
get bound(), see Section 4.7.1.3. To collect boundary information and interprete the informa-

84 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

tion returned by get bound() the function dirichlet map() can be used. Omitting details
like the handling of direct sums of finite element spaces its implementation looks like follows.
The effect is that bound[loc dof] is set either to DIRICHLET or INTERIOR, depending on
whether the input bit-mask mask and the boundary bit-masks of the local DOFs overlap.

void d i r i ch l e t map (EL SCHAR VEC ∗bound ,
const EL BNDRY VEC ∗ bndry bi t s ,
const BNDRY FLAGS mask)

{
int l o c d o f ;

for (l o c d o f = 0 ; l o c d o f < bound−>n components ; l o c d o f++) {
i f (BNDRY FLAGS IS INTERIOR(bndry bi t s−>vec [l o c d o f])) {

bound−>vec [l o c d o f] = INTERIOR;
continue ;

}
i f (BNDRY FLAGS IS PARTOF(bndry bi t s−>vec [l o c d o f] , mask)) {

bound−>vec [l o c d o f] = DIRICHLET;
} else {

bound−>vec [l o c d o f] = INTERIOR;
}

}
}

The use of the dirichlet map() function is also demonstrated in the assemble()-function
in the demo-program heat.c, see Section 2.4.8.

Besides the single-element mapper dirichlet map() there is also support for filling an
entire DOF SCHAR VEC at once with the boundary-type interpretation for a given finite element
space. This task can be performed by the function dirichlet bound() (and its variants), see
Section 4.7.7.1.

Generally, many function and structures accepts an argument (or contain a component)
of type BNDRY FLAGS which determines on which part of the boundary they are acting.
This concerns variants of dirichlet bound() (Section 4.7.7.1), the variants of the sup-
port functions for Neumann or Robin boundary conditions (Section 4.7.7.2, Section 4.7.7.3),
and the residual error-estimator support functions (Section 4.9). Data-structures affected
are DOF MATRIX (Section 3.3.4), EL MATRIX INFO (4.48), EL VEC INFO (4.70), OPERATOR INFO

(4.50), BNDRY OPERATOR INFO (4.51).

3.2.5 The MACRO EL data structure

We now describe the macro triangulation and data type for an element of the macro triangu-
lation. The macro triangulation is stored in an array of macro elements:

#define N BNDRY TYPES 256
typedef U CHAR BNDRYTYPE;
typedef BITS 256 BNDRY FLAGS;
typedef struct macro e l MACROEL;

struct macro e l
{

EL ∗ e l ;
REAL D ∗ coord [N VERTICES MAX] ;

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 85

BNDRYTYPE wall bound [NWALLSMAX] ;
#i f DIMMAX > 1

BNDRY FLAGS vertex bound [N VERTICES MAX] ;
#endif
#i f DIMMAX > 2

BNDRY FLAGS edge bound [N EDGES MAX] ;
#endif

NODE PROJ ∗ p r o j e c t i o n [N NEIGH MAX + 1] ;

int index ;

MACROEL ∗neigh [N NEIGH MAX] ;
S CHAR opp vertex [N NEIGH MAX] ;
S CHAR ne i g h v e r t i c e s [N NEIGH MAX] [N VERTICES(DIMMAX−1)] ;
AFF TRAFO ∗wa l l t r a f o [N NEIGH MAX] ;

#i f DIMMAX > 1
BNDRY FLAGS np vertex bound [N VERTICES MAX] ;

#endif
#i f DIMMAX > 2

BNDRY FLAGS np edge bound [N EDGES MAX] ;
#endif

S CHAR o r i e n t a t i o n ;

U CHAR e l t yp e ;

struct {
MACROEL ∗macro e l ;
S CHAR opp vertex ;

} master ;
} ;

Description of the individual structure components:

el The root of the binary tree located at this macro element.

coord The pointer to the world coordinates of the element’s vertices.

wall bound The boundary classification of the respective wall. 0 means this is an interior
wall, any other number between 1 and 255 is a “street number”, the boundary classifi-
cation as read from the macro triangulation. See also Compatibility Note 3.2.8. See also
Section 3.2.4.

vertex bound Only present for DIM MAX > 1. The boundary classification of the given
vertex.

3.2.2 Compatibility Note. A vertex may belong to boundary segments with differ-
ing classification numbers (“street numbers”). To make this information accessible the
vertex bound component is now a bit-mask, see also Compatibility Note 3.2.8 and Sec-
tion 3.2.4. The bit-mask has 256 slots. If bit i in vertex bound[v] is set, then vertex
number v is located on the boundary segment with classification number i. Bit 0 has a
special meaning: if it s not set, then the vertex is an interior vertex, in order to allow for
a fast check whether the vertex is a boundary vertex at all.

Macros and inline functions which simplify the handling of the multi-bit bit-masks
BNDRY FLAGS are described in Section 3.2.4.

86 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

edge bound Only present for DIM MAX > 2. The boundary classification of a given edge.
Compare the remarks in Compatibility Note 3.2.2 above.

projection pointers for possible projection of new nodes during refinement.
projection[1], if set, applies to all new nodes. projection[1+nr] (0 ≤ nr ≤
N WALLS(dim)) applies to new nodes on specific walls and overrides projection[0]. For
details see Section 3.2.14. NULL pointers signify no projection for the given case.

index The index of this macro element.

neigh neigh[i] pointer to the macro element opposite the i-th local vertex; it is a pointer
to NULL if the vertex/edges/faces opposite the i-th local vertex belongs to the boundary.

opp vertex opp vertex[i] is undefined if neigh[i] is a pointer to NULL; otherwise it is
the local index of the neighbour’s vertex opposite the common vertex/edge/face.

neigh vertices If this is a periodic mesh and wall number w in the macro-element is part
of a periodic boundary, then neigh vertices[w] is the tuple of local vertex numbers in
the periodic neighbour the vertices of wall number w are mapped onto. This corresponds
to the combinatoric face-transformations specified in the macro-triangulation file format
(see 3.32) and the MACRO DATA structure (see 3.41).

wall trafo If non-NULL, then wall trafo[w] is the geometrical face-transformation which
maps the current mesh onto its periodic neighbour across the wall number w.

np vertex bound Non-periodic version of the component vertex bound, see above. If the
mesh carries a periodic structure, then it is nonetheless possible to use a non-periodic
mesh-traversal and define non-periodic finite element spaces.

np edge bound Non-periodic version of the structure component edge bound, see above.
See also the remarks to np vertex bound above.

el type type of the element ∈ [0, 1, 2] used for refinement and coarsening (for the definition
of the element type see Section 1.1.1), only 3d.

orientation orientation of a tetrahedron — depending on the vertex numbering, this is
+1 or -1 (only 3d).

master In the presence of trace-meshes (aka “sub-meshes”) master gives the link to the
macro-element of the ambient “master”-mesh containing the trace-mesh this MACRO EL-
structure belongs to. The current (trace)-element is the wall numbered master.opp vertex

in the ambient master.macro el. See Section 3.9.

3.2.6 The EL data structure

The elements of the binary trees and information that should be present for tree elements are
stored in the data structure:

typedef struct e l EL;

struct e l
{

EL ∗ ch i l d [2] ;
DOF ∗∗ dof ;
S CHAR mark ;
REAL ∗new coord ;

#i f ALBERTADEBUG
int index ;

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 87

#endif
} ;

The members yield following information:

child pointers to the two children for interior elements of the tree; child[0] is a pointer
to NULL for leaf elements; child[1] is a pointer to user data on leaf elements if the user is
storing data on leaf elements, otherwise child[1] is also a pointer to NULL for leaf elements
(see Section 3.2.10).

dof vector of pointers to DOFs; these pointers may be available for the element vertices;
for the edges (in 2d and 3d), for the faces (in 3d), and for the barycenter; they are ordered
in the following way: the first N VERTICES entries correspond to the DOFs at the vertices;
the next one are those at the edges, if present, then those at the faces, if present, and
finally those at the barycenter, if present; the offsets are defined in the MESH structure (see
Sections 3.2.12, 3.4.1, 3.4.2).

mark marker for refinement and coarsening: if mark is positive for a leaf element this element
is refined mark times; if it is negative for a leaf element the element may be coarsened -mark

times; (see Sections 3.4.1, 3.4.2).

new coord if the element has a boundary edge on a curved boundary this is a pointer to
the coordinates of the new vertex that is created due to the refinement of the element,
otherwise it is a NULL pointer; thus, coordinate information can also be produced by the
traversal routines in the case of a curved boundary.

index unique global index of the element; these indices are not strictly ordered and may
be larger than the number of elements in the binary tree (the list of indices may have holes
after coarsening); the index is available only if ALBERTA DEBUG is true.

3.2.7 The EL INFO data structure

The EL INFO data structure has entries for all information which is not stored on elements
explicitely, but may be generated by the mesh traversal routines; most entries of the EL INFO

structure are only filled if requested (see Section 3.2.17).

typedef struct e l i n f o EL INFO ;

struct e l i n f o
{

MESH ∗mesh ;
REAL D coord [N VERTICES MAX] ;
const MACROEL ∗macro e l ;
EL ∗ e l ;
const EL INFO ∗parent ;
FLAGS f i l l f l a g ;
int l e v e l ;

S CHAR macro wal l [NWALLSMAX] ;

BNDRYTYPE wall bound [NWALLSMAX] ;
BNDRY FLAGS vertex bound [N VERTICES MAX] ;

#i f DIMMAX > 2
BNDRY FLAGS edge bound [N EDGES MAX] ;

#endif

88 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

const NODE PROJ ∗ a c t i v e p r o j e c t i o n ;

EL ∗neigh [N NEIGH MAX] ;
S CHAR opp vertex [N NEIGH MAX] ;
REAL D opp coord [N NEIGH MAX] ;

U CHAR e l t yp e ;
S CHAR o r i e n t a t i o n ;

struct {
EL ∗ e l ;
int opp vertex ;
REAL D opp coord ;
U CHAR e l t yp e ;
S CHAR o r i e n t a t i o n ;

} master , mst neigh ;

EL GEOMCACHE el geom cache ;
} ;

The members yield the following information:

mesh A pointer to the current mesh, this information is always present.

coord coord[i] is a DIM OF WORLD vector storing the Cartesian coordinates of the i-th
vertex. This information is only present if the component fill flag contains the flag
FILL COORDS.

macro el The current element belongs to the binary tree located at the macro element
macro el. This information is always present.

el Pointer to the current element. This information is always present.

parent el is a child of element parent. This information is always present.

3.2.3 Compatibility Note. In previous versions ALBERTA, parent was just a pointer
of type EL *, now it is a pointer to the EL INFO structure of the parent element.

fill flag Actually, the bit-wise “or” of multiple fill-flags, indicating which elements are
called and which information should be present (see Section 3.2.17) in the EL INFO-
structure. Note that components of the EL INFO structure which are not flagged as valid by
fill flag need not be initialized and may contain random data.

level level of the current element; the level is zero for macro elements and the level of the
children is (level of the parent + 1); the level is always filled by the traversal routines.

macro wall macro wall[nr] contains the number of the wall in the ambient macro-element
the wall numbered nr of the current element is located at, or −1 if that wall is an interior
wall (with respect to the ambient macro element). This piece of information is only present
when fill flag contains the flag FILL MACRO WALLS.

wall bound The boundary classification of the walls of the current element. See also Com-
patibility Note 3.2.1. This piece of information is only valid if fill flag contains the
flag FILL BOUND. Note that is not necessary to request FILL BOUND to access the boundary
classification of the walls of the current element; this is done more efficiently by requesting
FILL MACRO WALLS and then calling the function wall bound(el info, wall).

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 89

3.2.4 Compatibility Note. In previous versions of ALBERTA the EL INFO structure
also optionally contained the boundary classification of “walls”, but using the names
vertex bound for 1d-meshes, edge bound for 2d meshes and face bound for 3d meshes.
As this was extremely unhandy a new name “wall” was introduced to refer to co-dimension
1 simplices (the name “face” was unluckily already occupied and “defined” to refer to faces
of tetrahedra in 3d).

vertex bound Boundary classification of the vertices. This piece of information is only
valid if fill flag contains the flag FILL BOUND.

3.2.5 Compatibility Note. This is now a bit-field of type BNDRY FLAGS. See also Com-
patibility Note 3.2.1.

edge bound Boundary classification of the edges (d > 1). This piece of information is only
valid if fill flag contains the flag FILL BOUND.

3.2.6 Compatibility Note. This is now a bit-field of type BNDRY FLAGS. See also Com-
patibility Note 3.2.1.

active projection If not NULL, a pointer to the projection function which is used to
project the newly created vertex during refinement.

neigh neigh[i] pointer to the element opposite the i-th local vertex; it is a pointer to
NULL if the wall opposite the i-th local vertex belongs to the boundary. This piece of
information is only present if fill flag contains the flag FILL NEIGH.

opp vertex opp vertex[i] is undefined if neigh[i] is a pointer to NULL; otherwise it is the
local index of the neighbour’s vertex opposite the common wall. This piece of information
is only present if fill flag contains the flag FILL NEIGH.

opp coord opp coord[i] coordinates of the i-th neighbour’s vertex opposite the com-
mon wall. This piece of information is only present if fill flag contains the flag
FILL OPP COORDS.

el type The element’s type (see Section 3.4.1); is filled automatically by the traversal
routines (only 3d).

orientation ±1: sign of the determinant of the transformation to the reference element
with vertices (0, 0, 0), (1, 1, 1), (1, 1, 0), (1, 0, 0) (see Figure 1.7).

master If the current element belongs to a co-dimension 1 trace-mesh (aka “slave-mesh”,
“sub-mesh”) then this data-structure contains information concerning the element of the
master-mesh the current element belongs to. This piece of information is only valid if
fill flag contains the flag FILL MASTER INFO.

el Always filled with FILL MASTER INFO.

opp vertex Always filled with FILL MASTER INFO.

opp coord Only filled if FILL COORD is also set in fill flag

el type Always filled with FILL MASTER INFO, if the master-mesh is 3d.

orientation Always filled with FILL MASTER INFO, if the master-mesh is 3d.

mst neigh Same information as master, but for neighbour across the slave element. Only
filled if fill flag contains FILL MASTER NEIGH.

90 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

el geom cache A storage area which is used to cache various geometric quantities of the
current element, like the determinant of the transformation to the reference element, the
normals of the walls of te current element. The data should only be accessed through the
function fill el geom cache(el info, fill flags), see Section 3.2.8.

3.2.8 Caching of geometric element quantities

Often it would be useful to share data like the determinant of the transformation to
the reference element or the derivative of that transformation between pieces of program-
code which are separated by call-hierarchies, or maybe one simply does not want to
blow-up the parameter lists of application provided function hooks. To this aim there
exists a caching mechanism, called EL GEOM CACHE, which should only be accessed and
is filled by calls to fill el geom cache(). The reader is also referred to the documen-
tation of fill quad el cache(), Section 4.2.6, especially in the context of parametric
meshes of higher polynomial order. Example 4.2.1 contains a simplistic example for both,
fill el geom cache() and fill quad el cache(). The element-cache structure and the re-
lated definitions and proto-types are as follows:

typedef struct e l geom cache EL GEOMCACHE;

struct e l geom cache
{

EL ∗ c u r r e n t e l ;
FLAGS f i l l f l a g ;
REAL det ;
REAL BD Lambda ;
int o r i e n t a t i o n [NWALLSMAX] [2] ;
int r e l o r i e n t a t i o n [NWALLSMAX] ;
REAL wa l l d e t [NWALLSMAX] ;
REAL D wal l normal [NWALLSMAX] ;

} ;

#define FILL EL DET (1 << 0)
#define FILL EL LAMBDA (1 << 1)

#define FILL EL WALL SHIFT(wal l) (2 + 4∗(wa l l))
#define FILL EL WALL MASK(wal l) (0 x7 << FILL EL WALL SHIFT(wal l))

#define FILL EL WALL DET(wal l) (1 <<
(FILL EL WALL SHIFT(wal l)+0))

#define FILL EL WALL NORMAL(wal l) (1 <<
(FILL EL WALL SHIFT(wal l)+1))

#define FILL EL WALL ORIENTATION(wal l) (1 <<
(FILL EL WALL SHIFT(wal l)+2))

#define FILL EL WALL REL ORIENTATION(wal l) (1 <<
(FILL EL WALL SHIFT(wal l)+3))

#define FILL EL WALL DETS \
(FILL EL WALL DET(0) |FILL EL WALL DET(1) | \
FILL EL WALL DET(2) |FILL EL WALL DET(3))

#define FILL EL WALL NORMALS \
(FILL EL WALL NORMAL(0) |FILL EL WALL NORMAL(1) | \
FILL EL WALL NORMAL(2) |FILL EL WALL NORMAL(3))

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 91

#define FILL EL WALL ORIENTATIONS \
(FILL EL WALL ORIENTATION(0) |FILL EL WALL ORIENTATION(1) | \
FILL EL WALL ORIENTATION(2) |FILL EL WALL ORIENTATION(3))

#define FILL EL WALL REL ORIENTATIONS \
(FILL EL WALL REL ORIENTATION(0) |FILL EL WALL REL ORIENTATION(1) | \
FILL EL WALL REL ORIENTATION(2) |FILL EL WALL REL ORIENTATION(3))

stat ic i n l i n e const EL GEOMCACHE ∗
f i l l e l g e om c a c h e (const EL INFO ∗ e l i n f o , FLAGS f i l l f l a g) ;

The members of EL GEOM CACHE have the following meaning:

current el For internal use only.

fill flag A bit-mask, bit-wise or of the fill flags listed above (3.21).

det The determinant of the transformation to the reference element. Filled by
fill el geom cache(..., FILL EL DET). This is the cached value of the quantity com-
puted by el det(), see Section 4.1.

Lambda The derivative of the barycentric coordinates w.r.t. the Cartesian coordinates.
Filled by fill el geom cache(..., FILL EL LAMBDA). This is the cached value of the
quantity computed by el grd lambda(), see Section 4.1.

orientation An (absolute) orientation of the walls of the current element and its neigh-
bour. orientation[wall][0] is the orientation of the wall of the current element,
orientation[wall][1] is the orientation of the same wall, but relative to the neighbour.
Filled by fill el geom cache(..., FILL EL WALL ORIENTATION(wall)). These are the
cached values of two calls to wall orientation(), see Section 4.1.

rel orientation rel orientation[wall] is the cached value of
wall rel orientation(), see Section 4.1. Filled by fill el geom cache(...,

FILL EL WALL REL ORIENTATION(wall)).

wall det The cached return value of get wall normal)(), see Section 4.1. Filled by
fill el geom cache(..., FILL EL WALL DET(wall)).

wall det The cached value of the quantity computed by get wall normal)(), see Sec-
tion 4.1. Filled by fill el geom cache(..., FILL EL WALL NORMAL(wall)).

3.2.9 The INDEX macro

It is often very helpful — especially during program development — for every element to have
a unique global index. This requires an entry in the element data structure which adds to the
needed computer memory.

On the other hand this additional amount of computer memory may be a disadvantage in
real applications where a big number of elements is needed, and — after program development
— element index information is no longer of interest.

In the debug versions of the ALBERTA libraries (ALBERTA DEBUG==1) an element index is
available. The macro

INDEX(e l)

is defined to access element indices independently of the value of ALBERTA DEBUG. If no indices
are available, the macro returns -1.

92 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

3.2.10 Application data on leaf elements

As mentioned in Section 1.2, it is often necessary to provide access to special user data which
is needed only on leaf elements. Error indicators give examples for such data.

Information for leaf elements depends strongly on the application and so it seems not to be
appropriate to define a fixed data type for storing this information. Thus, we implemented the
following general concept: The user can define his own type for data that should be present
on leaf elements. ALBERTA only needs the size of memory that is required to store leaf data.
During refinement and coarsening ALBERTA automatically allocates and deallocates memory
for user data on leaf elements. Thus, after grid modifications each leaf element possesses a
memory area which is big enough to take leaf data.

To access leaf data we must have for each leaf element a pointer to the provided memory
area. This would need an additional pointer on leaf elements. To make the element data
structure as small as possible and in order to avoid different element types for leaf and
interior elements we “hide” leaf data at the pointer of the second child on leaf elements:

By definition, a leaf element is an element without children. For a leaf element the pointers
to the first and second child are pointers to NULL, but since we u:se a binary tree the pointer
to the second child must be NULL if the pointer to the first child is a NULL pointer and vice
versa. Thus, only testing the first child will give correct information whether an element is a
leaf element or not, and we do not have to use the pointer of the second child for this test.
As consequence we can use the pointer of the second child as a pointer to the allocated area
for leaf data and the user can write or read leaf data via this pointer (using casting to a
self-defined data type defined).

The consequence is that a pointer to the second child is only a pointer to an element if
the pointer to the first child is not a NULL pointer. Thus testing whether an element is a leaf
element or not must only be done using the pointer to the first child. If no leaf data is stored
on the mesh then the pointer to the second child is also a NULL pointer for leaf elements.

Finally, the user may supply routines for transforming user data from parent to children
during refinement and for transforming user data from children to parent during coarsening. If
these routines are not supplied, information stored for the parent or the children respectively
is lost.

Leaf data storage may be initialized only once for any given mesh. Please note that leaf
data is not stored when exporting meshes to disk (see Section 3.3.8).

The following function initializes leaf data:

s i z e t i n i t l e a f d a t a (MESH ∗mesh , s i z e t s i z e ,
void (∗ r e f i n e l e a f d a t a) (EL ∗parent , EL ∗ ch i l d [2]) ,
void (∗ c o a r s e n l e a f d a t a) (EL ∗parent , EL ∗ ch i l d [2])) ;

mesh pointer to the mesh on which leaf data is to be stored

size size of memory area for storing leaf data; ALBERTA may increase the size of leaf data
in order to guarantee an aligned memory access.

refine leaf data pointer to a function for transformation of leaf data during refinement;
first, refine leaf data(parent, child) transforms leaf data from the parent to the two
children if refine leaf data is not NULL; after that leaf data of the parent is destroyed.

coarsen leaf data pointer to a function for transformation of leaf data during coarsening;
first, coarsen leaf data(parent, child) transforms leaf data from the two children to

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 93

the parent if refine leaf data is not NULL; after that leaf data the of the children is
destroyed.

The following macros for testing leaf elements and accessing leaf data are provided:

#define IS LEAF EL(e l) (! (e l)−>ch i l d [0])
#define LEAF DATA(e l) ((void ∗) (e l)−>ch i l d [1])

The first macro IS LEAF EL(el) is true for leaf elements and false for elements inside the
binary tree; for leaf elements, LEAF DATA(el) returns a pointer to leaf data hidden at the
pointer to the second child.

3.2.11 The RC LIST EL data structure

For refining and coarsening we need information of the elements at the refinement and coars-
ening edge (compare Sections 1.1.1 and 1.1.2). Thus, we have to collect all elements at this
edge. In 1d the patch is built from the current element only, in 2d we have at most the current
element and its neighbour across this edge, if the edge is not part of the boundary. In 3d we
have to loop around this edge to collect all the elements. Every element at the edge has at
most two neighbours sharing the same edge. Defining an orientation for this edge, we can
define the right and left neighbour in 3d.

For every element at the refinement/coarsening edge we have an entry in a vector. The
elements of this vector build the refinement/coarsening patch. In 1d the vector has length 1,
in 2d length 2, and in 3d length mesh->max no edge neigh since this is the maximal number
of elements sharing the same edge in the mesh mesh.

typedef struct r c l i s t e l RC LIST EL ;

struct r c l i s t e l
{

EL INFO e l i n f o ;
int no ;
int f l a g ;
RC LIST EL ∗neigh [2] ;
int opp vertex [2] ;

} ;

Information that is provided for every element in this RC LIST EL vector:

el info information for element corresponding to this RC LIST EL structure. This is not a
pointer since EL INFO structures are often overwritten during mesh traversal.

no this is the no–th entry in the vector.

flag only used in the coarsening module: flag is true if the coarsening edge of the element
is the coarsening edge of the patch, otherwise flag is false.

neigh neigh[0/1] neighbour of element to the right/left in the orientation of the edge, or
a NULL pointer in the case of a boundary face (only 3d).

opp vertex opp vertex[0/1] the opposite vertex of neigh[0/1] (only 3d).

This RC LIST EL vector is one argument to the interpolation and restriction routines for DOF
vectors (see Section 3.3.3).

94 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

3.2.12 The MESH data structure

All information about a triangulation is accessible via the MESH data structure:

struct mesh
{

const char ∗name ;

int dim ;

int n v e r t i c e s ;
int n e lements ;
int n h i e r e l emen t s ;

int n edges ; /∗ Only used f o r dim > 1 ∗/
int n f a c e s ; /∗ Only used f o r dim == 3 ∗/
int max edge neigh ; /∗ Only used f o r dim == 3 ∗/

bool i s p e r i o d i c ; /∗ t rue i f i t i s p o s s i b l e to d e f i n e p e r i o d i c ∗/
int p e r n v e r t i c e s ; /∗ DOF ADMINS on t h i s mesh . The per n . . . ∗/
int per n edge s ; /∗ e n t r i e s count the number o f q u a n t i t i e s on∗/
int p e r n f a c e s ; /∗ the p e r i o d i c mesh (i . e . n f a c e s counts ∗/

/∗ p e r i o d i c f a c e s twice , n p e r f a c e s not) . ∗/
AFF TRAFO ∗const∗wa l l t r a f o s ;
int n wa l l t r a f o s ;

int n macro e l ;
MACROEL ∗macro e l s ;

REAL D bbox [2] ; /∗ bounding box f o r the mesh ∗/
REAL D diam ; /∗ bbox [1] − bbox [0] ∗/

PARAMETRIC ∗parametr ic ;

DOF ADMIN ∗∗dof admin ;
int n dof admin ;

int n d o f e l ; /∗ sum of a l l do f s from a l l admins ∗/
int n dof [N NODE TYPES] ; /∗ sum of v e r t e x / edge / . . . do f s from

∗ a l l admins
∗/

int n node e l ; /∗ number o f used nodes on each element ∗/
int node [N NODE TYPES] ; /∗ index o f f i r s t v e r t e x / edge / . . . node∗/

unsigned int cook i e ; /∗ changed on each r e f i n e / coarsen . Use
∗ t h i s to check cons i s t ency o f meshes
∗ and DOF vec t o r s when read ing from
∗ f i l e s .
∗/

void ∗mem info ; /∗ po in t e r f o r admin i s t ra t i on ; don ’ t touch ! ∗/
} ;

The members yield following information:

name string with a textual description for the mesh, or NULL. Note that name will be dupli-
cated by calling strdup(3) by the GET MESH() call.

dim dimension d of the mesh. May be any number from 0 to DIM OF WORLD. Zero dimensional

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 95

meshes are simply isolated vertices lacking most of the features of 1d/2d/3d meshes. They
were implemented for completeness.

n vertices number of vertices of the mesh.

n elements number of leaf elements of the mesh.

n hier elements number of all elements of the mesh.

n edges number of edges of the mesh (2d and 3d).

n faces number of faces of the mesh (3d).

max edge neigh maximal number of elements that share one edge; used to allocate memory
to store pointers to the neighbour at the refinement/coarsening edge (3d).

is periodic a boolean value, set to true for periodic meshes, see Section 3.10.

per n vertices, per n edges, per n faces the respective quantities, but counted tak-
ing the periodic structure into account, n faces, e.g., counts periodic faces twice,
per n faces not.

wall trafos, n wall trafos The geometric face transformation defining the periodic
structure of the mesh, see Section 3.10.

n macro el number of macro elements.

macro els pointer to the macro element array.

bbox the bounding box of the mesh.

diam diameter of the mesh in the DIM OF WORLD directions.

parametric is a pointer to NULL if the mesh contains no parametric elements; otherwise it
is a pointer to a PARAMETRIC structure containing coefficients of the parameterization and
related information; for more information see Section 3.8.

The last entries are used for the administration of DOFs and are explained in Section 3.3 in
detail.

dof admin vector of dof admins.

n dof admin number of dof admins.

n node el number of nodes on a single element where DOFs are located; needed for the
(de-) allocation of the dof-vector on the element.

n dof el number of all DOFs on a single element.

n dof number of DOFs at the different positions VERTEX, EDGE, (FACE,) CENTER on an
element:

n dof[VERTEX] number of DOFs at a vertex; if no DOFs are associated to the barycen-
ter, then this value is 0.

n dof[CENTER] number of DOFs at the barycenter; if no DOFs are associated to the
barycenter, then this value is 0.

n dof[EDGE] number of DOFs at an edge; if no DOFs are associated to edges, then this
value is 0 (2d and 3d);

n dof[FACE] number of DOFs at a face; if no DOFs are associated to faces, then this
value is 0 (3d);

node gives the index of the first node at vertex, edge (2d and 3d), face (3d), and barycenter:

node[VERTEX] always has value 0; dof[0],...,dof[N VERTICES-1] are always DOFs
at the vertices, if DOFs are located at vertices.

96 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

node[CENTER] dof[node[CENTER]] are the DOFs at the barycenter, if DOFs are lo-
cated at the barycenter.

node[EDGE] dof[node[EDGE]],..., dof[node[EDGE]+N EDGES-1] are the DOFs at
the N EDGES edges, if DOFs are located at edges (2d and 3d);

node[FACE] dof[node[FACE]],..., dof[node[FACE]+N FACES-1] are the DOFs at
the N FACES faces, if DOFs are located at faces (3d);

The cookie value is automatically initialized with a random value if ALBERTA DEBUG==0 and
with a fixed number for ALBERTA DEBUG==1. It is incremented on each mesh change (refinement
or coarsening). On writing meshes or finite element coefficient vectors to disk the current
cookie value is also stored. The purpose is to provide a safety check on reading meshes
and vectors; if the cookies do not match, then ALBERTA issues a warning message since no
guarantee can be given that coefficient vector and mesh will match.

Finally, the pointer mem info is used for internal memory management and must not be
changed.

3.2.13 Initialization of meshes

It is possible to handle any number of meshes of any dimension d ≤ n in a given simulation.
A mesh must be allocated by the following function or macro

check and get mesh (int dim , int dow , int neigh ,
const char ∗ vers ion , const char ∗name ,
const MACRODATA ∗macro data ,
NODE PROJ ∗(∗ i n i t n o d e p r o j) (MESH ∗ , MACROEL ∗ , int) ,
AFF TRAFO ∗(∗ i n i t w a l l t r a f o) (MESH ∗ , MACROEL ∗ , int

wal l)) ;
#define GETMESH(dim , name , macro data , i n i t n od e p r o j , i n i t w a l l t r a f o) \

check and get mesh ((dim) , DIM OFWORLD, ALBERTADEBUG, \
ALBERTA VERSION, (name) , (macro data) , \
(i n i t n o d e p r o j) , (i n i t w a l l t r a f o s))

Descriptions

check and get mesh(dim, dow, debug, version, name, macro data,

init node proj, init wall trafos)

Return a pointer to a filled mesh structure; several consistency checks are performed.
The application should not change any entry in the returned structure. There is no other
possibility to define new meshes inside ALBERTA. The arguments dow, debug and version

are checked against the constants in the used library; if these values are identical, the mesh
is allocated, otherwise an error message is produced and the program stops.

parameters

dim Desired dimension of the mesh (1 ≤ dim ≤ min{DIM OF WOLRD, 3}).
dow Must be DIM OF WORLD.

debug Must be ALBERTA DEBUG.

version Must be ALBERTA VERSION.

name A string holding a textual description of mesh and is duplicated at the member
name of the mesh.

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 97

macro data A pointer to the desired macro triangulation, see Section 3.2.15 for
details.

init node proj Optional, may be NULL. A pointer to a function that will perform
the initialization of new vertex projections, see Section 3.2.14.

init wall trafos Optional, may be NULL. A pointer to a function which initializes
face transformations in the context of periodic meshes.

GET MESH(dim, name, macro data, init node proj, init wall trafos)

Return a pointer to a filled mesh structure; this macro calls check and get mesh() and
automatically supplies this function with the three (missing) arguments; this macro should
always be used for creation of meshes.

A mesh that is not needed any more can be freed by a call of the function

void f r ee mesh (MESH ∗) ;

Description:

free mesh(mesh) will de–allocate all memory used by mesh (elements, DOFs, etc.), and
finally the data structure mesh too. Submeshes of this mesh are also freed, see also Sec-
tion 3.9.

3.2.14 Projection of new nodes

During refinement of simplices ALBERTA usually places the new nodes at the midpoint of the
refinement edge. Some applications require meshes having curved boundaries parametrized
by a given continuous function. For these it is possible to automatically project new nodes on
the boundary using this function. As the mesh is refined the curved interface is successively
better approximated. Figure 3.2 illustrates some refinements of a triangle with one edge on the
curved boundary. The projections of refinement edge midpoints (small circles) to the curved
boundary are shown by the black dots.

Figure 3.2: Refinement at curved boundary: refinement edge midpoints ◦ are projected to the
curved boundary •

ALBERTA implements this in a very general way. It is possible to not only project nodes
to boundaries, but also to arbitrary interfaces in the interior of the mesh. It is even possible

98 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

to project all new nodes of the mesh to a given surface, making it possible to triangulate
parametrized embedded surfaces or curves.

The following type is used to describe node projection functions:

typedef struct node p ro j e c t i on NODE PROJECTION;
struct node p ro j e c t i on
{

void (∗ func) (REAL D old coord , const EL INFO ∗ e l i , const REAL B lambda) ;
} ;

The component func must overwrite the given coordinate vector old coord with the projected
coordinates. As an alternative to world coordinates, the function may use the barycentric
coordinates lambda describing a position on the element eli. The result must always be
returned as world coordinates in the vector old coord, however.

The idea is that the user provides a callback function init node proj during mesh initial-
ization. This function must decide which vertices/edges/faces (for 1d/2d/3d) of which macro
elements are to belong to the parametrized interface. All nodes belonging to the interface are
automatically projected during refinement. ALBERTA calls init node proj several times for
each macro element and thus builds the projection entries of the MACRO EL structures, see
Section 3.2.5.

During the allocation of a mesh with check and get mesh(), see Section 3.2.13, the user
may pass the function pointer init node proj. This function has the following form:

NODE PROJECTION ∗ i n i t n o d e p r o j (MESH ∗mesh , MACROEL ∗mel , int case) ;

Description:

mesh pointer to the mesh

mel pointer to the macro element

case ALBERTA calls init node proj once with case==0 and additionally for case==1 to
case==N NEIGH(mesh->dim)+1 if dim ∈ {2, 3}.
If init node proj returns a NODE PROJECTION for case==0, then all new
nodes will be projected. If init node proj returns a NODE PROJECTION for
case ∈ {1, . . . , N NEIGH(dim) + 1}, dim ∈ {2, 3}, then all new nodes on edge/face
case-1 will be projected. This overrides the case==0 projection, if also set. A NULL value
represents no projection.

3.2.7 Example (Triangulation of a unit ball). The following code demonstrates the projec-
tion of boundary nodes to the unit sphere in any dimension.

stat ic void b a l l p r o j f u n c (REAL D vertex , const EL INFO ∗ e l i ,
const REAL B lambda)

{
REAL norm = NORMDOW(vertex) ;

norm = 1.0 / MAX(1 . 0E−15, norm) ;
SCALDOW(norm , ver tex) ;

return ;
}

stat ic NODE PROJECTION ∗ i n i t n o d e p r o j (MESH ∗mesh , MACROEL ∗mel , int c)

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 99

{
stat ic NODE PROJECTION ba l l p r o j = { b a l l p r o j f u n c } ;

i f (c > 0 && ! mel−>neigh [c−1])
return &ba l l p r o j ;

else
return n i l ;

}

3.2.15 Reading and writing macro triangulations

Data for macro triangulations can easily be stored in an ASCII-file (for binary macro files, see
the end of this section). For the macro triangulation file we use a similar key-data format like
for the parameter initialization (see Section 3.1.4.1). A line containing a ‘:’-character defines
a key. The key consists of all characters from the start of line up to the ‘:’-char, including
spaces. Everything after the colon potentially contains data, either on the same line or on the
following lines. Data following a ‘#’-character is ignored, ‘#’ is the comment-character. The
following template lists all possible keys with a brief description of the data format. Luckily,
an application does not need to specify all of the key-value pairs in all cases. A simple example
is given further below, see Example 3.2.9, 3.2.10 and 3.2.11 below.

Macro-file template

Thi s i s a comment , introduced by a hash mark
DIM: dim
DIMOFWORLD: dow

number o f v e r t i c e s : nv
number o f e lements : ne

ver tex coo rd ina t e s :
Comments may be mixed with data
Thi s l ine and the l ine above are comments
<DIMOFWORLD coo rd ina t e s o f ver tex [0]>
. . .
<DIMOFWORLD coo rd ina t e s o f ver tex [nv−1]>

element v e r t i c e s :
<N VERTICES(dim) i n d i c e s o f v e r t i c e s o f s implex [0]>
. . .
<N VERTICES(dim) i n d i c e s o f v e r t i c e s o f s implex [ne−1]>

element boundar ies :
<N NEIGH(dim) boundary d e s c r i p t i o n s o f s implex [0]>
. . .
<N NEIGH(dim) boundary d e s c r i p t i o n s o f s implex [ne−1]>

element ne ighbours :
<N NEIGH(dim) neighbour i n d i c e s o f s implex [0]>
. . .
<N NEIGH(dim) neighbour i n d i c e s o f o f s implex [ne−1]>

element type :
<element type o f s implex [0]>

100 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

. . .
<element type o f s implex [ne−1]>

number o f wa l l t r ans f o rmat i ons : <number o f generator s>

wal l t rans f o rmat i ons :
<data for f i r s t group generator , an a f f i n e i sometry in p r o j e c t i v e notat ion>
. . .
<data for l a s t group generator , an a f f i n e i sometry in p r o j e c t i v e notat ion>

element wa l l t r ans f o rmat i ons :
<NWALLS(dim) wall−t rans f o rmat i ons for s implex [0]>
. . .
<NWALLS(dim) wall−t rans f o rmat i ons for s implex [ne−1]>

number o f wa l l ve r tex t rans f o rmat i ons : <number o f t rans fo rmat ions>

wal l ve r tex t rans f o rmat i ons :
< f i r s t mapping between p e r i o d i c wal l s , i d e n t i f y i n g ver tex ind i c e s>
. . .
< l a s t mapping between p e r i o d i c wal l s , i d e n t i f y i n g ver tex ind i c e s>

Key-value descriptions Data for elements and vertices are read and stored in vectors for
the macro triangulation. Index information given in the file correspond to this vector oriented
storage of data. Thus, index information must be in the range 0,...,ne-1 for elements and
0,...,nv-1 for vertices. Generally, ordering of data is of little importance except that the DIM
and DIM OF WORLD keys must come first, and that “natural” dependencies must be obeyed:
the number of entities (vertices, elements, etc.) has to be specified before the data defining
those entities, and data attached to entities must be defined after defining the entities it is
attached to (e.g. neighbourhood relations have to be defined after defining the elements of
the mesh).

DIM Mandatory. The mesh dimension.

DIM OF WORLD Mandatory. Dimension of the ambient space. The parameter DIM OF WORLD

must match the libary value of DIM OF WORLD. By these values it is checked whether
the provided data matches the versions of the ALBERTA-libraries in use. ALBERTA
supports DIM OF WORLD > 3 (but only meshes of dimension up to 3). ALBERTA-libraries
with higher co-dimension can be selected through switches for the configure-script
prior to compiling the ALBERTA-package.

number of vertices Mandatory. Number of vertex coordinates following the vertex

coordinates keyword. The number of vertices must be specified prior to defining the
coordinates themselves.

number of elements Mandatory. The number of elements of the macro triangulation. This
must be specified before defining any other data attached to elements, like the mesh
connectivity or the neighbourhood relations.

vertex coordinates Mandatory. The coordinates, specified by tuples of floating point val-
ues of dimension DIM OF WORLD.

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 101

element vertices Mandatory. The mesh connectivity. The simplices are defined by their
vertices, specified as offsets into the coordinate data defined in the vertex coordinates

section. Counting starts at 0, so the first vertex has the number 0. The data-line 0 3 4,
e.g., would define a triangle defined by the vertices 0, 3 and 4. Note that the ordering
of vertices defines the refinement edge, which is always located between the vertices
with the local number 0 and 1. This ordering of vertices (and the element type for 3d)
determines the distribution of the refinement edges for the children.

element boundaries Optional. For each element one line, which assigns a number between
0 and 255 (respectively −128 and +127) to each co-dimension 1 sub-simplex of each ele-
ment. The element boundaries-key may be omitted. If this is the case, each boundary
segment is assigned a number of 1. Note that interior walls have to be assigned a value
of 0.

In the context of periodic meshes, periodic boundaries can still carry a classification
number. This number is accessible in the MACRO EL-structure (see 3.18) and during non-
periodic mesh-traversal.

3.2.8 Compatibility Note. If the macro file contains boundary “types”, then those are
treated as mere “street numbers” by the current ALBERTA version. Previous versions
used positive numbers to indicate that a given boundary segment was subject to Dirich-
let boundary condition and negative numbers were used to indicate that the respective
segment carried natural boundary conditions.

This was dropped because

1. the macro-triangulation should carry geometric information only

2. it imposed too many restrictions, especially for the case were different components
of systems of differential equations may be subject to different kind of boundary
conditions on the same boundary segment

Therefore the new scheme is now to only provide a classification of boundary segments
by the macro triangulation. The interpretation of this classification is then left to the
application program.

Vertices (2d) and edges (3d) may in fact belong to boundary segments with differ-
ent “street numbers”. This information is for example accessible through the function
get bound(), see Section 4.7.1.3. See also Section 3.2.4.

The current ALBERTA versions prefer positive boundary-types, the BNDRY TYPE data type
is in fact an unsigned char at the moment. Negative boundary type from “old” macro-
data files are interpreted as positive numbers by the usual 2-complement arithmetic.

element neighbours Optional. Neighbourhood relationships. This information may be
omitted from the macro-triangulation in which case it is computed by ALBERTA. This
computation is costly for large triangulations, so if neighbourhood information is avail-
able, it is advisable to include it in the macro-triangulation if the macro triangulation
is a mesh with many simplices. If given then for each wall of each element the number
of the neighbouring element has to be specified, or −1 if there is no such neighbour.

102 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

element type Optional. This key is relevant only for 3d. In 3d, each element carries a
“type” between 0 an 2 (inclusive). This type influences the mesh refinement algorithm,
see Section 1.1.1. If the element type key is omitted, then ALBERTA assigns each
macro-element a type of 0.

number of wall transformations Optional. The number of face transformations which
define a periodic structure on the mesh. See below under wall transformations.

wall transformations Optional. For ALBERTA, a periodic mesh is (part of) the funda-
mental domain of a crystallographic group. A fundamental domain of such group comes
with a dedicated set of generators of the crystallographic group: the face-transformations
which map the current fundamental domain to its neighbour across a given face (the no-
tion “face” is already occupied within ALBERTA, denoting co-dimension 1 face-simplices
in 3d, so “wall” denotes what “face” should have been used for: a co-dimension 1 face-
simplex, separating a simplex from its direct neighbour).

The group-generators have to be specified in projective notation, acting on column
vectors. For example, a simple translation by an amount of 2 in x2-direction in 3d
would be specified as

1 0 0 0

0 1 0 2

0 0 1 0

0 0 0 1

ALBERTA assumes that the group generators are affine isometries, consequently, the
inverses of the generators need not be specified. It is not necessary to format the matrices
as shown above, ALBERTA reads as many white-space separated numbers as it needs.
See also Section 3.10.

element wall transformations Optional. The corresponding information is computed by
ALBERTA when reading the macro-file if it is omitted. If specified, the data defines for
each wall of each element the index into the array of wall-transformations which maps
the current mesh to its periodic neighbour across the given wall. Per convention counting
starts at 1, where negative numbers denote the inverse of the given wall-transformation.
A number of 0 indicates that the specific wall does not carry a face transformation
(this applies to all interior walls as well as non-periodic parts of the boundary). See also
Section 3.10.

number of wall vertex transformations Optional. Number of combinatoric face trans-
formations. See below wall vertex transformations.

wall vertex transformations Optional, computed on the fly if omitted. If specified the
data following this key defines combinatoric face transformation by mapping boundary
faces – given by the global number of their vertices – onto other boundary faces. For
instance, to map a 2d boundary face – an edge – connecting vertex 0 and 1 onto the
boundary edge between the vertices numbered 6 and 7 the following data would have
to be specified:

0 6

1 7

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 103

The ordering is important. Above lines implies that vertex 0 is identified with vertex
number 6 and vertex number 1 is identified with vertex 7 – or that the corresponding
edges are identified with the orientation implied by the given ordering of the vertices.
See also Section 3.10.

3.2.9 Example (The standard triangulation of the unit interval in R1). The easiest example
is the macro triangulation for the interval (0, 1) in 1d. We just have one element and two

vertices.

DIM: 1
DIMOFWORLD: 1

number o f e lements : 1
number o f v e r t i c e s : 2

element v e r t i c e s :
0 1

ver tex coo rd ina t e s :
0 . 0 0 .0
1 .0 0 .0

0
0 1

Macro triangulation of the unit interval.

3.2.10 Example (The standard triangulation of the unit square in R2). Still rather simple
is the macro triangulation for the unit square (0, 1)× (0, 1) in 2d. Here, we have two elements
and four vertices. The refinement edge is the diagonal for both elements.

DIM: 2
DIMOFWORLD: 2

number o f e lements : 2
number o f v e r t i c e s : 4

element v e r t i c e s :
2 0 1
0 2 3

ver tex coo rd ina t e s :
0 . 0 0 .0
1 .0 0 .0
1 .0 1 .0
0 .0 1 .0

1

1

1 1

1

1

2

2

0

0

0

Macro triangulation of the unit square.

3.2.11 Example (The standard triangulation of the unit cube in R3). More involved is
already the macro triangulation for the unit cube (0, 1)3 in 3d. Here, we have eight vertices
and six elements, all meeting at one diagonal; the shown specification of element vertices

prescribes this diagonal as the refinement edge for all elements.

104 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

DIM: 3
DIMOFWORLD: 3

number o f v e r t i c e s : 8
number o f e lements : 6

ver tex coo rd ina t e s :
0 . 0 0 .0 0 .0
1 .0 0 .0 0 .0
0 .0 0 .0 1 .0
1 .0 0 .0 1 .0
1 .0 1 .0 0 .0
1 .0 1 .0 1 .0
0 .0 1 .0 0 .0
0 .0 1 .0 1 .0

element v e r t i c e s :
0 5 4 1
0 5 3 1
0 5 3 2
0 5 4 6
0 5 7 6
0 5 7 2

6

0 1

4

57

2 3

Macro triangulation of the unit cube.

3.2.12 Example (A triangulation of three quarters of the unit disc). Here, we describe a
more complex example where we are dealing with a curved boundary and mixed type bound-
ary condition. Due to the curved boundary, we have to initialize the projection mechanism
when allocating a mesh as described in Section 3.2.14. The actual projection is easy to im-
plement, since we only have normalize the coordinates for nodes belonging to the curved
boundary. We assume that the two straight edges belong to the Neumann boundary, and
the curved boundary is the Dirichlet boundary. For handling mixed boundary types we have
to specify element boundaries in the macro triangulation file. Information about element

boundaries is also used inside the function init node proj.

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 105

DIM: 2
DIMOFWORLD: 2

number o f v e r t i c e s : 5
number o f e lements : 3

ver tex coo rd ina t e s :
0 . 0 0 .0
1 .0 0 .0
0 .0 1 .0
−1.0 0 .0
0 .0 −1.0

element v e r t i c e s :
1 2 0
2 3 0
3 4 0

element boundar ies :
0 −1 2
0 0 2
−1 0 2

-1

-1

0

0

22

2

0

1

2

0

1 2

0

1

2

Macro triangulation of a 3/4 disc.

The function init node proj() to initialize projection of nodes can be implemented similarly
to Example 3.2.7. The projection routine ball proj func remains the same.

stat ic NODE PROJECTION ∗ i n i t n o d e p r o j (MESH ∗mesh , MACROEL ∗mel , int c)
{

stat ic NODE PROJECTION ba l l p r o j = { b a l l p r o j f u n c } ;

i f (c > 0 && mel−>edge bound [c−1] == 2)
return &ba l l p r o j ;

else
return n i l ;

}

3.2.15.1 Reading macro triangulations from a file

Reading data of the macro grid from these files can be done by

MACRODATA ∗ read macro (const char ∗ f i l ename) ;

Description:

read macro(filename) reads data of the macro triangulation from the ASCII-file
filename and returns a pointer to a filled MACRO DATA structure (see Section 3.2.16). Us-
ing index information from the file, all information concerning element vertices, neighbour
relations can be calculated directly.

During the initialization of the macro triangulation, other entries like n edges, n faces,
and max edge neigh in the mesh data structure are calculated. Please note that projec-
tion of nodes as described in Section 3.2.14 is only possible for new nodes arising during
refinement.

106 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

A binary data format allows faster import of a macro triangulation, especially when the
macro triangulation already consists of many elements. Macro data written previously by
binary write macro routines (see below) can be read in native or machine independent binary
format by the two routines

MACRODATA ∗ read macro bin (const char ∗ f i l ename) ;
MACRODATA ∗ read macro xdr (const char ∗ f i l ename) ;

Description:

read macro bin(filename) reads data of the macro triangulation from the native
binary file filename; the file filename was previously generated by the function
write macro bin(), see below.

read macro xdr(filename) reads data of the macro triangulation from the machine inde-
pendent binary file filename, the file filename was previously generated by the function
write macro xdr(), see below.

3.2.15.2 Dumping macro triangulations to a file

The counterpart of functions for reading macro triangulations are functions for writing macro
triangulations to file. To be more general, it is possible to create a macro triangulation from
the triangulation given by the leaf elements of a mesh. As mentioned above, it can be faster
to use a binary format than the textual formal for writing and reading macro triangulations
with many elements.

int write macro (MESH ∗ , const char ∗) ;
int wr i te macro b in (MESH ∗ , const char ∗) ;
int write macro xdr (MESH ∗ , const char ∗) ;

Description:

write macro(mesh, name) writes the triangulation given by the leaf elements of mesh as
a macro triangulation to the file specified by name in the above described format; if the
file could be written, the return value is 1, otherwise an error message is produced and the
return value is 0.

write macro bin(mesh, name) writes the triangulation given by the leaf elements of
mesh as a macro triangulation to the file specified by name in native binary format.

write macro xdr(mesh, name) writes the triangulation given by the leaf elements of
mesh as a macro triangulation to the file specified by name in machine independent bi-
nary format.

For exporting meshes including the whole hierarchy, see Section 3.3.8

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 107

3.2.16 Import and export of macro triangulations from/to other formats

When meshes are created using a simplicial grid generation tool, then data will usually not
be in the ALBERTA macro triangulation format described above in Section 3.2.15. In order
to simplify the import of such meshes, an array-based data structure MACRO DATA is provided,
using flat C-arrays for storing the data, and indirect index-arrays to bind the data to elements
and define the mesh connectivity. Such a data structure can easily be filled by an import
routine; the filled data structure can then converted into an ALBERTA mesh. Of course,
another possibility is to convert the data to ALBERTA’s textual macro-file format as described
in Section 3.2.15 above. The MACRO DATA structure is defined as

typedef struct macro data MACRODATA;

struct macro data
{

int dim ; /∗ dimension o f the e lements ∗/

int n t o t a l v e r t i c e s ;
int n macro elements ;

REAL D ∗ coords ; /∗ Length w i l l be n t o t a l v e r t i c e s ∗/

int ∗me l v e r t i c e s ; /∗ me l v e r t i c e s [i ∗N VERTICES(dim)+j] :
∗ g l o b a l index o f j t h v e r t e x o f e lement i
∗/

int ∗neigh ; /∗ neigh [i ∗N NEIGH(dim)+j] :
∗ neighbour j o f e lement i or −1 at boundar ies
∗/

int ∗ opp vertex ; /∗ opp ve r t e x [i ∗N NEIGH(dim)+j] : i f s e t (need not
∗ be) the l o c a l v e r t e x number w. r . t . the neighbour
∗ o f the v e r t e x oppo s i t the s epa ra t i n g wa l l .
∗/

BNDRYTYPE ∗boundary ; /∗ boundary [i ∗N NEIGH(dim)+j] :
∗ boundary type o f j t h co−dim 1 f a c e t o f e lement i
∗
∗ WARNING: In 1D the l o c a l index corresponds
∗ to v e r t e x 1 & v i c e versa ! (Cons i s t en t wi th
∗ macro data . ne igh)
∗/

U CHAR ∗ e l t yp e ; /∗ e l t y p e [i] : t ype o f e lement i on ly used in 3d ! ∗/

/∗ ∗∗∗∗∗∗∗∗ the remainder i s on ly needed f o r p e r i o d i c meshes ∗∗∗∗∗∗∗∗∗∗ ∗/

int (∗ wa l l v t x t r a f o s) [N VERTICES(DIMMAX−1)] [2] ; /∗ the wa l l t r a f o s ∗/
/∗ Wall t rans format ions are in terms o f mappings between
∗ v e r t i c e s . i−th wa l l t r a f o : g l o b a l v e r t e x number
∗ w a l l v t x t r a f o s [i] [v] [0] maps to w a l l v t x t r a f o s [i] [v] [1] ,
∗ v l oops through the l o c a l v e r t e x number o f the r e s p e c t i v e wa l l .
∗/

int n wa l l v t x t r a f o s ; /∗ f o r p e r i o d i c meshes : number o f
∗ comb ina tor i ca l wa l l t r a f o s .
∗/

int ∗ e l w a l l v t x t r a f o s ;
/∗ e l w a l l v t x t r a f o s [i ∗N WALLS(dim)+j] number o f the wa l l
∗ t rans format ion o f the j−th wa l l f o r the i−th e lement . > 0 :

108 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

∗ #wa l l t r a f o +1. < 0 : i n v e r s e o f −(#wa l l t r a f o +1)
∗/

AFF TRAFO ∗wa l l t r a f o s ; /∗ The group genera to r s o f the space group
∗ d e f i n i n g the p e r i o d i c s t r u c t u r e o f the
∗ mesh .
∗/

int n wa l l t r a f o s ;
int ∗ e l w a l l t r a f o s ; /∗ N = e l w a l l t r a f o s [i ∗N NEIGH(dim)+j] :

∗
∗ number o f the wa l l t rans format ion mapping to
∗ the ne ighbour ing fundamental domain across
∗ the g iven wa l l .
∗
∗ I f n e ga t i v e : i n v e r s e o f genera tor −N−1
∗ I f p o s i t i v e : genera tor +N−1
∗/

} ;

The members yield following information:

dim dimension of the triangulation.

n total vertices number of vertices.

n macro elements number of mesh elements.

coords REAL D array of size n total vertices holding the point coordinates of all vertices.

mel vertices integer array of size n macro elements * N VERTICES(dim) storing ele-
ment index information; mel vertices[i*N VERTICES[dim]+j] is the index of the jth
vertex of element i.

neigh integer array of size n macro elements*N NEIGH(dim), where
neigh[i*N NEIGH(dim)+j] is the index of the jth neighbour element of element i,
or -1 in case of a boundary.

boundary S CHAR array of size n macro elements*N NEIGH(dim), where
boundary[i*N NEIGH(dim)+j] is the boundary type of the jth vertex/edge/face of
element i (in 1d/2d/3d). Please note that the index 0 corresponds to vertex 1 and vice
versa in 1d, consistent with the numbering used for neigh.

el type a U CHAR vector of size n macro elements holding the element type of each mesh
element (only 3d).

wall vtx trafos, n wall vtx trafos correspond to the data specified with the key
wall vertex transformations, see Section 3.2.15. This field stores face-transformations
in terms of mappings between vertices. For the i-the face transformation the
global vertex number wall vtx trafos[i][v][0] maps to the global vertex number
wall vtx trafos[i][v][1], v loops through the local vertex number of the respective
wall.

el wall vtx trafos If el wall vtx trafos[i*N WALLS(dim)+j]! = 0 then it is the num-
ber of the face-transformation the j-th wall on the for the i-th element is subject to. Neg-
ative number indicate that the inverse of the respective face-transformation is attached to
that wall. Note that one has to subtract 1 from this value before using it as index into
wall vtx trafos, because arrays in C are indexed starting with 0.

wall trafos, n wall trafos The group generators and their number of the space group
defining the periodic structure of the mesh. See Section 3.10.

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 109

el wall trafos If N = el wall trafos[i*N NEIGH(dim)+j]! = 0 then N is the number
of the face-transformation mapping the mesh to the neighboring fundamental domain
across the given wall. If N is negative, then the actual face-transformation is the inverse
of the N -th transformation. Note that one has to subtract 1 from this value before using
it as index into wall trafos, because arrays in C are indexed starting with 0.

A MACRO DATA structure can be allocated and freed by

MACRODATA ∗ a l l o c macro data (int dim , int nv , int ne , FLAGS) ;
void f r e e macro data (MACRODATA ∗) ;

Description:

alloc macro data(dim, n vertices, n elements, flags) allocates a dim-
dimensional MACRO DATA structure together with all arrays needed to hold n vertices

vertices and n elements mesh elements. The coords and mel vertices arrays are
allocated in any case, while neigh, boundary and el type arrays are allocated only
when requested as indicated by the corresponding flags FILL NEIGH, FILL BOUNDARY, and
FILL EL TYPE set by a bitwise OR in flags.

free macro data(data) frees all previously allocated storage for MACRO DATA data and
all the arrays in it.

Once MACRO DATA structure is filled, it can be saved to file in the ALBERTA macro trian-
gulation format, or it can be directly be converted into a MESH.

void macro data2mesh (MESH ∗mesh , const MACRODATA ∗data ,
NODE PROJECTION ∗(∗ n pro j) (MESH ∗ ,MACROEL ∗ , int)) ;

int write macro data (MACRODATA ∗ , const char ∗) ;
int wr i t e macro data b in (MACRODATA ∗ , const char ∗) ;
int wri te macro data xdr (MACRODATA ∗ , const char ∗) ;

Description:

macro data2mesh(mesh, macro data, n proj) converts the triangulation with data
given in macro data into a MESH structure. It sets most entries in mesh, allocates macro el-
ements needed, assigns DOFs according to mesh->n dof, and calculates mesh->diam. The
coordinates in macro data->coords are copied to a newly allocated array, thus the entire
MACRO DATA structure can be freed after calling this routine. When not nil, the n proj

function is used to initialize projection of new nodes.

write macro data(macro data, name) writes the macro triangulation with data stored
in macro data in the ALBERTA format described in Section 3.2.15 to file name. The return
value is 0 when an error occured and 1 in case the file was written successfully.

write macro data bin(macro data, name) writes data of the macro triangulation
stored in macro data in native binary format to file name; the return value is 0 when
an error occured and 1 in case the file was written successfully.

write macro data xdr(macro data, name) writes data of the macro triangulation
stored in macro data in machine independent binary format to file name; the return value
is 0 when an error occured and 1 in case the file was written successfully.

It is appropriate to check whether a macro triangulation given in a MACRO DATA structure
allows for recursive refinement, by testing for possible recursion cycles. An automatic cor-
rection by choosing other refinement edges may be done, currently implemented only in 2d.

110 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

void macro tes t (MACRODATA ∗ , const char ∗) ;

Description:

macro test(macro data, name) checks the triangulation given in macro data for poten-
tial cycles during recursive refinement. In the case that such a cycle is detected, the routine
tries to correct this by renumbering element vertices (which is currently implemented only
in 2d) and then writes the new, changed triangulation using write macro data() to a file
name, when the second parameter is not nil.

3.2.17 Mesh traversal routines

As described before, the mesh is organized in a binary tree, and most local information is not
stored at leaf element level, but is generated from hierarchical information and macro element
data. The generation of such local information is done during tree traversal routines.

When some work has to be done at each tree element or leaf element, such a tree traversal
is most easily done in a recursive way, calling some special subroutine at each (leaf) element
which implements the operation that currently has to be done. For some other applications, it
is necessary to operate on the (leaf) elements in another fashion, where a recursive traversal
is not possible. To provide access for both situations, there exist recursive and non-recursive
mesh traversal routines.

For both styles, selection criteria are available to indicate on which elements the operation
should take place. The following constants are defined:

CALL EVERY EL PREORDER
CALL EVERY EL INORDER
CALL EVERY EL POSTORDER
CALL LEAF EL
CALL LEAF EL LEVEL
CALL EL LEVEL
CALL MG LEVEL

CALL EVERY EL PREORDER, CALL EVERY EL INORDER, and CALL EVERY EL POSTORDER all three
operate on all hierarchical elements of the mesh. These three differ in the sequence of operation
on elements: CALL EVERY EL PREORDER operates first on a parent element before operating on
both children, CALL EVERY EL POSTORDER operates first on both children before operating on
their parent, and CALL EVERY EL INORDER first operates on child[0], then on the parent
element, and last on child[1].

CALL LEAF EL operates on all leaf elements of the tree, whereas CALL LEAF EL LEVEL oper-
ates only on leaf elements which are exactly at a specified tree depth. CALL EL LEVEL operates
on all tree elements at a specified tree depth. The option CALL MG LEVEL is special for multi-
grid operations. It provides the operation on all hierarchy elements on a specified multigrid
level (which is usually el->level/DIM).

Additional flags are defined that specify which local information in EL INFO has to be
generated during the hierarchical mesh traversal. A bitwise OR of some of these constants is
given as a parameter to the traversal routines. These flags are more or less self explaining (see
also Section 3.2.7):

FILL NOTHING no information needed at all.

FILL COORDS the vertex coordinates EL INFO.coord are filled.

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 111

FILL BOUND the boundary classification EL INFO.wall bound, EL INFO.vertex bound and
EL INFO.edge bound (in 2d and 3d) are filled. If an application only needs the boundary
classification of the walls of an element, then it is probably more efficient to request the
FILL MACRO WALLS fill-flag and call bndry type = wall bound(el info, wall) to obtain
this information.

FILL NEIGH neighbour element information EL INFO.neigh and EL INFO.opp vertex is
generated.

FILL OPP COORDS information about opposite vertex coordinates EL INFO.opp coords of
neighbours is filled; the flag FILL OPP COORDS can only be selected in combination with
FILL COORDS|FILL NEIGH.

FILL ORIENTATION the element orientation info EL INFO.orientation is generated (3d
only).

FILL PROJECTION information about projection routines for new vertices is generated using
this flag. The entries EL INFO.active projection are set.

FILL MACRO WALLS the mapping of the local wall-numbers (i.e. faces in 3d, edges in 2d,
points in 1d) to the numbering of the walls on the ambient macro-element is maintained
during mesh-traversal. The entries EL INFO.macro wall are set.

FILL NON PERIODIC for periodic meshes, ignore the periodic structure when computing
the neighborhood relations and the boundary classification.

FILL MASTER INFO for trace-meshes (AKA “slave-meshes”). During mesh-traversal on the
trace-mesh generate certain information about the ambient “master”-element. Certain
fields of EL INFO.master are valid, depending on which other traversal flags are set.

FILL MASTER NEIGH for trace-meshes, implies FILL MASTER INFO explained above. For
trace-meshes sliding through an ambient bulk-mesh additionally compute information
about the neighbour of the ambient master-element across the wall forming the element
on the trace-mesh. Certain fields of EL INFO.master are valid, depending on which other
traversal flags are set.

FILL ANY macro definition for a bitwise OR of any possible fill flags, used for separating
the fill flags from the CALL ... flags.

During mesh traversal, such information is generated hierarchically using the two subrou-
tines

void f i l l m a c r o i n f o (MESH ∗ , const MACROEL ∗ , EL INFO ∗) ;
void f i l l e l i n f o (int , const EL INFO ∗ , EL INFO ∗) ;

Description:

fill macro info(mesh, mel, el info) fills el info with macro element information
of mel required by el info->flag and sets el info->mesh to mesh;

fill elinfo(ichild, parent info, el info) fills el info for the child ichild using
hierarchy information and parent data parent info depending on parent info->flag.

112 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

3.2.17.1 Sequence of visited elements

The sequence of elements which are visited during the traversal is given by the following rules:

• All elements in the binary mesh tree of one MACRO EL mel are visited prior to any
element in the tree of the next macro element in the array mesh->macro els.

• For every EL el, all elements in the subtree el->child[0] are visited before any element
in the subtree el->child[1].

• The traversal order of an element and its two child trees is determined by the flags
CALL EVERY EL PREORDER, CALL EVERY EL INORDER, and CALL EVERY EL POSTORDER, as
defined above in Section 3.2.17.

This order can only be changed by explicitly calling the traverse neighbour() routine during
non-recursive traversal, see below.

3.2.17.2 Recursive mesh traversal routines

Recursive traversal of mesh elements is done by the routine

void mesh traverse (MESH ∗ , int ,FLAGS, void (∗) (const EL INFO ∗ ,void ∗) ,void ∗) ;

Description:

mesh traverse(mesh, level, fill flag, el fct, data) traverses the mesh mesh;
the argument level specifies the element level if CALL EL LEVEL or CALL LEAF EL LEVEL,
or the multigrid level if CALL MG LEVEL is set in the fill flag; otherwise this variable is
ignored; by the argument fill flag the elements to be traversed and data to be filled
into EL INFO is selected, using bitwise OR of one CALL ... flag and several FILL ... flags;
the argument el fct is a pointer to a function which is called on every element selected
by the CALL ... part of fill flag. The pointer data is used for opaque user data that
should be made available to the el fct routine.

It is possible to use the recursive mesh traversal recursively, by calling mesh traverse()

from el fct.

3.2.13 Example. An example of a mesh traversal is the computation of the measure of the
computational domain. On each leaf element, the volume of the element is computed by the
library function el volume() and added to a global variable measure omega, which finally
holds the measure of the domain after the mesh traversal.

stat ic void measure e l (const EL INFO ∗ e l i n f o , void ∗measure omega)
{
∗ ((int ∗)measure omega) += el vo lume (e l i n f o) ;
return ;

}

. . .

measure omega = 0 . 0 ;
mesh traverse (mesh , −1, CALL LEAF EL |FILL COORDS, measure e l ,

&measure omega) ;
MSG(” |Omega | = %e\n” , measure omega) ;

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 113

el volume() computes the element volume and thus needs information about the elements
vertex coordinates.

3.2.14 Example. We give an implementation of the CALL EVERY EL ... routines to show
the simple structure of all recursive traversal routines. A data structure TRAVERSE INFO, only
used by the traversal routines, holds the traversal flag and a pointer to the element function
el fct():

stat ic void r e c u r s i v e t r a v e r s e (EL INFO ∗ e l i n f o , TRAVERSE INFO ∗ t r i n f o)
{

EL ∗ e l = e l i n f o −>e l ;
EL INFO e l i n f o n ew ;

i f (e l−>ch i l d [0])
{

i f (t r i n f o−>f l a g & CALL EVERY EL PREORDER)
t r i n f o−>e l f c t (e l i n f o , t r i n f o−>data) ;

f i l l e l i n f o (0 , e l i n f o , &e l i n f o n ew) ;
r e c u r s i v e t r a v e r s e (&e l i n f o new , t r i n f o) ;

i f (t r i n f o−>f l a g & CALL EVERY EL INORDER)
t r i n f o−>e l f c t (e l i n f o , t r i n f o−>data) ;

f i l l e l i n f o (1 , e l i n f o , &e l i n f o n ew) ;
r e c u r s i v e t r a v e r s e (&e l i n f o new , t r i n f o) ;

i f (t r i n f o−>f l a g & CALL EVERY EL POSTORDER)
t r i n f o−>e l f c t (e l i n f o , t r i n f o−>data) ;

}
else
{

t r i n f o−>e l f c t (e l i n f o , t r i n f o−>data) ;
}
return ;

}

stat ic void mesh t r av e r s e e v e r y e l (MESH ∗mesh , FLAGS f i l l f l a g ,
void (∗ e l f c t) (const EL INFO ∗ , void ∗) ,
void ∗data) ;

{
EL INFO e l i n f o ;
TRAVERSE INFO t r a v e r s e i n f o ;
int n ;

e l i n f o . f i l l f l a g = (f l a g & FILL ANY) ;
e l i n f o . mesh = mesh ;

t r a v e r s e i n f o . mesh = mesh ;
t r a v e r s e i n f o . e l f c t = e l f c t ;
t r a v e r s e i n f o . f l a g = f l a g ;
t r a v e r s e i n f o . data = data ;

for (n = 0 ; n < mesh−>n macro e l ; n++) {
f i l l m a c r o i n f o (mesh−>macro e l s + n , &e l i n f o) ;
r e c u r s i v e t r a v e r s e (& e l i n f o , &t r a v e r s e i n f o) ;

}

114 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

return ;
}

3.2.17.3 Non–recursive mesh traversal routines

Some applications may profit from or actually require a non–recursive form of mesh traversal,
where the element routine gets pointers to visited elements, one after another. For exam-
ple, mesh refinement and coarsening routines (see Sections 3.4.1 and 3.4.2), the gltools and
GRAPE graphic interface (see Sections 4.11.2 and 4.11.3) are functions which use a non–
recursive access to the mesh elements.

Note that currently non-recursive level-based traversal indicated by the traversal flags
CALL EL LEVEL, CALL LEAF EL LEVEL or CALL MG LEVEL is not implemented.

The implementation of the non–recursive mesh traversal routines uses a stack to save the
tree path from a macro element to the current element. A data structure TRAVERSE STACK

holds such information. Before calling the non–recursive mesh traversal routines, such a stack
must be allocated (and passed to the traversal routines).

typedef struct t r a v e r s e s t a c k TRAVERSE STACK;

By allocating a new stack, it is even possible to recursively call the non–recursive mesh
traversal during another mesh traversal without destroying the stack which is already in use.
For the non–recursive mesh traversal no pointer to an element function el fct() has to be
provided, because all operations are done by the routines which call the traversal functions.
A mesh traversal is launched by each call to traverse first() which also initializes the
traverse stack. Advancing to the next element is done by the function traverse next(). The
following non–recursive routines are provided:

TRAVERSE STACK ∗ g e t t r a v e r s e s t a c k (void) ;
void f r e e t r a v e r s e s t a c k (TRAVERSE STACK ∗ s t a c i) ;
const EL INFO ∗ t r a v e r s e f i r s t (TRAVERSE STACK ∗ stack , MESH ∗ , int l e v e l ,

FLAGS f i l l f l a g s) ;
const EL INFO ∗ t r a v e r s e n ex t (TRAVERSE STACK ∗ stack , const EL INFO ∗ e l i n f o) ;
TRAVERSE FIRST(MESH ∗mesh , int l e v e l , FLAGS f i l l f l a g s) ;
TRAVERSENEXT() ;
const EL INFO ∗ s u b t r e e t r a v e r s e f i r s t (TRAVERSE STACK ∗ stack ,

const EL INFO ∗ l o c a l r o o t ,
int l e v e l , FLAGS f l a g s) ;

Descriptions:

get traverse stack() returns a pointer to a data structure TRAVERSE STACK.

free traverse stack(stack) frees the traverse stack stack previously accessed by
get traverse stack().

traverse first(stack, mesh, level, fill flag) launches the non–recursive mesh
traversal; the return value is a pointer to an el info structure of the first element to be
visited;

stack is a traverse stack previously accessed by get traverse stack();

mesh is a pointer to a mesh to be traversed, level specifies the element level if
CALL EL LEVEL or CALL LEAF EL LEVEL, or the multigrid level if CALL MG LEVEL is set;
otherwise this variable is ignored;

3.2. DATA STRUCTURES FOR THE HIERARCHICAL MESH 115

fill flag specifies the elements to be traversed and data to be filled into EL INFO is
selected, using bitwise OR of one CALL ... flag and several FILL ... flags;

traverse next(stack, el info) returns an EL INFO structure with data about the next
element of the mesh traversal or a pointer to NULL, if el info->el is the last element to
be visited;

information which elements are visited and which data has to be filled is accessible via the
traverse stack stack, initialized by traverse first(). After calling traverse next(), all
EL INFO information about previous elements is invalid, the structure may be overwritten
with new data.

TRAVERSE FIRST(mesh, level, fill flags), TRAVERSE NEXT() are convenience
macros which internally call the functions get traverse stack(), traverse first(),
traverse next() and free traverse stack(). TRAVERSE FIRST() defines a local
variable with name el info which holds the information about the current element.

subtree traverse first(stack, local root, level, flags) Like
traverse first(), but restricts the traversal to the sub-tree starting at local root.
Note that local root is saved on the traverse-stack, so it is possible to initiate a sub-tree
traversal from within the recursive mesh traverse() routines with this function, or from
within another non-recursive traversal loop, if that uses another TRAVERSE STACK.

Usually, the interface to a graphical environment uses the non–recursive mesh traversal,
compare the gltools (Section 4.11.2) and GRAPE interfaces (Section 4.11.3).

3.2.15 Example. The computation of the measure of the computational domain with the
non–recursive mesh traversal routines is shown in the following code segment.

REAL measure omega (MESH ∗mesh)
{

TRAVERSE STACK ∗ s tack = g e t t r a v e r s e s t a c k () ;
const EL INFO ∗ e l i n f o ;
FLAGS f i l l f l a g ;
REAL measure omega = 0 . 0 ;

e l i n f o = t r a v e r s e f i r s t (stack , mesh , −1, CALL LEAF EL |FILL COORDS) ;
while (e l i n f o)
{

measure omega += el vo lume (e l i n f o) ;
e l i n f o = t r av e r s e n ex t (stack , e l i n f o) ;

}
f r e e t r a v e r s e s t a c k (s tack) ;

return (measure omega) ;
}

3.2.16 Example. The same example as above, but implemented with the convenience macros
TRAVERSE FIRST(), TRAVERSE NEXT():

REAL measure omega (MESH ∗mesh)
{

REAL measure omega = 0 . 0 ;

TRAVERSE FIRST(mesh , −1, CALL LEAF EL |FILL COORDS) {
measure omega += el vo lume (e l i n f o) ;

116 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

} TRAVERSENEXT() ;
return measure omega ;

}

3.2.17.4 Neighbour traversal

Some applications, like the recursive refinement algorithm, need the possibility to jump from
one element to another element using neighbour relations. Such a traversal can not be per-
formed by the recursive traversal routines and thus needs the non–recursive mesh traversal.
The traversal routine for going from one element to a neighbour is

EL INFO ∗ t r ave r s e ne i ghbour (TRAVERSE STACK ∗ , EL INFO ∗ , int) ;

Description:

traverse neighbour(stack, el info, i) returns a pointer to an EL INFO structure
with information about the i-th neighbour opposite the i-th vertex of el info->el;

The function can be called at any time during the non–recursive mesh traversal after
initializing the first element by traverse first().

Calling traverse neighbour(), all EL INFO information about a previous element is in-
valid, and can only be regenerated by calling traverse neighbour() again with the old
OPP VERTEX value. If called at the boundary, when no adjacent element is available, then
the routine returns NULL; nevertheless, information from the old EL INFO may be overwrit-
ten and lost. To avoid such behavior, one should check for boundary vertices/edges/faces
(1d/2d/3d) before calling traverse neighbour().

3.2.17.5 Access to an element at world coordinates x

Some applications need the access to elements at a special location in world coordinates.
Examples are characteristic methods for convection problems, or the implementation of a
special right hand side like point evaluations or curve integrals. In a characteristic method,
the point x is usually given by x = x0 −V τ , where x0 is the starting point, V the advection
and τ the time step size. For points x0 close to the boundary it may happen that x does not
belong to the computational domain. In this situation it is convenient to know the point on the
domain’s boundary which lies on the line segment between the old point x0 and the new point
x. This point is uniquely determined by the scalar value s such that x0+s (x−x0) ∈ ∂Domain.

The following function accesses an element at world coordinates x:

int f i n d e l a t p t (MESH ∗ , const REAL D, EL INFO ∗∗ , FLAGS, REAL [NLAMBDA] ,
const MACROEL ∗ , const REAL D, REAL ∗) ;

Description:

find el at pt(mesh, x, el info p, fill flag, bary, start mel, x0, sp) fills
element information in an EL INFO structure and corresponding barycentric coordinates
of the element where the point x is located; the return value is true if x is inside the
domain, or false otherwise. Arguments of the function are:

mesh is the mesh to be traversed;

x are the world coordinates of the point (should be in the domain occupied by mesh);

3.3. ADMINISTRATION OF DEGREES OF FREEDOM 117

el info p is the return address for a pointer to the EL INFO for the element at x (or
when x is outside the domain but x0 was given, of the element containing the point
x0 + s (x− x0) ∈ ∂Domain);

fill flag are the flags which specify which information should be filled in the EL INFO

structure, coordinates are included in any case as they are needed by the routine itself;

bary pointer where to return the barycentric coordinates of x on *el info p->el (or,
when x is outside the domain but x0 was given, of the point x0 + s (x− x0) ∈ ∂Domain);

start mel an initial guess for the macro element containing x, or NULL;

x0 starting point of a characteristic method, see above, or NULL;

sp return address for the relative distance to domain boundary in a characteristic method
if x0 != nil, see above, or NULL.

The implementation of find el at pt() is based on the transformation from world to
local coordinates, available via the routine world to coord(), compare Section 4.1. At the
moment, find el at pt() works correctly only for domains with non–curved boundary. This
is due to the fact that the implementation first looks for the macro–element containing x and
then finds its path through the corresponding element tree based on the macro barycentric
coordinates. For domains with curved boundary, it is possible that in some cases a point inside
the domain is considered as external.

3.3 Administration of degrees of freedom

Degrees of freedom (DOFs) give connection between local and global finite element functions,
compare Sections 1.4.2 and 1.3. We want to be able to have several finite element spaces
and corresponding sets of DOFs at the same time. One set of DOFs may be shared between
different finite element spaces, when appropriate.

During adaptive refinement and coarsening of a triangulation, not only elements of the
mesh are created and deleted, but also degrees of freedom. The geometry is handled dynam-
ically in a hierarchical binary tree structure, using pointers from parent elements to their
children. For data corresponding to DOFs, which are usually involved with matrix-vector op-
erations, simpler storage and access methods are more efficient. For that reason every DOF
is realized just as an integer index, which can easily be used to access data from a vector or
to build matrices that operate on vectors of DOF data.

During coarsening of the mesh, DOFs are deleted. In general, the deleted DOF is not
the one which corresponds to the largest integer index. “Holes” with unused indices appear
in the total range of used indices. One of the main aspects of the DOF administration is
to keep track of all used and unused indices. One possibility to remove holes from vectors
is the compression of DOFs, i.e. the renumbering of all DOFs such that all unused indices
are shifted to the end of the index range, thus removing holes of unused indices. While the
global index corresponding to a DOF may change, the relative order of DOF indices remains
unchanged during compression.

During refinement of the mesh, new DOFs are added, and additional indices are needed.
If a deletion of DOFs created some unused indices before, some of these can be reused for
the new DOFs. Otherwise, the total range of used indices has to be enlarged, and the new
indices are taken from this new range. At the same time, all vectors and matrices which are
supposed to use these DOF indices have to be adjusted in size, too. This is the next major
aspect of the DOF administration. To be able to do this, lists of vectors and matrices are

118 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

included in the DOF_ADMIN data structure. Entries are added to or removed from these lists
via special subroutines, see Section 3.3.2.

In ALBERTA, every abstract DOF is realized as an integer index into vectors:

typedef signed int DOF;

These indices are administrated via the DOF_ADMIN data structure (see 3.3.1) and some sub-
routines. For each set of DOFs, one DOF_ADMIN structure is created. Degrees of freedom are
directly connected with the mesh. The MESH data structure contains a reference to all sets of
DOFs which are used on a mesh, compare Section 3.2.12. The FE SPACE structure describ-
ing a finite element space references the corresponding set of DOFs, compare Sections 1.4.2,
3.5.1. Several FE_SPACEs may share the same set of DOFs, thus reference the same DOF_ADMIN
structure. Usually, a DOF_ADMIN structure is created during definition of a finite element space
by get fe space(), see Section 3.6.2. For special applications, additional DOF sets, that are
not connected to any finite element space may also be defined (compare Section 3.6.2).

In Sections 3.3.5 and 3.3.6, we describe storage and access methods for global DOFs and
local DOFs on single mesh elements.

As already mentioned above, special data types for data vectors and matrices are defined,
see Sections 3.3.2 and 3.3.4. Several BLAS routines are available for such data, see Section
3.3.7.

3.3.1 The DOF ADMIN data structure

The following data structure holds all data about one set of DOFs. It includes information
about used and unused DOF indices, as well as linked lists of matrices and vectors of different
data types, that are automatically resized and resorted during mesh changes. Currently, only
an automatic enlargement of vectors is implemented, but no automatic shrinking. The actual
implementation of used and unused DOFs is not described here in detail — it uses only one
bit of storage for every integer index.

typedef struct dof admin DOF ADMIN;
typedef unsigned long DOF FREE UNIT;

/∗ Pos s i b l e va l u e s f o r DOF ADMIN−>f l a g s ∗/
define ADM FLAGS DFLT 0 /∗ noth ing s p e c i a l ∗/
define ADM PRESERVE COARSE DOFS (1 << 0) /∗ pre s e rve non− l e a f DOFs ∗/
define ADM PERIODIC (1 << 1) /∗ p e r i o d i c ADMIN on a

∗ pe r i o d i c mesh
∗/

#define ADMFLAGSMASK (ADM PRESERVE COARSE DOFS | ADM PERIODIC)

struct dof admin
{

MESH ∗mesh ;
const char ∗name ;

DOF FREE UNIT ∗ d o f f r e e ; /∗ f l a g b i t v e c t o r ∗/
unsigned int d o f f r e e s i z e ; /∗ f l a g b i t v e c t o r s i z e ∗/
unsigned int f i r s t h o l e ; /∗ index o f f i r s t non−zero d o f f r e e entry ∗/

FLAGS f l a g s ;

3.3. ADMINISTRATION OF DEGREES OF FREEDOM 119

DOF s i z e ; /∗ a l l o c a t e d s i z e o f d o f l i s t v e c t o r ∗/
DOF used count ; /∗ number o f used dof i n d i c e s ∗/
DOF ho le count ; /∗ number o f FREED dof i n d i c e s (NOT s i z e−used) ∗/
DOF s i z e u s e d ; /∗ > max . index o f a used entry ∗/

int n dof [N NODE TYPES] ; /∗ do f s from THIS dof admin ∗/
int n0 dof [N NODE TYPES] ; /∗ s t a r t o f THIS admin ’ s DOFs in the mesh . ∗/
/∗ ∗∗ ∗/
DOF INT VEC ∗ do f i n t v e c ; /∗ l i n k e d l i s t o f i n t v e c t o r s ∗/
DOF DOF VEC ∗ do f do f v e c ; /∗ l i n k e d l i s t o f do f v e c t o r s ∗/
DOF DOF VEC ∗ i n t d o f v e c ; /∗ l i n k e d l i s t o f do f v e c t o r s ∗/
DOF UCHARVEC ∗ do f uchar vec ; /∗ l i n k e d l i s t o f u char v e c t o r s ∗/
DOF SCHAR VEC ∗ do f s cha r v e c ; /∗ l i n k e d l i s t o f s char v e c t o r s ∗/
DOF REAL VEC ∗ d o f r e a l v e c ; /∗ l i n k e d l i s t o f r e a l v e c t o r s ∗/
DOF REAL D VEC ∗ d o f r e a l d v e c ; /∗ l i n k e d l i s t o f r e a l d v e c t o r s ∗/
DOF PTR VEC ∗ do f p t r v e c ; /∗ l i n k e d l i s t o f vo id ∗ v e c t o r s ∗/
DOFMATRIX ∗ dof matr ix ; /∗ l i n k e d l i s t o f matr ices ∗/

DBL LIST NODE compress hooks ; /∗ l i n k e d l i s t o f custom compress
∗ hand l e r s .
∗/

/∗ ∗∗
∗ po in t e r f o r admin i s t ra t i on ; don ’ t touch !
∗∗∗ ∗/

void ∗mem info ;
} ;

The entries yield following information:

mesh this is a dof admin on mesh;

name a string holding a textual description of this dof admin;

dof free, dof free size, first hole internally used variables for administration of
used and free DOF indices;

flags The bit-wise or of flags controlling the behavior of the DOF-administrator:

ADM PERIODIC The DOF-administrator identifies DOFs across periodic boundaries,
compare Section 3.10.

ADM PRESERVE COARSE DOFS Do not delete DOFs on the coarse-levels of the mesh dur-
ing mesh-refinement. This must be set to implement, e.g., multi-grid methods for higher
order elements. See also Section 3.4.1.1 andSection 3.4.1.

size current size of vectors in dof_*_vec and dof_matrix lists;

used count number of used dof indices;

hole count number of freed dof indices (not size−used_count);

size used ≥ largest used DOF index;

n dof numbers of degrees of freedom defined by this dof_admin structure; n dof[VERTEX],
n_dof[EDGE], n_dof[FACE], and n_dof[CENTER] are the DOF counts at vertices, edges,
faces (only in 3d) and element interiors, compare Section 3.3.6. These values are usually
set by get_fe_space() as a copy from bas_fcts->n_dof (compare Section 3.5.1).

120 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

n0 dof start indices n0_dof[VERTEX/CENTER/EDGE/FACE] of the first dofs defined by this
dof_admin in the element’s dof[VERTEX/CENTER/EDGE/FACE] vectors. These are the sums
of degrees of freedom defined by previous dof_admin structures that were already added
to the same mesh; n0_dof[VERTEX/CENTER/EDGE/FACE], are all set automatically by
get_fe_space(). See Section 3.3.6 for details and usage;

dof * vec, dof matrix pointers to linked lists of DOF_*_VEC, DOF_MATRIX structures
which are associated with the DOFs administrated by this DOF_ADMIN and whose size
is automatically adjusted during mesh refinements, compare Section 3.3.2;

compress hooks Root to a doubly linked list of custom handlers executed when
dof compress() is called. An application may install arbitrarily many custom compress-
handlers via add dof compress hook(), and delete them via del dof compress hook().
See further below.

mem info used internally for memory management.

Deletion of DOFs occurs not only when the mesh is (locally) coarsened, but also during re-
finement of a mesh with higher order elements. This is due to the fact, that during local
interpolation operations, both coarse-grid and fine-grid DOFs must be present, so deletion of
coarse-grid DOFs that are no longer used is done after allocation of new fine-grid DOFs. Usu-
ally, all operations concerning DOFs are done automatically by routines doing mesh adaption
or handling finite element spaces. The removal of “holes” in the range of used DOF indices is
not done automatically. It is actually not needed to be done, but may speed up the access in
loops over global DOFs; When there are no holes, then a simple for-loop can be used without
checking for each index, whether it is currently in use or not. The FOR_ALL_DOFS()-macro
described in Section 3.3.5 checks this case. Hole removal is done for all DOF_ADMINs of a mesh
by the function

void dof compress (MESH ∗) ;

typedef struct dof comp hook DOFCOMPHOOK;
struct dof comp hook
{

DBL LIST NODE node ; /∗ our l i n k to the compress hooks l i s t ∗/
void (∗ handler) (DOF f i r s t , DOF la s t , const DOF ∗new dof , void ∗app data) ;
void ∗ app l i c a t i on da t a ;

} ;

void add dof compress hook (const DOF ADMIN ∗admin , DOFCOMPHOOK ∗hook) ;
void de l do f compres s hook (DOFCOMPHOOK ∗hook) ;

Description:

dof compress(mesh) remove all holes of unused DOF indices by compressing the used
range of indices (it does not resize the vectors). While the global index corresponding to a
DOF may change, the relative order of DOF indices remains unchanged during compres-
sion.

This routine is usually called after a mesh adaption involving higher order elements or
coarsening.

add dof compress hook(admin, hook), del dof compress hook(hook) Add to or
delete from the list of application defined DOF-compress functions. dof compress() will

3.3. ADMINISTRATION OF DEGREES OF FREEDOM 121

call all installed handlers in turn. The calling convention for the handler(first, last,

new dof[], app data) component in the DOF COMP HOOK-structure are:

first, last Bounds for the index range where something has changed. The application
may assume that all DOFs outside the index range first,...,last have not been
renumbered.

new dof[] The index permutation, new dof[old dof] is the new index assigned to the
DOF with the old number old dof.

app data This is the structure-component application data stored in the
DOF COMP HOOK-structure.

Usually, the range of DOF indices is enlarged in fixed increments given by the symbolic
constant SIZE_INCREMENT, defined in dof_admin.c. If an estimate of the finally needed num-
ber of DOFs is available, then a direct enlargement of the DOF range to that number can be
forced by calling:

void e n l a r g e d o f l i s t s (DOF ADMIN ∗ , int) ;

Description:

enlarge dof lists(admin, minsize) enlarges the range of the indices of admin to
minsize.

3.3.2 Vectors indexed by DOFs: The DOF * VEC data structures

The DOFs described above are just integers that can be used as indices into vectors and
matrices. During refinement and coarsening of the mesh, the number of used DOFs, the
meaning of one integer index, and even the total range of DOFs change. To be able to handle
these changes automatically for all vectors, which are indexed by the DOFs, special data
structures are used which contain such vector data. Lists of these structures are kept in
the DOF_ADMIN structure, so that all vectors in the lists can be resized together with the
range of DOFs. During refinement and coarsening of elements, values can be interpolated
automatically to new DOFs, and restricted from old DOFs, see Section 3.3.3.

ALBERTA includes data types for vectors of type REAL, REAL_D, S_CHAR, U_CHAR,
int, and void *. Below, the DOF_REAL_VEC, structure is described in detail. Structures
DOF_REAL_D_VEC, DOF_SCHAR_VEC, DOF_UCHAR_VEC, DOF_PTR_VEC, and DOF_INT_VEC are de-
clared similarly, the only difference between them is the type of the structure entry vec. The
exception is the DOF_REAL_VEC_D type, which is used to model vector-valued finite element
functions where the underlying basis functions are either vector- or scalar-valued.

Although the administration of such vectors is done completely by the DOF administration
which needs DOF_ADMIN data, the following data structures include a reference to a FE_SPACE,
which includes additionally the MESH and BAS_FCTS. In this way, complete information about
a finite element function given by a REAL- and REAL_D-valued vector is directly accessible.

typedef struct d o f r e a l v e c DOF REAL VEC;

struct d o f r e a l v e c
{

DOF REAL VEC ∗next ;
const FE SPACE ∗ f e s p a c e ;

122 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

const char ∗name ;

DOF s i z e ;
int r e s e rved ; /∗ s t r i d e f o r DOF REAL VEC D ∗/

REAL ∗vec ; /∗ d i f f e r e n t type in DOF INT VEC, . . . ∗/

void (∗ r e f i n e i n t e r p o l) (DOF REAL VEC ∗ , RC LIST EL ∗ , int n) ;
void (∗ c o a r s e r e s t r i c t) (DOF REAL VEC ∗ , RC LIST EL ∗ , int n) ;

DBL LIST NODE chain ; /∗ chain l i n k f o r d i r e c t sum of fe−spaces ∗/
const DOF REAL VEC ∗unchained ;

EL REAL VEC D ∗ v e c l o c ;

void ∗mem info ;
} ;

The members yield following information:

next linked list of DOF_REAL_VEC structures in fe_space->admin;

fe space FE SPACE structure with information about DOFs and basis functions;

name string with a textual description of the vector, or NULL;

size current size of vec;

stride the stride of vec. In the context of DIM OF WORLD-valued problems the underlying
basis function may or may not be vector-valued for themselves. If they are scalar, stride
is set to DIM OF WORLD, if the basis functions are vector-valued then stride is set to 1.

reserved A place holder in all DOF XXX VEC-structures to make sure that it is possible to
cast a DOF REAL VEC D to a DOF REAL VEC or a DOF REAL D VEC. Note that for DOF REAL VEC

structures reserved will internally be tied to 1, while it is tied to DIM OF WORLD for
DOF REAL D VEC structures.

vec pointer to REAL vector of size size;

refine interpol, coarse restrict interpolation and restriction routines, see Section
3.3.3. For REAL and REAL_D vectors, these usually point to the corresponding routines
from fe_space->bas_fcts, compare Section 3.5.1. While we distinguish there between
restriction and interpolation during coarsening, only one such operation is appropriate for
a given vector, as it either represents a finite element function or values of a functional
applied to basis functions.

chain If the underlying finite element space has the structure of a direct sum, then this
list-node component is the link to the individual components of that direct sum. See
Section 3.7.

unchained The name is misleading, as explained in Section 3.7.5, the reader should, how-
ever, have a look at Section 3.7 first.

vec loc an element-vector. This element vector is used if the corresponding
BAS FCTS.get real vec() hook is called with result == NULL.

mem info private pointer for administration, must not be changed.

3.3. ADMINISTRATION OF DEGREES OF FREEDOM 123

All DOF vectors linked in the corresponding dof_admin->dof_*_vec list are automatically
adjusted in size and reordered during mesh changes. Values are transformed during local mesh
changes, if the refine_interpol and/or coarse_restrict entries are not NULL, compare
Section 3.3.3.

Integer DOF vectors can be used in several ways: They may either hold an int

value for each DOF, or reference a DOF value for each DOF. In both cases, the vectors
should be automatically resized and rearranged during mesh changes. Additionally, values
should be automatically changed in the second case. Such vectors are referenced in the
dof_admin->dof_int_vec and dof_admin->dof_dof_vec lists.

On the other hand, DOF_INT_VECs provide a way to implement for special applications a
vector of DOF values, which is not indexed by DOFs. For such vectors, only the values are
automatically changed during mesh changes, but not the size or order. The user program is
responsible for allocating memory for the vec vector. Such DOF vectors are referenced in the
dof_admin->int_dof_vec list.

A macro GET DOF VEC is defined to simplify the secure access to a DOF * VEC’s data. It
assigns dof_vec->vec to ptr, if both dof_vec and dof_vec->vec are not NULL, and generates
an error in other cases:

#define GET DOF VEC(ptr , do f vec) TEST EXIT((do f vec)&&(ptr =
(do f vec)−>vec)) \
(”%s == n i l ” , (do f vec) ? (do f vec)−>name : #do f vec)

The following subroutines are provided to handle DOF vectors. Allocation of a new
DOF * VEC and freeing of a DOF * VEC (together with its vec) are done with:

DOF REAL VEC ∗ g e t d o f r e a l v e c (const char ∗name , const FE SPACE ∗ f e sp) ;
DOF REAL D VEC ∗ g e t d o f r e a l d v e c (const char ∗name , const FE SPACE ∗ f e sp) ;
DOF REAL VEC D ∗ g e t d o f r e a l v e c d (const char ∗name , const FE SPACE ∗ f e sp) ;
DOF INT VEC ∗ g e t d o f i n t v e c (const char ∗name , const FE SPACE ∗ f e sp) ;
DOF INT VEC ∗ g e t d o f d o f v e c (const char ∗name , const FE SPACE ∗ f e sp) ;
DOF INT VEC ∗ g e t i n t d o f v e c (const char ∗name , const FE SPACE ∗ f e sp) ;
DOF SCHAR VEC ∗ g e t d o f s c h a r v e c (const char ∗name , const FE SPACE ∗ f e sp) ;
DOF UCHARVEC ∗ g e t do f u cha r v e c (const char ∗name , const FE SPACE ∗ f e sp) ;
DOF PTR VEC ∗ g e t d o f p t r v e c (const char ∗name , const FE SPACE ∗ f e sp) ;
void f r e e d o f r e a l v e c (DOF REAL VEC ∗vec) ;
void f r e e d o f r e a l d v e c (DOF REAL D VEC ∗vec) ;
void f r e e d o f r e a l v e c d (DOF REAL VEC D ∗vec) ;
void f r e e d o f i n t v e c (DOF INT VEC ∗vec) ;
void f r e e d o f d o f v e c (DOF INT VEC ∗vec) ;
void f r e e i n t d o f v e c (DOF INT VEC ∗vec) ;
void f r e e d o f s c h a r v e c (DOF SCHAR VEC ∗vec) ;
void f r e e d o f u c h a r v e c (DOF UCHARVEC ∗vec) ;
void f r e e d o f p t r v e c (DOF PTR VEC ∗vec) ;

By specifying a finite element space for a DOF_*_VEC, the corresponding set of DOFs is
implicitly specified by fe_space->admin. The DOF * VEC is linked into DOF_ADMIN’s appro-
priate dof_*_vec list for automatic handling during mesh changes. The DOF * VEC structure
entries next and admin are set during creation and must not be changed otherwise! The size
of the dof_vec->vec vector is automatically adjusted to the range of DOF indices controlled
by fe_space->admin. The name argument is duplicated calling strdup(3).

If no finite element space is specified, then the vector will not be controlled by any
DOF_ADMIN. In this case the user is responsible for setting size and allocating memory for

124 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

vec. Given these entries ALBERTA will free such vectors correctly using free_dof_*_vec.
Allocating a DOF REAL VEC D without an underlying finite element space is not supported.

3.3.1 Compatibility Note. In contrast to previous ALBERTA versions the
get_dof_..._vec() routines now make a copy of the finite element space, which is in
turn deallocated upon the call to free_dof_..._vec().

There is a special list for each type of DOF vectors in the DOF_ADMIN structure. All
DOF_REAL_VECs, DOF_REAL_D_VECs, DOF_UCHAR_VECs, DOF_SCHAR_VECs, and DOF_PTR_VECs
are added to the respective lists, whereas a DOF_INT_VEC may be added to one of three
lists in DOF_ADMIN: dof_int_vec, dof_dof_vec, and int_dof_vec. The difference between
these three lists is their handling during a resize or compress of the DOF range. In contrast
to all other cases, for a vector in admin’s int_dof_vec list, the size is NOT changed with
admin->size. But the values vec[i], i = 1, . . . , size are adjusted when admin is compressed,
for example. For vectors in the dof_dof_vec list, both adjustments in size and adjustment
of values is done.

The get_*_vec() routines automatically allocate enough memory for the data vector vec
as indicated by fe_space->admin->size. Pointers to the routines refine_interpol and
coarse_restrict are set to NULL. They must be set explicitly after the call to get_*_vec()

for an interpolation during refinement and/or interpolation/restriction during coarsening. The
free_*_vec() routines remove the vector from a vec->fe_space->admin->dof_*_vec list
and free the memory used by vec->vec and *vec.

A printed output of DOF vector is produced by the routines:

void p r i n t d o f i n t v e c (const DOF INT VEC ∗vec) ;
void p r i n t d o f r e a l v e c (const DOF REAL VEC ∗vec) ;
void p r i n t d o f r e a l d v e c (const DOF REAL D VEC ∗vec) ;
void p r i n t d o f r e a l v e c dow (const DOF REAL VEC D ∗vec) ;
void p r i n t d o f s c h a r v e c (const DOF SCHAR VEC ∗vec) ;
void p r i n t do f u cha r v e c (const DOF UCHARVEC ∗vec) ;
void p r i n t d o f p t r v e c (const DOF PTR VEC ∗vec) ;

Description:

print dof * vec(dof vec) prints the elements of the DOF vector dof vec together with
its name to the message stream.

3.3.3 Interpolation and restriction of DOF vectors during mesh adaptation

During mesh refinement and coarsening, new DOFs are produced, or old ones are deleted. In
many cases, information stored in DOF_*_VECs has to be adjusted to the new distribution of
DOFs. To do this automatically during the refinement and coarsening process, each DOF_*_VEC

can provide pointers to subroutines refine_interpol and coarse_restrict, that imple-
ments these operations on data. During refinement and coarsening of a mesh, these routines
are called for all DOF_*_VECs with non-NULL pointers in all DOF_ADMINs in mesh->dof_admin.

Before doing the mesh operations, it is checked whether any automatic interpolations
or restrictions during refinement or coarsening are requested. If yes, then the corresponding
operations will be performed during local mesh changes.

As described in Sections 3.4.1 and 3.4.2, interpolation resp. restriction of values is done
during the mesh refinement and coarsening locally on every refined resp. coarsened patch of

3.3. ADMINISTRATION OF DEGREES OF FREEDOM 125

elements. Which of the local DOFs are created new, and which ones are kept from paren-
t/children elements, is described in these other sections, too. All necessary interpolations or
restrictions are done by looping through all DOF_ADMINs in mesh and calling the DOF_*_VEC’s
routines

struct d o f r e a l v e c
{

. . .

void (∗ r e f i n e i n t e r p o l) (DOF REAL VEC ∗ , RC LIST EL ∗ , int) ;
void (∗ c o a r s e r e s t r i c t) (DOF REAL VEC ∗ , RC LIST EL ∗ , int) ;

}

Those implement interpolation and restriction on one patch of mesh elements for this
DOF_*_VEC. Only these have to know about the actual meaning of the DOFs. Here,
RC_LIST_EL is a vector holding pointers to all n parent elements which build the patch (and
thus have a common refinement edge). Usually, the interpolation and restriction routines
for REAL or REAL D vectors are defined in the corresponding dof_vec->fe_space->bas_fcts

structures. Interpolation or restriction of non-real values (int or CHAR) is usually application
dependent and is not provided in the BAS FCTS structure.

Examples of these routines are shown in Sections 3.5.4.1-3.5.4.4.

3.3.4 The DOF MATRIX data structure

3.3.2 Compatibility Note. Previous versions of ALBERTA defined extra-types for vector-
valued problems, like DOF DOWB MATRIX, DOWB OPERATOR INFO etc. The “DOWB” (“DimOf-
WorldBlocks”) variants, however, already incorporated all the functionality of the ordinary
scalar-only versions. Therefore the scalar-ony versions of most data-structures have been
abandoned and were replaced by the “DOWB” variants, which in turn were renamed to use
the scalar-only names. For example, in the current implementation a DOF MATRIX is in fact
what older versions called a DOF DOWB MATRIX; and implements the scalar-only case as well
as the block-matrix case.

Not only vectors indexed by DOFs are available in ALBERTA, but also matrices which
operate on these DOF_*_VECs. For finite element calculations, these matrices are usually sparse,
and should be stored in a way that reflects this sparseness. We use a storage method which
is similar to the one used in [18]. This is further explained below on page 127. A DOF_MATRIX

structure is usually filled by local operations on single elements, using the update_matrix()

routine, compare Section 4.7.1, which automatically generates space for new matrix entries
by adding new MATRIX_ROWs, if needed. In view of problems which involve vector-fields of size
DIM OF WORLD ALBERTA supports block-matrices with entries of type REAL D and REAL DD (as
well, of course, as matrices with scalar entries).

Similar to DOF vectors, the DOF_MATRIX structure contains pointers to routines for in-
terpolation and restriction during mesh refinement and coarsening. Providing such routines,
an existing DOF_MATRIX can be updated by local operations, and a complete recalculation is
not necessary. For DOF vectors describing finite element functions, such an interpolation can
be necessary even from a mathematical point of view. For matrices, this is more mandatory.
For implicit discretizations, where a (non-) linear system involving the DOF_MATRIX has to be
solved, this solution is usually much more expensive than a complete new matrix recalcula-
tion. Thus, local matrix updates will not save much time. But for explicit discretizations or for

126 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

expensive matrices, such a local matrix update may save a noticeable amount of computing
time.

Type definitions

typedef struct dof matr ix DOFMATRIX
struct dof matr ix
{

DOFMATRIX ∗next ;
const FE SPACE ∗ r ow f e spac e ;
const FE SPACE ∗ c o l f e s p a c e ;
const char ∗name ;

MATRIXROW ∗∗matrix row ; /∗ l i s t s o f matrix e n t r i e s ∗/
DOF s i z e ; /∗ s i z e o f v e c t o r matrix row ∗/
MATENTTYPE type ; /∗ t ype o f matrix e n t r i e s . ∗/
s i z e t n e n t r i e s ; /∗ t o t a l number o f e n t r i e s in the matrix ∗/

BNDRY FLAGS d i r i c h l e t bnd r y ; /∗ b i t−mask f o r D i r i c h l e t b . c . ∗/

void (∗ r e f i n e i n t e r p o l) (DOFMATRIX ∗ , RC LIST EL ∗ , int n) ;
void (∗ c o a r s e r e s t r i c t) (DOFMATRIX ∗ , RC LIST EL ∗ , int n) ;

DBL LIST NODE row chain ;
DBL LIST NODE co l c ha i n ;
const DOFMATRIX ∗unchained ;

void ∗mem info ;
} ;

Description of the individual structure components:

next linked list of DOF_MATRIX structures in row_fe_space->admin;

row fe space FE_SPACE structure with information about corresponding row DOFs and
basis functions;

col fe space FE_SPACE structure with information about corresponding column DOFs
and basis functions;

name a textual description for the matrix, or NULL;

matrix row vector of pointers to MATRIX_ROWs, one for each row, see below;

size current size of the matrix_row vector.

type the type of the element entries, one of MATENT_REAL, MATENT_REAL_D or
MATENT_REAL_DD;

dirichlet bndry a bit-mask describing which parts of the boundary should be treated as
Dirichlet-boundary by update matrix();

n entries the total number of entries currently stored in the matrix, updated by
add_element_matrix() and reset to 0 by clear_dof_matrix();

refine interpol, coarse restrict interpolation and restriction routines as for
DOF_*_VECs. When implementing interpolation or restriction routines for matrices it is
up to the user to remove matrix entries corresponding to obsolete DOFs. This function-
ality is not implemented in ALBERTA at the moment since it would involve an expensive
search over all matrix entries after mesh changes.

3.3. ADMINISTRATION OF DEGREES OF FREEDOM 127

row chain, col chain List pointers, in the context of direct sums of finite element
spaces a DOF_MATRIX is actually a block-matrix, where the individual blocks are again
DOF_MATRIXes, each acting on a summand of the direct sum of finite element spaces. See
section 3.7.

unchained Normally only a pointer to NULL, dof_matrix_sub_chain() uses this pointer
to form a matrix which acts only on a part of a direct sum of finite element spaces. See
Section 3.7.

mem info private pointer for administration, should not be changed.

Every row of a matrix is realized as a linked list of MATRIX_ROW structures, each holding
a maximum of ROW_LENGTH matrix entries from that row. Each entry consists of a column
DOF index and the corresponding REAL matrix entry. Unused entries in a MATRIX_ROW are
marked with a negative column index. The ROW_LENGTH is a symbolic preprocessor constant
defined in alberta.h. For d = 2 meshes built from triangles, the refinement by bisection
generates usually at most eight elements meeting at a common vertex, more elements may
meet only at macro vertices. Thus, for piecewise linear (Lagrange) elements on triangles, up
to nine entries are non-zero in most rows of a mass or stiffness matrix. This motivates the
choice ROW_LENGTH = 9. For higher order elements or tetrahedra, there are much more non-
zero entries in each row. Thus, a split of rows into short MATRIX_ROW parts hopefully should
not produce too much overhead.

typedef struct matrix row MATRIXROW;
typedef struct matr ix row rea l MATRIXROWREAL;
typedef struct matr ix row rea l d MATRIX ROWREAL D;
typedef struct matr ix row rea l dd MATRIX ROWREALDD;

define ROWLENGTH 9

/∗ The ac t ua l s i z e o f t h i s s t r u c t u r e i s determined by the type o f the
∗ matrix e n t r i e s . The co r r e c t l e n g t h i s a l l o c a t e d in
∗ ge t mat r i x row () .
∗/

define SIZEOF MATRIX ROW(type) \
(s izeof (MATRIXROW) − s izeof (REAL DD) + ROWLENGTH∗ s izeof (type))

struct matrix row
{

MATRIXROW ∗next ;
MATENTTYPE type ;
DOF co l [ROWLENGTH] ; /∗ column ind i c e s ∗/
union {

REAL r e a l [1] ;
REAL D r e a l d [1] ;
REAL DD rea l dd [1] ;

} entry ;
} ;

struct matr ix row rea l
{

MATRIXROWREAL ∗next ;
MATENTTYPE type ;
DOF co l [ROWLENGTH] ; /∗ column ind i c e s ∗/
REAL entry [ROWLENGTH] ; /∗ matrix e n t r i e s ∗/
} ;

128 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

struct matr ix row rea l d
{

MATRIX ROWREAL D ∗next ;
MATENTTYPE type ;
DOF co l [ROWLENGTH] ; /∗ column ind i c e s ∗/
REAL D entry [ROWLENGTH] ; /∗ matrix e n t r i e s ∗/

} ;

struct matr ix row rea l dd
{

MATRIX ROWREALDD ∗next ;
MATENTTYPE type ;
DOF co l [ROWLENGTH] ; /∗ column ind i c e s ∗/
REAL DD entry [ROWLENGTH] ; /∗ matrix e n t r i e s ∗/
} ;

define UNUSEDENTRY −1
define NO MORE ENTRIES −2
define ENTRY USED(co l) ((c o l) >= 0)
define ENTRY NOT USED(co l) ((c o l) < 0)

Descriptions for the individual macros and structure components:

ROW LENGTH the maximum number of data-times in one list element,

MATRIX ROW a super-type which combines all MATRIX_ROW data-types for all block-types.
Components and their meaning:

next list node pointer

type one of MATENT_{REAL, REAL_D, REAL_DD}, specifying the block-type of the data
entries

col the global DOF-indices for the entries stored in this row-component. Entries
can be flagged as unused by setting MATRIX_ROW.col[idx] to UNUSED_ENTRY, if
MATRIX_ROW.col[idx] == NO_MORE_ENTRIES, then this signals that the remainder of
this row component does not contain any more data. The other values following such
an entry are undefined.

entry A union for the actual data entries, with sub-components for each block-type.
Note that get_matrix_row() actually allocates enough space to hold ROW_LENGTH many
entries in each row. The actual size of the allocated matrix-row structure can be de-
termined by calling the macro SIZEOF_MATIX_ROW(type) with type REAL, REAL_D or
REAL_DD.

SIZEOF MATRIX ROW(type) See above.

MATRIX ROW {REAL, REAL D, REAL DD} Data-types for each individual block-type. They
differ from the super-type MATRIX_ROW only in replacing the entry union by a simple field
which holds ROW_LENGTH many entries of the given matrix-entry type.

3.3. ADMINISTRATION OF DEGREES OF FREEDOM 129

Support routines The following routines are available for DOF-matrices:

DOFMATRIX ∗ ge t do f mat r i x (const char ∗name ,
const FE SPACE ∗ row fe space ,
const FE SPACE ∗ c o l f e s p a c e) ;

void f r e e d o f ma t r i x (DOFMATRIX ∗matrix) ;
void c l e a r d o f ma t r i x (DOFMATRIX ∗matrix) ;
void p r i n t do f ma t r i x (const DOFMATRIX ∗matrix) ;
MATRIXROW ∗ get matr ix row (const FE SPACE ∗ f e space , MATENTTYPE type) ;
FOR ALL MAT COLS(type , matrow , what)

Description:

get dof matrix(name, row fe space, col fe space) allocates a new DOF_MATRIX

structure operating between the finite element spaces col_fe_space and row_fe_space.
If no col_fe_space is given, then col_fe_space is set to row_fe_space. name is a tex-
tual description for the name of the new matrix, it is duplicated using strdup(3). The
new matrix is automatically linked into the row_fe_space->admin->dof_matrix list. A
matrix_row vector of length row_fe_space->admin->size is allocated and all entries are
set to NULL.

free dof matrix(matrix) frees the DOF matrix matrix previously accessed by the func-
tion get dof matrix(). First, all MATRIX_ROWs in matrix->matrix_row are freed, then
matrix->matrix_row, and finally the structure *matrix.

clear dof matrix(matrix) clears all entries of the DOF matrix matrix. This is done by
removing all entries from the DOF matrix, i. e. all MATRIX_ROWs in matrix->matrix_row

are freed and all entries in matrix->matrix_row are set to NULL.

print dof matrix(matrix) prints the elements of the DOF matrix matrix together with
its name to the message stream.

get matrix row(fe space, type) Allocate a new MATRIX_ROW for a DOF_MATRIX with
row_fe_space == fe_space. The second argument specifies the type of the entries and is
one of REAL, REAL_D or REAL_DD.

FOR ALL MAT COLS(type, matrow, what) Because the MATRIX_ROW-structure is some-
what complicated this defines an “iterator” over all entries of a matrix-row and hides the
dirty details from the application program. The meaning of the arguments is like follows:

type One of REAL, REAL_D or REAL_DD. type must be the same as DOF_MATRIX.type

respectively MATRIX_ROW.type, or the results will be unpredictable.

matrow A pointer to the matrix-row to iterator over. row may be NULL.

what A block of statements to execute for each entry of the matrix-row. When what is
executed the following variables are pre-defined to give access to the data of the current
entry:

col idx The index into MATRIX_ROW.data.

col dof The global DOF-index of the current entry.

Example 3.3.4 contains two examples for the iteration over the columns of MATRIX_ROWs,
one using the FOR_ALL_MAT_COLS macro, and another one with yields the same results
without the use of this macro.

130 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

3.3.5 Access to global DOFs: Macros for iterations using DOF indices

For loops over all used (or free) DOFs, the following macros are defined:

FOR ALL DOFS(const DOF ADMIN ∗ , todo) ;
FOR ALL FREE DOFS(const DOF ADMIN ∗ , todo) ;

Description:

FOR ALL DOFS(admin, todo) loops over all used DOFs of admin; todo is a list of C-
statements which are to be executed for every used DOF index. During todo, the local
variable int dof holds the current index of the used entry; it must not be altered by todo;

FOR ALL FREE DOFS(admin, todo) loops over all unused DOFs of admin; todo is a list
of C-statements which are to be executed for every unused DOF index. During todo, the
local variable int dof holds the current index of the unused entry; it must not be altered
by todo.

In the context of direct sums of finite element spaces, there are other macros called
FOREACH DOF(fe space,...) which wrap FOR ALL[FREE] DOFS() into an outer loop over
the components of the direct sum, see Section 3.7.2. Two examples illustrate the usage of the
FOR ALL[FREE] DOFS():

3.3.3 Example (Initialization of vectors). This BLAS-1 routine dset() initializes all ele-
ments of a vector with a given value; for DOF REAL VECs we have to set this value for all used
DOFs. All used entries of the DOF REAL VEC *drv are set to a value alpha by:

FOR ALL DOFS(drv−>f e space−>admin , drv−>vec [dof] = alpha) ;

The BLAS-1 routine dof set() is written this way, compare Section 3.3.7.

3.3.4 Example (Matrix-vector multiplication). As a more complex example we give the main
loop from an implementation of the matrix-vector product in dof mv(), compare Sections
3.3.4 and 3.3.7, specifically the explanations for FOR_ALL_MAT_COLS() on page 129:

FOR ALL DOFS(admin , {
REAL sum = 0 . 0 ;
FOR ALL MAT COLS(REAL, a−>matrix row [dof] , {

sum += row−>entry [c o l i d x] ∗ xvec [c o l d o f] ;
}) ;

yvec [dof] = sum ;
}) ;

Without the use of the FOR_ALL_MAT_COLS()-macro, the same example looks like follows:

FOR ALL DOFS(admin , {
REAL sum = 0 . 0 ;
MATRIXROWREAL ∗row ;
for (row = (MATRIXROWREAL ∗) a−>matrix row [dof] ;

row != NULL;
row = row−>next) {

for (j = 0 ; j < ROWLENGTH; j++) {
j c o l = row−>c o l [j] ;
i f (ENTRY USED(j c o l)) {

sum += row−>entry [j] ∗ xvec [j c o l] ;
} else i f (j c o l == NO MORE ENTRIES) {

3.3. ADMINISTRATION OF DEGREES OF FREEDOM 131

break ;
}

}
}
yvec [dof] = sum ;

}) ;

3.3.6 Access to local DOFs on elements

As shown by the examples in Figure 1.17, the DOF administration is able to handle different
sets of DOFs, defined by different DOF_ADMIN structures, at the same time. All operations
with finite element functions, like evaluation or integration, are done locally on the level of
single elements. Thus, access on element level to DOFs from a single DOF_ADMIN has to be
provided in a way that is independent from all other finite element spaces which might be
defined on the mesh.

As described in Section 3.2.6, the EL data structure holds a vector of pointers to DOF
vectors, that contain data for all DOFs on the element from all DOF_ADMINs:

struct e l
{

. . .
DOF ∗∗ dof ;
. . .

} ;

The lengths of these vectors are computed by collecting data from all DOF_ADMINs associated
with the mesh; details are given below. Information about all DOFs associated with a mesh
is collected and accessible in the MESH data structure (compare Section 3.2.12):

struct mesh
{

. . .
DOF ADMIN ∗∗dof admin ;
int n dof admin ;

int n d o f e l ;
int n dof [N NODE TYPES] ;
int n node e l ;
int node [N NODE TYPES] ;
. . .

} ;

The meaning of these entries is:

dof admin a vector of pointers to all DOF_ADMIN structures for the mesh;

n dof admin number of all DOF_ADMIN structures for the mesh;

n dof el total number of DOFs on one element from all DOF_ADMIN structures;

n dof total number of VERTEX, CENTER, EDGE, and FACE DOFs from all DOF_ADMIN struc-
tures;

n node el number of used nodes on each element (vertices, center, edges, and faces), this
gives the dimension of el->dof;

132 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

node The entry node[i], i ∈ {VERTEX, CENTER, EDGE, FACE} gives the index of the first
i-node in el->dof.

All these variables must not be changed by a user routine – they are set during calls of the
subroutine get_fe_space() (compare Section 3.6.2).

We denote the different locations of DOFs on an element by nodes. As there are DOFs
connected with different-dimensional (sub-) simplices, there are vertex, center, edge, and face
nodes. Using the macros from Section 3.2.1, there may be N_VERTICES(dim) vertex nodes,
N_EDGES(dim) edge nodes (2d or 3d), N_FACES(dim) face nodes (in 3d), and one center node.
Depending on the finite element spaces in use, not all possible nodes must be associated with
DOFs, but some nodes may be associated with DOFs from several different finite element
spaces (and several DOF_ADMINs). In order to minimize the memory usage for pointers and
DOF vectors, the elements store data only for such nodes where DOFs are used. Each allo-
cation of a finite element space forces ALBERTA to adjust this information. For this reason
it is advisable to allocate finite element spaces before refining a mesh. The total number of
nodes is stored in mesh->n_node_el, which will be the length of the el->dof vector for all
elements.

In order to access the DOFs for one node, mesh->node[l] contains the index of the first
l-node in el->dof, where l is either VERTEX, CENTER, EDGE, or FACE (compare Figure 3.3).
So, a pointer to DOFs from the i-th edge node is stored at el->dof[mesh->node[EDGE]+i]
(0 ≤ i < N EDGES), and these DOFs (and the vector holding them) are shared by all elements
meeting at this edge.

2

0 1

2

0 1

34

5

2

0 1

34

5

6

2

0 1

3

Figure 3.3: DOF vector indices in el->dof for DOFs at vertices, vertices and edges, vertices,
edges and center, and vertices and center (in 2d). Corresponding mesh->node values are
{0,0,0,0}, {0,0,3,0}, {0,6,3,0}, and {0,3,0,0}. Note that the indices increase according to the
sequence VERTEX/EDGE/FACE/CENTER for historical reasons.

The total number of DOFs at an l-node is available in mesh->n_dof[l]. This number
is larger than zero, iff the node is in use. All DOFs from different DOF_ADMINs are stored
together in one vector. In order to access DOFs from a given finite element space (and its
associated DOF_ADMIN), the start index for DOFs from this DOF_ADMIN must be known. This
start index is generated during mesh initialization and stored in admin->n0_dof[l]. The
number of DOFs from this DOF_ADMIN is given in admin->n_dof[l]. Thus, a loop over all
DOFs associated with the i-th edge node can be done by:

DOF ∗ do f p t r = el−>dof [mesh−>node [EDGE]+ i] + admin−>n0 dof [EDGE] ;
for (j = 0 ; j < admin−>n dof [EDGE] ; j++)
{

dof = do f p t r [j] ;
. . .

}

3.3. ADMINISTRATION OF DEGREES OF FREEDOM 133

In order to simplify the access to DOFs for a finite element space on an element, the
BAS FCTS structure provides a routine

const DOF ∗(∗ g e t d o f i n d i c e s) (const EL ∗ , const DOF ADMIN ∗ , DOF ∗) ;

which returns a vector containing all global DOFs associated with basis functions, in the
correct order: the k-th DOF is associated with the k-th local basis function (compare Sec-
tion 3.5.1).

3.3.7 BLAS routines for DOF vectors and matrices

Several basic linear algebra subroutines (BLAS [14, 6]) are implemented for DOF vectors and
DOF matrices, see Table 3.3. Note that the table only lists the functions for DOF-vectors and
matrices storing scalar values.

Some non-standard routines are added: dof_xpay() is a variant of dof_axpy(), dof_min()
and dof_max() calculate minimum and maximum values, and dof_mv() is a simplified ver-
sion of the general dof_gemv() matrix-vector multiplication routine. The BLAS-2 routines
dof_gemv() and dof_mv() accept a transpose argument: transpose = NoTranspose = 0

indicates the use of the original matrix, while transpose = Transpose = 1 indicates that
the transposed matrix should be used. We use the C-BLAS definition,

typedef enum { NoTranspose , Transpose , ConjugateTranspose } MatrixTranspose ;

The mask argument accepted by the matrix-vector routines is a flag-vector: if specified, then
the matrix operates only on those DOFs i with mask[i] != DIRICHLET, clearing all those
DOFs in the result to 0, compare Section 4.7.7.1.

Analogue routines exist for DOF REAL D VEC and DOF REAL VEC D objects, with the con-
vention to attach a d- respectively a dow-suffix for the variants dealing with DIM OF WORLD-
valued finite element functions, e.g. for the nrm2()-function there exist the calls:

REAL dof nrm2 (const DOF REAL VEC ∗ arg) ;
REAL dof nrm2 d (const DOF REAL D VEC ∗ arg) ;
REAL dof nrm2 dow (const DOF REAL VEC D ∗ arg) ;

Additionally, the matrix-vector routines are available as versions pairing vector- and scalar-
valued DOF-vectors. Of course, the inner block-type to the DOF MATRIX must match the
requirements of the arguments in this case. So to multiply a scalar finite element function
with a matrix, resulting in a vector-valued finite element function there exist the variants

void dof mv rdr (MatrixTranspose transpose ,
const DOFMATRIX ∗a , const DOF SCHAR VEC ∗mask ,
const DOF REAL VEC ∗x , DOF REAL D VEC ∗y) ;

void dof mv dow scl (MatrixTranspose transpose ,
const DOFMATRIX ∗A, const DOF SCHAR VEC ∗mask ,
const DOF REAL VEC ∗x , DOF REAL VEC D ∗y) ;

3.3.8 Reading and writing of meshes and vectors

Section 3.2.15 described the input and output of ASCII files for macro triangulations. Locally
refined triangulations including the mesh hierarchy and corresponding DOFs are saved in

134 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

REAL dof_nrm2(const DOF_REAL_VEC *x) nrm2 = (
∑
X2

i)1/2

REAL dof_asum(const DOF_REAL_VEC *x) asum =
∑
|Xi|

REAL dof_min(const DOF_REAL_VEC *x) min = minXi

REAL dof_max(const DOF_REAL_VEC *x) max = maxXi

void dof_set(REAL alpha, DOF_REAL_VEC *x) X = (α, . . . , α)

void dof_scal(REAL alpha, DOF_REAL_VEC *x) X = α ∗X
REAL dof_dot(const DOF_REAL_VEC *x, dot =

∑
XiYi

const DOF_REAL_VEC *y)

void dof_copy(const DOF_REAL_VEC *x, DOF_REAL_VEC *y) Y = X

void dof_axpy(REAL alpha, Y = α ∗X + Y

const DOF_REAL_VEC *x, DOF_REAL_VEC *y)

void dof_xpay(REAL alpha, Y = X + α ∗ Y
const DOF_REAL_VEC *x, DOF_REAL_VEC *y)

void dof_gemv(MatrixTranspose transpose, REAL alpha, Yi = (α ∗A ∗X + β ∗ Y)i

const DOF_MATRIX *a, or

const DOF_SCHAR_VEC *mask, Yi = (α ∗At ∗X + β ∗ Y)i

const DOF_REAL_VEC *x, if mask != NULL and

REAL beta, DOF_REAL_VEC *y) mask[i]!=DIRICHLET

void dof_mv(MatrixTranspose transpose, Yi = (A ∗X)i

const DOF_MATRIX *a, or

const DOF_SCHAR_VEC *mask Yi = (At ∗X)i

const DOF_REAL_VEC *x, DOF_REAL_VEC *y) if mask != NULL and

mask[i]!=DIRICHLET

Table 3.3: Implemented BLAS routines for DOF vectors and matrices. Corresponding routines
for DIM OF WORLD-valued coefficient vectors are, of course, also available, see Section 3.3.7

binary formats. Finite element data is saved (and restored) in binary format, too, in order to
keep the full data precision. As the binary data and file format usually depends on hardware
and operating system, the interchange of data between different platforms needs a machine
independent format. The XDR (External Data Representation) library provides a widely
used interface for such a format. The _xdr routines should be used whenever data must be
transfered between different computer platforms.

int write mesh (MESH ∗mesh , const char ∗name , REAL time) ;
MESH ∗ read mesh (const char ∗name , REAL ∗ t imeptr ,

NODE PROJECTION ∗(∗ i n i t n o d e p r o j) (MESH ∗ , MACROEL ∗ , int) ,
MESH ∗master) ;

The routine write_mesh stores information about the mesh in a file named name. Written
data includes the corresponding time (only important for time dependent problems), macro
elements, mesh elements including the parent/child hierarchy information, DOF administra-
tion and element DOFs. The return value is 1 if an error occurs, otherwise 0. User defined
leaf data (see Section 3.2.10) is not written. If the mesh carries a parametric structure defined
by use lagrange parametric() (see Section 3.8.1), then this structure will be dumped to

3.3. ADMINISTRATION OF DEGREES OF FREEDOM 135

disk, read back by the corresponding read mesh() routines. Geometric face-transformations
attached to periodic meshes (compare Section 3.10) will also be dumped to disk and restored
by read mesh(). If mesh is a co-dimension 1 trace-mesh of another master-mesh (see Sec-
tion 3.9), then this binding will also be dumped to disk, and can optionally be restored by a
call to read mesh().

Routine read_mesh reads a complete mesh from file name, which was created by
write_mesh. The corresponding time, if any, is stored at timeptr. The argument
init_node_proj is used in the same way as in GET_MESH(), compare Sections 3.2.13 and
3.2.14. If the argument master is non-NULL, then ALBERTA attempts to bind the read-back
mesh as a co-dimension 1 trace-mesh to this “master”-mesh, compare Section 3.9. This will
only work if master is just in the state it had when the trace-mesh was dumped to disk,
otherwise the behaviour is undefined and the application supposedly will crash very quickly;
a good example which works is when both, master- and trace-mesh, are dumped to disk and
restored sequentially:

ex te r rn MESH ∗master , ∗ t r a c e ;

write mesh (master , ”master . mesh” , HUGEVAL) ;
write mesh (trace , ” t r a c e . mesh” , HUGEVAL) ;

. . . /∗ o ther s t u f f , 1 .000 .000 l i n e s o f code l a t e r : ∗/

master = read mesh (”master . mesh” , NULL, NULL, NULL) ;
t r a c e = read mesh (” t r a c e . mesh” , NULL, NULL, master) ;

3.3.5 Compatibility Note. read mesh() is supposed to be able to read data generated by
previous versions of ALBERTA.

For input and output of finite element data, the following routines are provided which
read or write files containing binary DOF vectors:

int wr i t e d o f i n t v e c (const DOF INT VEC ∗div , const char ∗name) ;
int wr i t e d o f r e a l v e c (const DOF REAL VEC ∗drv , const char ∗name) ;
int wr i t e d o f r e a l d v e c (const DOF REAL D VEC ∗drdv , const char ∗name) ;
int wr i t e d o f r e a l v e c d (const DOF REAL VEC D ∗drvd , const char ∗name) ;
int wr i t e d o f s c h a r v e c (const DOF SCHAR VEC ∗dsv , const char ∗name) ;
int wr i t e do f u cha r v e c (const DOF UCHARVEC ∗duv , const char ∗name) ;

DOF INT VEC ∗ r e a d do f i n t v e c (const char ∗name , MESH ∗ , FE SPACE∗) ;
DOF REAL VEC ∗ r e a d d o f r e a l v e c (const char ∗name , MESH ∗ , FE SPACE ∗) ;
DOF REAL D VEC ∗ r e a d d o f r e a l d v e c (const char ∗name , MESH ∗ , FE SPACE ∗) ;
DOF REAL VEC D ∗ r e a d d o f r e a l v e c d (const char ∗name , MESH ∗ , FE SPACE ∗) ;
DOF SCHAR VEC ∗ r e ad do f s cha r v e c (const char ∗name , MESH ∗ , FE SPACE ∗) ;
DOF UCHARVEC ∗ r ead do f ucha r ve c (const char ∗name , MESH ∗ , FE SPACE ∗) ;

For the output and input of machine independent data files, similar routines are provided.
The XDR library is used, and all routine names end with _xdr:

int write mesh xdr (MESH ∗mesh , const char ∗name , REAL time) ;

136 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

MESH ∗ read mesh xdr (const char ∗name , REAL ∗ t imeptr ,
NODE PROJECTION ∗(∗ i n i t n o d e p r o j) (MESH ∗ ,MACROEL

∗ , int)) ;

int wr i t e d o f i n t v e c x d r (const DOF INT VEC ∗div , const char ∗name) ;
int wr i t e d o f r e a l v e c x d r (const DOF REAL VEC ∗drv , const char ∗name) ; i
int wr i t e d o f r e a l d v e c x d r (const DOF REAL D VEC ∗drdv , const char ∗name) ;
int wr i t e d o f r e a l v e c d xd r (const DOF REAL VEC D ∗drvd , const char ∗name) ;
int wr i t e d o f s c h a r v e c xd r (const DOF SCHAR VEC ∗dsv , const char ∗name) ;
int wr i t e do f u cha r v e c xd r (const DOF UCHARVEC ∗duv , const char ∗name) ;

DOF INT VEC ∗ r e ad do f i n t v e c xd r (const char ∗name , MESH ∗ , FE SPACE∗) ;
DOF REAL VEC ∗ r e a d do f r e a l v e c xd r (const char ∗name , MESH ∗ , FE SPACE ∗) ;
DOF REAL D VEC ∗ r e a d do f r e a l d v e c xd r (const char ∗name , MESH ∗ , FE SPACE

∗) ;
DOF REAL VEC D ∗ r e a d do f r e a l v e c d xd r (const char ∗name , MESH ∗ , FE SPACE

∗) ;
DOF SCHAR VEC ∗ r e ad do f s cha r v e c xd r (const char ∗name , MESH ∗ , FE SPACE ∗) ;
DOF UCHARVEC ∗ r ead do f ucha r ve c xdr (const char ∗name , MESH ∗ , FE SPACE ∗) ;

All flavours of the IO-routines come also with a version which accepts a stdio-FILE

pointer as argument. These routines are pre-fixed by the letter “f”, in the spirit of fprintf(3).
For example, the corresponding proto-type for the write mesh xdr() function is

bool fwr i t e mesh xdr (MESH ∗mesh , FILE ∗ fp , REAL time) ;

Likewise for all other functions: just replace the file-name argument by the file-pointer argu-
ment. Intentionally, this feature has been introduced to let the IO-routines act on streaming
data. Note that the compatibility mode of read mesh() with respect to meshes generated by
ALBERTA-1.2 will not work if the actual file underlying the file-pointer does not allow for
random access (e.g. if it is a pipe or socket).

3.4 The refinement and coarsening implementation

3.4.1 The refinement routines

For the refinement of a mesh the following symbolic constant is defined and the refinement is
done by the functions

#define MESH_REFINED 1

U_CHAR refine(MESH *mesh, FLAGS fill_flags);

U_CHAR global_refine(MESH *mesh, int n_bisections, FLAGS fill_flags);

3.4.1 Compatibility Note. In previous versions, the last parameter fill flags was
missing. To obtain the old behaviour, FILL NOTHING should be passed for the parameter
fill flags.

Description:

3.4. THE REFINEMENT AND COARSENING IMPLEMENTATION 137

refine(mesh, fill flags) refines all leaf elements with a positive element marker mark
times (this mark is usually set by some adaptive procedure); the routine loops over all leaf
elements and refines the elements with a positive marker until there is no element left with
a positive marker; the return value is MESH REFINED, if at least one element was refined,
and 0 otherwise. Every refinement has to be done via this routine. The basic steps of this
routine are described below.

Parameters

mesh The mesh which will be refined, possibly.

FLAGS fill flags Request additional data filled in during the mesh-traversal,
useful for custom mesh-adaptation call-back in DOF-vectors and -matrices. Addi-
tionally – if any mesh-adaptation call-backs have been registered – then the set of
fill-flags will be augmented by the requirements of the related basis-function sets.

Return Value Either MESH REFINED, if at least one element has been sub-divided, or 0

otherwise.

global refine(mesh, num bisections, fill flags) sets all element markers for leaf
elements of mesh to mark; the mesh is then refined by refine() which results in a mark

global refinement of the mesh; the return value is MESH REFINED, if mark is positive, and 0

otherwise.

Parameters

MESH *mesh The mesh which will be refined, possibly.

num bisections The number of bisections to perform on each element. This is
an upper limit: the resulting mesh will have no “hanging-nodes”, this conformal
closure may require more refinement steps than requested by num bisections.

FLAGS *fill flags Request additional data filled in during the mesh-traversal,
useful for custom mesh-adaptation call-back in DOF-vectors and -matrices.

Return Value Either MESH REFINED, if at least one element has been sub-divided, or 0

otherwise.

3.4.1.1 Basic steps of the refinement algorithm

The refinement of a mesh is principally done in two steps — each step corresponding to one
mesh traversal. In the first step no coordinate information is necessary, only a topological
refinement is performed. If new nodes are created that belong to a a then these can be
projected in the second step where coordinate information is calculated.

Again using the notion of “refinement edge” for the element itself in 1d, the algorithm
performs the following steps:

1. The whole mesh is refined only topologically. This part consists of

• the collection of a compatible refinement patch; this includes the recursive refinement
of adjacent elements with an incompatible refinement edge;

• the topological bisection of the patch elements;

• the transformation of leaf data from parent to child, if such a function is available in
the leaf data info structure;

138 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

• allocation of new DOFs;

• handing on of DOFs from parent to the children;

• interpolation of DOF vectors from the coarse grid to the fine one on the whole re-
finement patch, if the function refine interpol() is available for these DOF vectors
(compare Section 3.3.3); these routines must not use coordinate information;

• a deallocation of DOFs on the parent when preserve coarse dofs == 0, see Sec-
tion 3.6.2.

This process is described in detail below.

2. New nodes which belong to the curved part of the boundary are now projected onto the
curved boundary via the active projection() function in the EL INFO structure. This
entry is passed down from the corresponding macro element during the mesh traversal of
this step. The coordinates of the projected node are stored in a REAL D–vector and the
pointers el->new coord of all parents el which belong to the refinement patch are set to
this vector.

The topological refinement is done by the recursive refinement Algorithm 1.1.5. In 1d, no
recursion is needed. In 2d and 3d, all elements at the refinement edge of a marked element
are collected. If a neighbour with an incompatible refinement edge is found, this neighbour
is refined first by a recursive call of the refinement function. Thus, after looping around the
refinement edge, the patch of simplices at this edge is always a compatible refinement patch.
The elements of this patch are stored in a vector ref list with elements of type RC LIST EL,
compare Section 3.2.11. This vector is an argument for the functions for interpolation of DOF
vectors during refinement, compare Section 3.3.3.

In 1d the vector has length 1. In 2d the length is 2 if the refinement edge is an interior
edge; for a boundary edge the length is 1 since only the element itself has to be refined. For
1d and 2d, only the el entry of the components is set and used.

In 3d this vector is allocated with length mesh->max edge neigh. As mentioned in Sec-
tion 3.2.11 we can define an orientation of the edge and by this orientation we can define the
right and left neighbors (inside the patch) of an element at this edge.

The patch is bisected by first inserting a new vertex at the midpoint of the refinement
edge. Then all elements of the refinement patch are bisected. This includes the allocation
of new DOFs, the adjustment of DOF pointers, and the memory allocation for leaf data (if
initialized by the user) and transformation of leaf data from parent to child (if a pointer to
a function refine leaf data() is provided by the user in the init leaf data() call). Then
memory for parents’ leaf data is freed and information stored there is definitely lost.

In the case of higher order elements we also have to add new DOFs on the patch and if we
do not need information about the higher order DOFs on coarser levels they are removed from
the parents. There are some basic rules for adding and removing DOFs which are important
for the prolongation and restriction of data (see Section 3.3.3):

1. Only DOFs of the same kind (i.e. VERTEX, EDGE, or FACE) and whose nodes have the
same geometrical position on parent and child are handed on to this child from the parent;

2. DOFs at a vertex, an edge or a face belong to all elements sharing this vertex, edge, face,
respectively;

3. DOFs on the parent are only removed if the entry preserve coarse dofs in the corre-
sponding DOF ADMIN data structure is false; in that case only DOFs which are not handed
on to a child are removed on the parent.

3.4. THE REFINEMENT AND COARSENING IMPLEMENTATION 139

A direct consequence of 1. is that only DOFs inside the patch are added or removed;
DOFs on the patch boundary stay untouched. CENTER DOFs can not be handed from parent
to child since the centers of the parent and the children are always at different positions.

Using standard Lagrange finite elements, only DOFs that are not handed from parent to
child have to be set while interpolating a finite element function to the finer grid; all values
of the other DOFs stay the same (the same holds during coarsening and interpolating to the
coarser grid).

Due to 2. it is clear that DOFs shared by more than one element have to be allocated
only once and pointers to these DOFs are set correctly for all elements sharing it.

Now, we take a closer look at DOFs that are handed on by the parents and those that
have to be allocated: In 1d we have

child[0]->dof[0] = el->dof[0];

child[1]->dof[1] = el->dof[1];

in 2d

child[0]->dof[0] = el->dof[2];

child[0]->dof[1] = el->dof[0];

child[1]->dof[0] = el->dof[1];

child[1]->dof[1] = el->dof[2];

In 3d for child[1] this passing of DOFs additionally depends on the element type el type

of the parent. For child[0] we always have

child[0]->dof[0] = el->dof[0];

child[0]->dof[1] = el->dof[2];

child[0]->dof[2] = el->dof[3];

For child[1] and a parent of type 0 we have

child[1]->dof[0] = el->dof[1];

child[1]->dof[1] = el->dof[3];

child[1]->dof[2] = el->dof[2];

and for a parent of type 1 or 2

child[1]->dof[0] = el->dof[1];

child[1]->dof[1] = el->dof[2];

child[1]->dof[2] = el->dof[3];

In 1d

child[0]->dof[1] = child[1]->dof[0]

and in 3d and 3d

child[0]->dof[DIM] = child[1]->dof[DIM]

is the newly allocated DOF at the midpoint of the refinement edge (compare Figure 1.4 on
page 4 for the 1d and 2d situation and Figure 1.5 on page 5 for the 3d situation).

In the case that we have DOFs at the midpoint of edges (only 2d and 3d) the following
DOFs are passed on (let enode = mesh->node[EDGE] be the offset for DOFs at edges): for
2d

child[0]->dof[enode+2] = el->dof[enode+1];

child[1]->dof[enode+2] = el->dof[enode+0];

140 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

and for 3d

child[0]->dof[enode+0] = el->dof[enode+1];

child[0]->dof[enode+1] = el->dof[enode+2];

child[0]->dof[enode+3] = el->dof[enode+5];

for child[0] a for child[1] of a parent of type 0

child[1]->dof[enode+0] = el->dof[enode+4];

child[1]->dof[enode+1] = el->dof[enode+3];

child[1]->dof[enode+3] = el->dof[enode+5];

and finally for child[1] of a parent of type 1 or 2

child[1]->dof[enode+0] = el->dof[enode+3];

child[1]->dof[enode+1] = el->dof[enode+4];

child[1]->dof[enode+3] = el->dof[enode+5];

{1,0,0}

3

1

0

5

3

2

4

31

0
5

42

2child[1]child[0]

{5,4,4}

{0,1,1}{4,5,5}

child[0]

child[1]

Figure 3.4: Edge DOFs that are freed •, passed on ◦, and newly alloc ated 2

We also have to create new DOFs (compare Figure 3.4). Two additional DOFs are created
in the refinement edge which are shared by all patch elements. Pointers to these DOFs are
adjusted for

child[0]->dof[enode+0],

child[1]->dof[enode+1]

in 2d and

child[0]->dof[enode+2],

child[1]->dof[enode+2]

in 3d for all patch elements.
In 3d, for each interior face of the refinement patch there is a new edge where we have to

add a new DOF vector. These DOFs are shared by two children in the case of a boundary
face; otherwise it is shared by four children and pointers of

child[0]->dof[enode+4] = child[1]->dof[enode+{5,4,4}],

child[0]->dof[enode+5] = child[1]->dof[enode+{4,4,5}]

are adjusted for those elements.
In 3d, there may be also DOFs at faces; the face DOFs in the boundary of the patch are

passed on (let fnode = mesh->node[FACE] be the offset for DOFs at faces):

child[0]->dof[fnode+3] = el->dof[fnode+1];

child[1]->dof[fnode+3] = el->dof[fnode+0];

For the common face of child[0] and child[1] we have to allocate a new face DOF vector
which is located at

3.4. THE REFINEMENT AND COARSENING IMPLEMENTATION 141

child[0]->dof[fnode+0] = child[1]->dof[fnode+0]

and finally for each interior face of the patch two new face DOF vectors are created and
pointers for adjacent children are adjusted:

child[0]->dof[fnode+1],

child[0]->dof[fnode+2],

child[1]->dof[fnode+1],

child[1]->dof[fnode+2]

Each of these DOF vectors may be shared with another child of a patch element.

If DOFs are located at the barycenter they have to be allocated for both children in 2d
and 3d (let cnode = mesh->node[CENTER] be the offset for DOFs at the center)

child[0]->dof[cnode],

child[1]->dof[cnode].

After adding and passing on of DOFs on the patch we can interpolate data from the coarse
to the fine grid on the whole patch. This is an operation on the whole patch since new DOFs
can be shared by more than one patch element and usually the value(s) of such a DOF should
only be calculated once.

All DOF vectors and matrices having a pointer to a function refine interpol() in the
corresponding data structure are interpolated to the fine grid. Such a function essentially
depends on the described passing on and new allocation of DOFs. An abstract description of
such functions can be found in Section 1.4.4 and a more detailed one for Lagrange elements
in Section 3.5.4.

After such an interpolation, DOFs of higher degree on parent elements may no longer be
of interest (when not using a higher order multigrid method).

In such a case DOF ADMIN.flags & ADM PRESERVE COARSE DOFS should evaluate to 0 and
in this case all DOFs on the parent that are not handed over to the children will be removed.
The following DOFs are removed on the parent for all patch elements (some DOFs are shared
by several elements): The DOFs at the center

el->dof[mesh->node[CENTER]]

are removed in all dimensions. In 2d, additionally DOFs in the refinement edge

el->dof[mesh->node[EDGE]+2]

are removed and in 3d the DOFs in the refinement edge and the DOFs in the two faces
adjacent to the refinement edge

el->dof[mesh->node[EDGE]+0],

el->dof[mesh->node[FACE]+2],

el->dof[mesh->node[FACE]+3],

el->dof[mesh->node[CENTER]]

are deleted on the parent. Note that only the information about DOF indices is deleted,
the pointers el->dof[n], n∈ {0, . . . , mesh->n node el-1}, themselves remain available after
refinement. This setting of DOF pointers and pointers to children is the main part of the
refinement module.

142 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

3.4.2 The coarsening routines

For the coarsening of a mesh the following symbolic constant is defined and the coarsening is
done by the functions

#define MESH_COARSENED 2

U_CHAR coarsen(MESH *mesh, FILL_FLAGS fill_flags);

U_CHAR global_coarsen(MESH *mesh, int num_bisections, FILL_FLAGS flags_flags);

Description:

coarsen(mesh, fill flags) tries to coarsen all leaf element with a negative element
marker |mark| times (again, this mark is usually set by an adaptive procedure); the return
value is MESH COARSENED if any element was coarsened, and 0 otherwise.

global coarsen(mesh, n bisections, fill flags) sets all element markers for leaf
elements of mesh to n bisections; the mesh is then coarsened by coarsen(); depend-
ing on the actual distribution of coarsening edges on the mesh, this may not result in a
|n bisections| global coarsening; the return value is coarsen(mesh) if mark is negative,
and 0 otherwise.

The function coarsen() implements Algorithm 1.1.10. For a marked element, the coars-
ening patch is collected first. This is done in the same manner as in the refinement procedure.
If such a patch can definitely not be coarsened (if one element of the patch may not be coars-
ened, e.g.) all coarsening markers for all patch elements are reset. If we can not coarsen the
patch immediately, because one of the elements has not a common coarsening edge but is
allowed to be coarsened more than once, then nothing is done in the moment and we try to
coarsen this patch later on (compare Remark 1.1.11).

The coarsening of a patch is the “inverse” of the refinement of a compatible patch. If DOF
indices of the parents were deleted during refinement, then new indices are now allocated.
DOF pointers on the parents (parent->dof[n]) do not need to be touched, as they remain
valid after refinement, see Section 3.4.1.

If leaf data is stored at the pointer of child[1], then memory for the parent’s leaf data is
allocated. If a function coarsen leaf data was provided during the call of init leaf data()

then leaf data is transformed from children to parent. Finally, leaf data on both children is
freed.

Like the interpolation of data during refinement, we now can restrict/interpolate data
from children to parent. This is done by the coarse restrict() functions for all those DOF
vectors and matrices where such a function is available in the corresponding data structure.
Since it does not make sense to both interpolate and restrict data, coarse restrict() may
be a pointer to a function either for interpolation or restriction. An abstract description of
those functions can be found in Section 1.4.4 and a more detailed one for Lagrange elements
in Section 3.5.4.

After these preliminaries the main part of the coarsening can be performed. DOFs that
have been created in the refinement step are now freed again, and the children of all patch
elements are freed and the pointer to the first child is set to NULL and the pointer to the
second child is adjusted to the leaf data of the parent, or also set to NULL. Thus, all fine
grid information is lost at that moment, which makes clear that a restriction of data has to
be done in advance.

3.5. IMPLEMENTATION OF BASIS FUNCTIONS 143

3.5 Implementation of basis functions

In order to construct a finite element space, we have to specify a set of local basis functions. We
follow the concept of finite elements which are given on a single element S in local coordinates:
Finite element functions on an element S are defined by a finite dimensional function space
P̄ on a reference element S̄ and the (one to one) mapping λS : S̄ → S from the reference
element S̄ to the element S. In this situation the non vanishing basis functions on an arbitrary
element are given by the set of basis functions of P̄ in local coordinates λS . Also, derivatives
are given by the derivatives of basis functions on P̄ and derivatives of λS .

Each local basis function on S is uniquely connected to a global degree of freedom, which
can be accessed from S via the DOF administration. Together with this DOF administration
and the underlying mesh, the finite element space is given. In the following section we describe
the basic data structures for storing basis function information.

At the moment the following finite elements are supported by ALBERTA:

• standard Lagrange finite elements of order n, n ∈ {1, 2, 3, 4};

• discontinuous polynomial elements of order n, n ∈ {0, 1, 2}; these are defined as arbitrary
polynomials of maximal degree n on each element with no continuity restriction;

• orthonormal discontinuous polynomial elements of order 1 and 2; these functions are
normalized and orthogonal w.r.t. the L2-scalar product on the reference element.

We present these elements in the subsequent sections. A tselection of more complicated basis
functions is implemented in an add-on library called libalbas, with the focus on stable
discretizations for the Stokes-problem. This is not discussed here.

3.5.1 Data structures for basis functions

For the handling of local basis functions, i.e. a basis of the function space P̄ on the refer-
ence element (compare Section 1.4.2) we use functions of the following type. The structure
describing the set of local basis functions (BAS_FCTS, see page 145) contains arrays of such
function-pointers:

typedef REAL
(∗BAS FCT) (const REAL B lambda , const BAS FCTS ∗ t h i s p t r) ;

typedef const REAL ∗
(∗GRD BAS FCT) (const REAL B lambda , const BAS FCTS ∗ t h i s p t r) ;

typedef const REAL B ∗
(∗D2 BAS FCT) (const REAL B lambda , const BAS FCTS ∗ t h i s p t r) ;

typedef const REAL BB ∗
(∗D3 BAS FCT) (const REAL B lambda , const BAS FCTS ∗ t h i s p t r) ;

typedef const REAL BBB ∗
(∗D4 BAS FCT) (const REAL B lambda , const BAS FCTS ∗ t h i s p t r) ;

typedef const REAL ∗
(∗BAS FCT D) (const REAL B lambda , const BAS FCTS ∗ t h i s p t r) ;
typedef const REAL B ∗
(∗GRD BAS FCT D) (const REAL B lambda , const BAS FCTS ∗ t h i s p t r) ;
typedef const REAL BB ∗
(∗D2 BAS FCT D) (const REAL B lambda , const BAS FCTS ∗ t h i s p t r) ;

144 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

Description:

BAS FCT the data type for a local finite element function, i.e. a function ϕ̄ ∈ P̄, evaluated
at barycentric coordinates λ ∈ Rd+1 and its return value ϕ̄(λ) is of type REAL.

GRD BAS FCT the data type for the gradient (with respect to λ) of a local finite element
function, i.e. a function returning a pointer to ∇λϕ̄ for some function ϕ̄ ∈ P̄:

∇λϕ̄(λ) =

(
∂ϕ̄(λ)

∂λ0
, . . . ,

∂ϕ̄(λ)

∂λd

)
;

the arguments of such a function are barycentric coordinates and the return value is a
pointer to a const REAL vector of length N LAMBDA storing ∇λϕ̄(λ); this vector will be
overwritten during the next call of the function.

D2 BAS FCT the data type for the second derivatives (with respect to λ) of a local finite
element function, i.e. a function returning a pointer to the matrix D2

λϕ̄ for some function
ϕ̄ ∈ P̄:

D2
λϕ̄ =

∂2ϕ̄(λ)

∂λ0∂λ0
· · · ∂2ϕ̄(λ)

∂λ0∂λd
...

...
∂2ϕ̄(λ)

∂λd∂λ0
· · · ∂2ϕ̄(λ)

∂λd∂λd

 ;

the arguments of such a function are barycentric coordinates and the return value is a
pointer to a N LAMBDA× N LAMBDA matrix storing D2

λϕ̄; this matrix will be overwritten
during the next call of the function.

D3 BAS FCT, D4 BAS FCT serve primarily for debugging purposes and need not be present.
The format is the similar to the second barycentric derivatives, the third derivatives are a
tensor of rank 3, and the fourth derivatives are a tensor of rank 4.

BAS FCT D, GRD BAS FCT D, D2 BAS FCT D Basis functions may optionally be REAL D-
valued. In this case we factor the basis functions into a scalar part which is multiplied
by a direction, with the obvious implications for the derivatives of such basis functions.
This is further explained below where the corresponding components of the BAS FCTS

structure are discussed.

#define PHI(b f c t s , i , lambda) (b f c t s)−>phi [i] (lambda , b f c t s)
#define GRD PHI(b f c t s , i , lambda) (b f c t s)−>grd ph i [i] (lambda , b f c t s)
#define D2 PHI(b f c t s , i , lambda) (b f c t s)−>D2 phi [i] (lambda , b f c t s)
#define D3 PHI(b f c t s , i , lambda) (b f c t s)−>D3 phi [i] (lambda , b f c t s)
#define D4 PHI(b f c t s , i , lambda) (b f c t s)−>D4 phi [i] (lambda , b f c t s)

#define PHI D(b f c t s , i , lambda) (b f c t s)−>phi d [i] (lambda , b f c t s)
#define GRD PHI D(b f c t s , i , lambda) (b f c t s)−>grd ph i d [i] (lambda , b f c t s)
#define D2 PHI D(b f c t s , i , lambda) (b f c t s)−>D2 phi d [i] (lambda , b f c t s)

Description:

PHI(bfcts, i, lambda) The individual basis function pointers expect that a pointer to
the BAS_FCTS-structure they belong to is passed as last argument. To decrease the potential
for coding errors we advocate to use

3.5. IMPLEMENTATION OF BASIS FUNCTIONS 145

value = PHI(b f c t s , nr , lambda , nr) ;

instead of using the equivalent construct

value = bfc t s−>phi [nr] (lambda , b f c t s) ;

The other macro work analogously.

For the implementation of a finite element space, we need a basis of the function space P̄.
For such a basis we need the connection of local and global DOFs on each element (compare
Section 1.4.3), information about the interpolation of a given function on an element, and
information about interpolation/restriction of finite element functions during refinement/-
coarsening (compare Section 1.4.4). Further information includes the traces of the local finite
element space on the walls of reference element, which are needed to define trace-meshes
(AKA sub-meshes, see Section 3.9). Also, finite element spaces may form a direct sum, e.g.
to implement stable discretisations of the Stokes-problem (see Section 3.7); if this is the case
then the local basis-functions also reflect this fact. Finally, basis-functions may need a per-
element initializer, for example if they depend on the geometry of the mesh-simplex. Such
information is stored in the BAS FCTS data structure:

typedef struct b a s f c t s BAS FCTS ;

struct b a s f c t s
{

const char ∗name ; /∗ t e x t u a l d e s c r i p t i o n ∗/
int dim ; /∗ dimension o f the corresponding mesh . ∗/
int rdim ; /∗ dimension o f the range , 1 or DIM OFWORLD ∗/
int n b a s f c t s ; /∗ nu mber o f b a s i s f u n c t i o n s on one e l ∗/
int n bas f c t s max ; /∗ max . number in presence o f i n i t e l emen t () ∗/
int degree ; /∗ maximal degree o f the b a s i s func t ions ,

∗ may vary on a per−element b a s i s i f
∗ i n i t e l emen t () i s != NULL.
∗/

int n dof [N NODE TYPES] ; /∗ do f s from the s e b a s f c t s ∗/
int trace admin ; /∗ I f >= 0 , then the b a s i s f unc t i on s e t

∗ needs a DOF ADMIN l i v i n g on a t race
∗ mesh with id TRACE ADMIN.
∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗ l i n k to next s e t o f b f c t s in a d i r e c t sum ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
DBL LIST NODE chain ;

/∗ A po in t e r to the unchained ve r s i on . I t s imply po in t s back to the
∗ same s t r u c t u r e i f t h i s i s an unchained bas i s−f unc t i on
∗ s t r u c t u r e .
∗/

const BAS FCTS ∗unchained ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ per−element i n i t i a l i z e r (maybe NULL) ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

INIT ELEMENT DECL;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ the b a s i s f unc t i on s themse l ve s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
const BAS FCT ∗phi ;
const GRD BAS FCT ∗ grd ph i ;

146 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

const D2 BAS FCT ∗D2 phi ;
const D3 BAS FCT ∗D3 phi ; /∗ Optional , implemented f o r Lagrange b f c t s . ∗/
const D4 BAS FCT ∗D4 phi ; /∗ Optional , implemented f o r Lagrange b f c t s . ∗/

/∗ Vector va lued b a s i s f unc t i on s are always f a c t o r ed as phi [i] () ∗
∗ ph i d [i] () . I f ph i d [i] () i s p iece−wise constant , then
∗ d i r pw cons t shou ld be t rue . The d i r e c t i o n s are never cached in
∗ QUAD FAST, only the s c a l a r f a c t o r .
∗/

const BAS FCT D ∗phi d ;
const GRD BAS FCT D ∗ grd ph i d ;
const D2 BAS FCT D ∗D2 phi d ;

bool d i r pw cons t ; /∗Direc t i on i s p .w. cons tant on the r e f e r ence element . ∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗ the t race space on the wa l l ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
const BAS FCTS ∗ t r a c e b a s f c t s ; /∗ The t race space ∗/

/∗ The l o c a l DOF mapping f o r the t race spaces ,
∗ < 3d :
∗ [0] [0] [wa l l] [s l a v e l o c a l do f] == master l o c a l dof ,
∗ 3d :
∗ [t ype > 0] [o r i en t < 0] [wa l l] [s l a v e l o c a l do f] == master l o c a l do f .
∗/

const int ∗ t race dof map [2] [2] [NWALLSMAX] ;

/∗ This obscure component can vary from wa l l to wa l l in the presence
∗ o f an INIT ELEMENT() method . I t i s a lway s equa l to
∗ t r a c e b a s f c t s −>n b a s f c t s . . . BUT ONLY a f t e r the r e s p e c t i v e
∗ element i n i t i a l i z e r has been c a l l e d f o r t r a c e b a s f c t s on the
∗ t r a ce mesh . I f an INIT ELEMENT() method i s pre sen t then i t MUST
∗ i n i t i a l i z e t race do f map AND n t r a c e b a s f c t s . Of course , in 3D
∗ only the components corresponding to type and o r i e n t a t i o n o f the
∗ curren t EL INFO ob j e c t have to be taken care o f by the
∗ INIT ELEMENT() method .
∗/

int n t r a c e b a s f c t s [NWALLSMAX] ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ i n t e r connec t i on to DOF ADMIN and mesh ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
const EL DOF VEC ∗(∗ g e t d o f i n d i c e s) (DOF ∗ r e su l t ,

const EL ∗ , const DOF ADMIN ∗ ,
const BAS FCTS ∗ t h i s p t r) ;

const EL BNDRY VEC ∗(∗ get bound) (BNDRY FLAGS ∗ bndry bi t s ,
const EL INFO ∗ e l i ,
const BAS FCTS ∗ t h i s p t r) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ e n t r i e s must be s e t f o r i n t e r p o l a t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

void (∗ i n t e r p o l) (EL REAL VEC ∗ c o e f f ,
const EL INFO ∗ e l i n f o , int wall ,
int n , const int ∗ i nd i c e s ,
LOC FCT AT QP f , void ∗ud ,
const BAS FCTS ∗ t h i s p t r) ;

void (∗ i n t e r p o l d) (EL REAL D VEC ∗ c o e f f ,
const EL INFO ∗ e l i n f o , int wall ,
int n , const int ∗ i nd i c e s ,
LOC FCT D AT QP f , void ∗ud ,

3.5. IMPLEMENTATION OF BASIS FUNCTIONS 147

const BAS FCTS ∗ t h i s p t r) ;
void (∗ i n t e rpo l dow) (EL REAL VEC D ∗ c o e f f ,

const EL INFO ∗ e l i n f o , int wall ,
int n , const int ∗ i nd i c e s ,
LOC FCT D AT QP f , void ∗ud ,
const BAS FCTS ∗ t h i s p t r) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ op t i ona l e n t r i e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

const EL INT VEC ∗(∗ g e t i n t v e c) (int r e s u l t [] ,
const EL ∗ , const DOF INT VEC ∗) ;

const EL REAL VEC ∗(∗ g e t r e a l v e c) (REAL r e s u l t [] ,
const EL ∗ , const DOF REAL VEC ∗) ;

const EL REAL D VEC ∗(∗ g e t r e a l d v e c) (REAL D r e s u l t [] ,
const EL ∗ , const DOF REAL D VEC ∗) ;

const EL REAL VEC D ∗(∗ g e t r e a l v e c d) (REAL r e s u l t [] ,
const EL ∗ , const DOF REAL VEC D ∗) ;

const EL UCHAR VEC ∗(∗ ge t uchar vec) (U CHAR r e s u l t [] ,
const EL ∗ , const DOF UCHARVEC ∗) ;

const EL SCHAR VEC ∗(∗ g e t s cha r v e c) (S CHAR r e s u l t [] ,
const EL ∗ , const DOF SCHAR VEC ∗) ;

const EL PTR VEC ∗(∗ g e t p t r v e c) (void ∗ r e s u l t [] ,
const EL ∗ , const DOF PTR VEC ∗) ;

void (∗ r e a l r e f i n e i n t e r) (DOF REAL VEC ∗ , RC LIST EL ∗ , int) ;
void (∗ r e a l c o a r s e i n t e r) (DOF REAL VEC ∗ , RC LIST EL ∗ , int) ;
void (∗ r e a l c o a r s e r e s t r) (DOF REAL VEC ∗ , RC LIST EL ∗ , int) ;

void (∗ r e a l d r e f i n e i n t e r) (DOF REAL D VEC ∗ , RC LIST EL ∗ , int) ;
void (∗ r e a l d c o a r s e i n t e r) (DOF REAL D VEC ∗ , RC LIST EL ∗ , int) ;
void (∗ r e a l d c o a r s e r e s t r) (DOF REAL D VEC ∗ , RC LIST EL ∗ , int) ;

void (∗ r e a l r e f i n e i n t e r d) (DOF REAL VEC D ∗ , RC LIST EL ∗ , int) ;
void (∗ r e a l c o a r s e i n t e r d) (DOF REAL VEC D ∗ , RC LIST EL ∗ , int) ;
void (∗ r e a l c o a r s e r e s t r d) (DOF REAL VEC D ∗ , RC LIST EL ∗ , int) ;

void ∗ ext data ; /∗ Implementation dependent e x t ra data ∗/
} ;

/∗ Barycentr ic coord ina t e s o f Lagrange nodes . ∗/
#define LAGRANGENODES(b f c t s) \

((const REAL B ∗) (∗ (void ∗∗) (b f c t s)−>ext data))

The entries yield following information:

name string containing a textual description or NULL.

dim dimension d of the mesh triangulation.

rdim dimension of the range space. This is either 1 or DIM OF WORLD for vector valued basis
functions like edge and face bubbles.

n bas fcts number of local basis functions.

n bas fcts max maximum number of local basis functions. The number of basis func-
tions on a given element may vary if the init_element-hook is non-NULL. In this case
n_bas_fcts_max gives the upper limit and can be used to lay-out array dimensions, e.g.
In the standard case this component does not differ from n_bas_fcts. See Section 3.7.

148 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

degree maximal polynomial degree of the basis functions; this entry is used by routines
using numerical quadrature where no QUAD structure is provided; in such a case via degree

some default numerical quadrature is chosen (see Section 4.2.1); additionally, degree is
used by some graphics routines (see Section 4.11.1.1).

n dof vector with the count of DOFs for this set of basis functions;
n dof[VERTEX,CENTER,EDGE,FACE] is the number of DOFs tied to the vertices,
center, edges (only 2d and 3d), faces (only 3d), of an element; the corresponding DOF
administration of the finite element space uses such information.

trace admin is used for the purpose of defining basis functions with DOFs attached to a
trace-mesh, e.g. to define face-bubbles attached to part of the boundary of the mesh. In
this case trace admin is the unique ID of a trace-mesh which carries the DOF ADMIN for
this basis-function set. In this situation the basis functions “live” on the bulk mesh (i.e.
extend in to to bulk-phase of the element containing the face belonging to the trace-mesh),
but the degrees of freedom are maintained on the trace mesh.

chain contains the link to the other parts if this instance forms part of a chain of basis
functions. This is implemented as doubly linked list. In the standard case the list-node just
points back to itself. Compare Section 3.5.3 and Section 3.7.

unchained points to a copy of the basis function structure which is unaware of being part
of a direct sum. In the standard case unchained just points back to the same basis function
structure it is part of.

INIT ELEMENT DECL is used for the initialization of element dependent local finite element
spaces; this is needed, e.g. to define basis functions which depend on the element geometry
like discretizations of the H(div), or for some more complicated discretizations for the
Stokes-problem which, e.g., make use of edge- and face-bubbles. See Section 3.11.

phi vector of function pointers for the evaluation of local basis functions in barycentric
coordinates;

(*bfcts->phi[i])(lambda, bfcts)

returns the value ϕ̄i(λ) of the i-th basis function at lambda for 0 ≤ i < n bas fcts. We
advocate the use of the PHI()-macro instead:

PHI(bfcts, i, lambda)

grd phi vector of function pointers for the evaluation of gradients of the basis functions in
barycentric coordinates;

(*bfcts->grd phi[i])(lambda)

returns a pointer to a vector of length N LAMBDA containing all first derivatives (with
respect to the barycentric coordinates) of the i–th basis function at lambda, i.e.
(*grd phi[i])(lambda)[k]= ϕ̄i

,λk
(λ) for 0 ≤ k ≤ d, 0 ≤ i < n bas fcts; this vector is

overwritten on the next call of (*grd phi[i])(). We advocate the use of the GRD PHI()-
macro instead:

GRD PHI(bfcts, i, lambda)

D2 phi vector of function pointers for the evaluation of second derivatives of the basis
functions in barycentric coordinates;

(*bfcts->D2 phi[i])(lambda, bfcts)

3.5. IMPLEMENTATION OF BASIS FUNCTIONS 149

returns a pointer to a N LAMBDA × N LAMBDA matrix containing all second derivatives
(with respect to the barycentric coordinates) of the i–th basis function at lambda, i.e.
(*D2 phi[i])(lambda)[k][l]= ϕ̄i

,λkλl
(λ) 0 ≤ k, l ≤ d, 0 ≤ i < n bas fcts; this matrix

is overwritten on the next call of (*D2 phi[i])(). We advocate the use of the D2 PHI()-
macro instead:

D2 PHI(bfcts, i, lambda)

D3 PHI(), D4 PHI() These do similar things as the other hooks, however, they need not
be present in a specific BAS_FCTS implementation.

PHI D() the directional part of the basis functions if rdim == DIM OF WORLD. ALBERTA
always factors vector-valued basis functions into a scalar factor times a directional part,
so the actual value of the i-th basis functions has to be calculated as

REAL D value ;
AXEYDOW(PHI(b f c t s , i , lambda) , PHI D(b f c t s , i , lambda) , va lue) ;

Expanding all the macros and inline functions, the above is equivalent to

REAL D value ;
const REAL ∗ vec to r = bfc t s−>phi d [i] (lambda , b f c t s) ;
REAL s c a l a r = bfc tgs−>phi [i] (lambda , b f c t s) ;
int k ;

for (k = 0 ; k < DIMOFWORLD; k++) {
value] [k] = s c a l a r ∗ vec to r [k] ;

}

Note that ALBERTA never caches the directional part of vector-valued basis functions in
its QUAD_FAST or other quadrature caches; it is assumed that it changes on an element-
to-element basis. Vector-valued basis functions and the associated support functions are
discussed in further detail below in Section 3.5.2.

GRD PHI D() The gradient of the directional part of a vector-valued basis-function instance.
Note that GRD_PHI_D may be empty if dir_pw_const == true.

D2 PHI D() The second derivative of the directional part of a vector-valued basis function
instance. Note that D2_PHI_D may be empty if dir_pw_const == true.

dir pw const if this is set to true then the directional part of the vector valued BAS_FCTS-
instance (i.e. rdim == DIM OF WORLD) is constant on each mesh element (e.g. the normal to
a face on affine linear elements). If this is the case then the computation of the derivatives
of the basis functions is drastically simplified. See below in Section 3.5.2.

trace bas fcts A pointer to a basis function structure describing the trace of the current
basis-function set on the boundaries of the reference element. In the case of Lagrange
elements, this is again a Lagrange space of the same degree, but one dimension lower. The
trace-spaces form a chain, which finally is terminated by a dimensions-0 “dummy” basis
function set.

The trace space may, of course, be of other nature than the bulk basis function set. An
element bubble, for instance, already has zero trace on the boundary. The trace-space of
face-bubbles will be a DIM OF WORLD-valued element bubble, pointing in direction of the
normal on the lower-dimensional element and so on.

150 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

The trace spaces play a role when boundary integrals involving basis functions are
computed (see, for instance, BNDRY OPERATOR INFO structure – Section 4.7.3 – or
bndry L2 scp fct bas()). They are also used to define global traces of finite element
function in the context of trace meshes, see Section 3.9 and Section 1.6 on page 40. Ex-
ample 3.5.9 shows the use of the trace-space in the context of an interpolation routine for
linear basis functions.

trace dof map[][][][] The mapping of the local degrees of freedom from the trace-set
to the bulk-set of local basis functions, for each co-dimension 1 face-simplex (“wall”). To
be more concrete:

• dim < 3:

t race dof map [0] [0] [wa l l] [t r a c e d o f] == bu lk do f

• dim = 3:

t race dof map [type > 0] [o r i e n t < 0] [wa l l] [t r a c e d o f] == bu lk do f

In this context, type and orient denote the respective components of the EL INFO

structure, compare also the conceptual discussion of trace-meshes in Section 1.6 on
page 40.

n trace bas fcts[] The dimension of the local trace-space, for each co-dimension 1 face-
simplex. In the standard case, the trace-space has the same dimension on each wall, but
in the context of per-element initializers (see Section 3.11) the dimension may vary from
wall to wall.

get dof indices(result, el, admin, self) pointer to a function which connects the
set of local basis functions with its global DOFs (an implementation of the function jS in
Section 1.4.3);

Parameters

DOF *result Storage for the result; result must be the base-address of an array
to DOFs with at least n bas fcts elements, or NULL, in which case the result is
returned in a statically allocated storage area which is overwritten on the next call
to get_dof_indices(). On return result[i] stores the global DOF associated to
the i–th basis function.

const EL *el the current mesh-element;

const DOF ADMIN *admin the DOF-admin for the corresponding finite element
space;

const BAS FCTS *self a pointer to the current basis function instance; might be
used if the set of local basis functions depends on the mesh element.

Return Value A pointer to a const EL_DOF_VEC element vector (see page 253) if
(result == NULL) or NULL if (result != NULL). The vec component of the
EL_DOF_VEC contains the data which otherwise would have been stored in result. The
contents of the return value is overwritten on the next call to get_dof_indices().
If the BAS_FCTGS-instance forms part of a chain of basis functions (see Section 3.5.3),
then only the DOFs associated to this instance are computed. To get the DOFs for all
parts of the direct sum the global function get_dof_indices() has to be called, see
Sections 4.7.1.3 and 3.7.

3.5. IMPLEMENTATION OF BASIS FUNCTIONS 151

To reduce the potential of coding errors we advocate the use of the GET_DOF_INDICES()

macro:

GET_DOF_INDICES(bfcts, result, el, admin)

instead of calling

bfcts->get_dof_indices(result, el, admin, bfcts)

directly.

get bound(bndry bits, el info, self) pointer to a function which fills a vector with
the boundary types of the basis functions.

3.5.1 Compatibility Note. In contrast to all previous versions of ALBERTA the
boundary-type of a given basis function is a bit-mask, and not a mere number. Each bit
corresponds to the number that has been assigned to a given boundary segment in the macro-
triangulation. Basis-functions tied to vertex-DOFs, e.g., may belong to different boundary
segments in which case the bit-mask may contain more than one bit set. This is further
discussed in Section 3.2.4.

Otherwise the calling conventions are similar to the conventions for get_dof_indices()

(see above), there also exists a macro GET_BOUND(self, bndry_bits, el_info). This
function needs boundary information; thus, all routines using this function on the elements
need the FILL BOUND flag during mesh traversal.

Parameters

BNDRY BITS *bndry bits storage for the reuslt;

const EL INFO *el info the current elements’s EL_INFO descriptor;

const BAS FCTS *self a pointer to the current basis function instance.

Return Value a pointer to a statically allocated storage area of type
const EL_BNDRY_VEC, see page 253. If the BAS_FCTS-instance forms part of a
direct sum, then only the boundary bit-masks associated with this instance are
computed. To get the information for all parts of the direct sum the global function
get_bound() has to be called, see Sections 4.7.1.3 and 3.7.

interpol[d| dow](coeff, el info, wall, n, indices, f, ud, thisptr)

When using ALBERTA routines for the interpolation of REAL[D] valued functions the
interpol[d] function pointer must be set (for example the calculation of Dirichlet
boundary values by dirichlet bound() described in Section 4.7.7.1):

The interpol-hooks are function-pointers to functionws which performs the local inter-
polation of a REAL[D] valued function on an element. If this instance of a local basis
function set forms part of a chain of basis functions (see Section 3.5.3, then it is possible
to call the functions el_interpol() – respectively their ... d and ... dow variants – to
interpolate f onto the local functions space defined by the entire chain, see Section 4.7.1.3.
The BAS_FCTS.interpol-hook will only perform the interpolation for a single member of
such a chain.

Parameters

152 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

EL REAL VEC *coeff Mandatory, storage for the result. The vector valued version
need an EL_REAL_D_VEC respetively an EL_REAL_VEC_D.

const EL INFO *el info Element descriptor.

wall If the interpolation is to be performed over the boundary of the mesh, then
this is the number of the wall in EL_INFO to integrate over, in this case only the
coefficients for the basis functions with non-zero trace on the respective wall will
be computed.

n number of items in indices. If the interpolation is to be performed for all local
DOFs, then −1 should be passed for n.

indices for selective interpolation of only some of the local DOFs, indices may
contain as many entries as indicated by n. The components of indices are then
the local DOF number for which the coefficients should be computed. If indices
== NULL, then the coefficients for all local basis functions will be computed.

REAL (*f)(const EL INFO *el info, const QUAD *quad, int iq, void *ud)

The application provided function to interpolate onto the local function space
defined by this local basis function set. For simple Lagrange elements QUAD will
just be a “lumping” quadrature rule, with “quadrature” nodes on the Lagrange
nodes of the basis function set. But interpolation may in fact require larger efforts,
in which case QUAD may be a “real” quadrature rule. If the interpolation is to be
taken over a boundary segment, then QUAD will be a co-dimension 1 quadrature
rule, see also Section 4.2.1.

For interpolation of DIM OF WORLD-valued basis functions f must be a function
pointer of the format

const REAL ∗(∗ f) (REAL D re su l t , const EL INFO ∗ e l i n f o ,
const QUAD ∗quad , int iq , void ∗ud) ;

ud Application data-pointer, forwarded to f as last argument.

thisptr A pointer to the local basis function set. To reduce the potential of coding
errors we advocate the use of the INTERPOL() macro:

INTERPOL(bfcts, coeff, el_info, wall, n, indices, f, ud)

instead of calling

bfcts->interpol(coeff, el_info, wall, n, indices, f, ud, bfcts)

directly. Likewise for INTERPOL_D() and INTERPOL_DOW.

Return Value void.

const EL INT VEC *

(*get int vec)(int res[], const EL *el, const DOF INT VEC *dv)

const EL REAL VEC *

(*get real vec)(REAL res[], const EL *el, const DOF REAL VEC *dv)

const EL REAL D VEC *

(*get real d vec)(REAL D res[], const EL *el, const DOF REAL D VEC *dv)

const EL REAL VEC D *

3.5. IMPLEMENTATION OF BASIS FUNCTIONS 153

(*get real vec d)(REAL res[], const EL *el, const DOF REAL VEC D *dv)

const EL UCHAR VEC *

(*get uchar vec)(U CHAR res[], const EL *el, const DOF UCHAR VEC *dv)

const EL SCHAR VEC *

(*get schar vec)(S CHAR res[], const EL *el, const DOF SCHAR VEC *dv)

const EL PTR VEC *

(*get ptr vec)(void *res[], const EL *el, const DOF PTR VEC *dv) These are
pointers to functions which fills a local per-element coefficient vector with values of a
DOF * VEC at the DOFs of the basis functions. The calling convention is much the same
as for the get dof indices()- and get bound()-hooks. Also, in the context of chains of
basis functions (see Section 3.5.3 below) it should be noted that these function hooks only
work on a single component of that chain. However, each of the hooks has global function
as counter-part which does the job for the entire chain, see Section 4.7.1.3.

3.5.2 Compatibility Note. The calling convention has changed with respect to previous
versions of ALBERTA. In particular, there are now dedicated structures for storing local
per-element coefficient vectors.

Note that the get real vec d-hook accepts a scalar res-argument of type REAL and re-
turns a EL REAL VEC D because in the context of vector-valued basis functions the coefficient
vector are scalars, see bewlow Section 3.5.2.

A detailed description of the parameters is only given for the get real vec()-hook. The
others work similar.

Parameters

res An optional argument to store the coefficients in. res maybe NULL, in which
case the return value if a pointer to dv->vec loc. If res is non-NULL, then the
return value of this function is NULL.

3.5.3 Compatibility Note. This implies that it is safe to call
get real vec(NULL, ...) repeatedly with different DOF REAL VEC instances,
since the storage area for the return value is now tied to the argument dv, reducing
the potential for coding errors.

On the other hand, previous versions were returning a pointer to the argument
res, if that was non-NULL. Of course, that can no longer work, because the return
value is now a fully-fledged element vector, while the res-argument is just a flat
C-array.

el The element to compute the local coefficients for.

dv The global coefficient vector to fetch the data-values from.

Return Value NULL if (res != NULL), and dv->vec loc otherwise.

void (*real refine inter)(DOF REAL VEC *, RC LIST EL *rcl, int n)

void (*real coarse inter)(DOF REAL VEC *, RC LIST EL *rcl, int n)

void (*real coarse restr)(DOF REAL VEC *, RC LIST EL *rcl, int n)

void (*real d refine inter)(DOF REAL D VEC *, RC LIST EL *rcl, int n)

void (*real d coarse inter)(DOF REAL D VEC *, RC LIST EL *rcl, int n)

154 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

void (*real d coarse restr)(DOF REAL D VEC *, RC LIST EL *rcl, int n)

void (*real refine inter d)(DOF REAL VEC D *, RC LIST EL *rcl, int n)

void (*real coarse inter d)(DOF REAL VEC D *, RC LIST EL *rcl, int n)

void (*real coarse restr d)(DOF REAL VEC D *, RC LIST EL *rcl, int n)

Since the
interpolation of finite element functions during refinement and coarsening, as well as the
restriction of functionals during coarsening, strongly depend on the basis functions and its
DOFs (compare Section 1.4.4), pointers for functions which perform those operations can
be stored at above function pointers. Not all basis-function implementations may come
with a full set of interpolation respectively restriction routines.

Note also that these function-pointers are not used automatically; it is the responsibility
of the application program to hook them into the global DOF REAL [D] VEC[D] coefficient
vectors, only then ALBERTA will make use of these function during mesh adaptation.

To give some aid in performing this job in the context of the more-complicated direct-
sums of finite element spaces, there are global functions set refine inter[d| dow](),
set coarse inter[d| dow](), set coarse resrt[d| dow]() which do this job for an
entire chain of coefficient vectors (i.e. hook the corresponding function from the relevant
BAS FCTS-component into the hook in the hook of the DOF-vector instance). See also Sec-
tion 3.7.

In Section 3.5.4.1 and 3.5.4.2 examples for the implementation of those functions are given.

Functionally, the three different flavours have the following meaning:

real[d] refine inter[d] pointer to a function for interpolating a REAL[D] valued
function during refinement; i.e. for interpolating the DOF REAL[D] VEC[D] vector vec
on the refinement patch rcl onto the finer grid; information about all parents of the
refinement patch is accessible in the vector rcl of length n.

real[d] coarse inter[d] pointer to a function for interpolating a REAL[D] valued
function during coarsening; i.e. for interpolating the DOF REAL[D] VEC vector vec on
the coarsening patch rcl onto the coarser grid; information about all parents of the
refinement patch is accessible in the vector rcl of length n.

real[d] coarse restr[d] pointer to a function for restriction of REAL[D] valued
linear functionals during coarsening; i.e. for restricting the DOF REAL[D] VEC vector
vec on the coarsening patch rcl onto the coarser grid; information about all parents of
the refinement patch is accessible in the vector rcl of length n.

ext data A void-pointer to implementation dependent data tied to a specific basis-
functions implementation. For standard Lagrange basis-functions, this pointer gives access
to the local Lagrange nodes (“local” meaning their barycentric coordinates) via the macro

const REAL B ∗nodes = LAGRANGENODES(b f c t s) ;

Although this is defined as a macro in alberta.h, an application program must not assume
that this macro will not change in future versions of the tool-box. The ordering of data
behind the ext data pointer is opaque, nothing should be assumed about it.

3.5. IMPLEMENTATION OF BASIS FUNCTIONS 155

3.5.4 Remark. The access to local element vectors via the get * vec() routines can also be
done in a standard way by using the get dof indices() function which must be supplied;
if some of the get * vec() are pointer to NULL, ALBERTA fills in pointers to some standard
functions using get dof indices(). But a specialized function may be faster. An example of
such a standard routine is:

const EL INT VEC ∗
d e f a u l t g e t i n t v e c (int ∗vec , const EL ∗ e l , const DOF INT VEC ∗ do f vec)
{

FUNCNAME(” g e t i n t v e c ”) ;
int ∗ rvec = vec == NULL ? dof vec−>vec l o c−>vec : vec ;
const BAS FCTS ∗ b a s f c t s = dof vec−>f e space−>b a s f c t s ;
int n b a s f c t s = ba s f c t s−>n b a s f c t s ;
DOF index [n b a s f c t s] ;
int i ;

GET DOF INDICES(dof vec−>f e space−>ba s f c t s ,
e l , do f vec−>f e space−>admin , index) ;

for (i = 0 ; i < n b a s f c t s ; i++) {
rvec [i] = dof vec−>vec [index [i]] ;

}

return vec ? NULL : dof vec−>v e c l o c ;
}

A specialized implementation for linear finite elements e.g. is more efficient:

const EL INT VEC ∗
g e t i n t v e c (int ∗ ivec , const EL ∗ e l , const DOF INT VEC ∗vec)
{

FUNCNAME(” g e t i n t v e c ”) ;
int i , n0 ;
int ∗v = vec−>vec ;
int ∗ rvec = iv e c ? i v e c : vec−>vec l o c−>vec ;
DOF ∗∗ dof = el−>dof ;

n0 = vec−>f e space−>admin−>n0 dof [VERTEX] ;

for (i = 0 ; i < N VERTICES; i++) {
rvec [i] = v [dof [i] [n0]] ;

}

return vec ? rvec : vec−>v e c l o c ;
}

Any kind of basis functions can be implemented by filling the above described structure
for basis functions. All non-optional entries have to be defined. Since in the functions for
reading and writing of meshes, the basis functions are identified by their names, all used basis
functions have to be registered before using these functions. All Lagrange finite elements
described below are already registered, with names "lagrange1 1d" to "lagrange4 3d".
The discontinuous polynomial finite elements are registered with "disc lagrange0 1d" to
"disc lagrange2 3d". Newly defined basis functions must use different names.

156 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

int new bas f c t s (const BAS FCTS ∗ b a s f c t s) ;

Description:

new bas fcts(bas fcts) puts the new set of basis functions bas fcts to an internal list
of all used basis functions; different sets of basis functions are identified by their name; thus,
the member name of bas fcts must be a string with positive length holding a description;
if an existing set of basis functions with the same name is found, the program stops with
an error; if the entries phi, grd phi, get dof indices, and get bound are not set, this
also result in an error and the program stops.

Basis functions can be accessed from that list by

const BAS FCTS ∗ g e t b a s f c t s (const char ∗name)

Description:

get bas fcts(name) looks for a set of basis functions with name name in the internal list
of all registered basis functions; if such a set is found, the return value is a pointer to the
corresponding BAS FCTS structure, otherwise the return value is NULL.

Lagrange elements can be accessed by a call of get lagrange(), see Section 3.5.4.5, discon-
tinuous polynomial elements by get discontinuous lagrange(), see Section 3.5.5.

3.5.2 Vector-valued basis functions

As a new feature, the current version of this finite element toolbox contains support for vector-
valued basis functions like edge- or face-bubbles, or Raviart-Thomas elements. The actual
implementation of those basis functions has been moved to an add-on module libalbas, see
Section 3.5.7 below. An example for the implementation of face-bubbles can be found in

albertadist/add_ons/lib_albas/src/wall_bubbles.c

The current implementation assumes that it is efficient to factor vector-valued basis func-
tions into a scalar part which does not depend on the element geometry and a vector-valued
part – actually: DIM OF WORLD-valued – which depends on the element geometry. This is re-
flected by the BAS_FTCS data-structure: the BAS_FCTS.phi jump-tables correspond to the
scalar factor, while the vector-valued part is stored in the jump-table BAS_FCTS.phi_d, and
analogously for the jump-tables for the derivatives.

Often vector-valued basis functions will carry a per-element initializer, a function pointer
BAS_FCTS.init_element(el_info, self), which is invoked with the current EL_INFO-
descriptor and the basis-function instance itself. This function-hook can be used to up-
date geometry information like coordinates or wall-normals. In this context, the component
BAS_FCTS.fill_flags is also of particular importance, it contains the collection of mesh-
traversal flags (see Section 3.2.17) which are needed in order for the init_element()-hook
to do its job properly. See also Section 3.11.

If the evaluation of basis functions is computationally costly, then it is of special im-
portance to cache values of basis functions (and their derivatives) at quadrature points (see
Section 4.2.2). For vector-valued basis-functions, these caches are only maintained for the
scalar factor, as the vector-valued factor is assumed to vary from element to element anyway.
In order to simplify the “recombination” of the scalar- and the vector-factor, the library pro-
vides three functions to perform this task (arguably this part of the documentation would
belong to Section 4.2.2):

3.5. IMPLEMENTATION OF BASIS FUNCTIONS 157

const REAL D ∗const∗ ge t quad fa s t ph i dow (const QUAD FAST ∗ cache) ;
const REAL DB ∗const∗ ge t quad fa s t g rd ph i dow (const QUAD FAST ∗ cache) ;
const REAL DBB ∗const∗ get quad fas t D2 ph i dow (const QUAD FAST ∗ cache) ;

These three function take a pointer to a properly initialized QUAD_FAST-structure as re-
turned by get_quad_fast() and return arrays containing the values of the products of the
scalar- and vector-part of the basis-functions. This way an application can call those func-
tions, and then use the returned arrays in the same way it used the components of the
QUAD_FAST-structure. The ordering of indices is also the same, e.g.

3.5.5 Example.

const REAL D ∗const∗phi d = get quad fa s t ph i dow (q f a s t) ;

for (i q = 0 ; i q < q fas t−>n po in t s ; i q++) {
for (b = 0 ; b < q fas t−>n b a s f c t s ; b++) {

do someth ing f c t (phi d [i q] [b]) ;
}

}

It is also worth noting that the coefficient-vectors for finite-element functions based on
vector-valued basis-functions contain scalars (the vector-nature of the finite element space
is induced by the vector-nature of the values of the basis functions, thus the coefficients for
the basis functions are scalars). ALBERTA’s assemble infra-structure (see Section 4.7) has full
support for assembling linear systems based on vector-valued basis functions, and to freely
pair scalar- and DIM OF WORLD-valued finite element spaces. Actually, the support-functions
for the assembling of the discrete systems use up most of the compilation time during the
installation of the ALBERTA-package.

3.5.3 Chains of basis function sets

The current version of this finite element toolbox has support for direct sums of finite-element
spaces. Each component of such a sum is defined by a set of local basis functions which is part
of a chain of basis functions. The chain-connectivity is implemented as a doubly linked cyclic
list, the corresponding list-link can be found in the BAS_FCTS.chain component. In order to
chain single basis function implementations together the support function chain_bas_fcts()

has to be called:

BAS FCTS ∗ c h a i n b a s f c t s (const BAS FCTS ∗head , BAS FCTS ∗ t a i l) ;

chain bas fcts(head, tail) Clone the set of basis-functions specified as head, if tail
!= NULL, then add the copy of head as head to the list specified by tail. The original
instance of head is hooked into the copy using the BAS_FCTS.unchained pointer; it remains
a single, un-chained BAS_FCTS-instance. The chain-connectivity is implemented using the
doubly-linked list-node BAS_FCTS.chain.

The chained basis functions will be given the name

158 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

"HEAD_NAME#TAIL_NAME"

During the construction of the name any "_Xd"-suffixes are discarded in order not to make
the name too complicated. At the end of the name-chain an appropriate _Xd-suffix is added.
The _Xd-suffixes are used only for debugging, they are ignored everywhere else.

A basis-function chain is cyclic. The trace-spaces of the given sets of basis functions
are chained together accordingly. If any part of the chain needs a per-element initial-
ization (see Section 3.11), then chain bas fcts() assigns the resulting chain a special
init element() hook which follows the convention described in Section 3.11 and which
calls the per-element initializers of each member of the chain in turn.

Note: this function does not call new_bas_fcts(); the caller has to do so after constructing
the desired chain.

More about direct sums of finite-element spaces should be found in Section 3.7. It is gener-
ally a bad idea to chain sets of basis functions together which are not linearly independent
from each other

3.5.6 Example. Forming the velocity-part of the “Mini”-element, and looping over the
generated two-element chain, printing the name of the unchained instances. Note that the
CHAIN_DO()-macro rolls over the entire list, which is cyclic. So inside the loop bas_fcts

points to different components of the chain, after the loop bas_fcts again points to the
first instance of the chain.

This is a certain potential for bugs when jumping out of the loop, using, e.g., a break

statement. This should be avoided. continue statements should also be avoided because the
trailing CHAIN WHILE()-part increments the list-pointer.

l ag range = ge t l a g r ange (dim , degree) ;
bubble = g e t b a s f c t s (dim , ”Bubble”) ;
b a s f c t s = ch a i n b a s f c t s (lagrange , c h a i n b a s f c t s (bubble , NULL)) ;
o l d f c t s = new bas f c t s (b a s f c t s) ;

i f (o l d f c t s != NULL) {
MSG(”Overr id ing o ld d e f i n i t i o n f o r \”%s \”\n” , o l d f c t s−>name) ;

}

MSG(”New name : \”%s \”\n” , ba s f c t s−>name) ;
CHAIN DO(ba s f c t s , BAS FCTS) {

MSG(”Ro l l i ng component name : \”%s \”\n” , ba s f c t s−>name) ;
MSG(”Component name : \”%s \”\n” , ba s f c t s−>unchained−>name) ;

} CHAIN WHILE(ba s f c t s , BAS FCTS) ;
MSG(”Again , the name o f the e n t i r e chain : \”%s \”\n” , ba s f c t s−>name) ;

3.5.4 Lagrange finite elements

ALBERTA provides Lagrange finite elements up to order four which are described in the
following sections. Lagrange finite elements are given by P̄ = Pp(S̄) (polynomials of degree
p ∈ N on S̄) and they are globally continuous. They are uniquely determined by the values
at the associated Lagrange nodes

{
xi
}

. The Lagrange basis functions
{
φi
}

satisfy

φi(xj) = δij for i, j = 1, . . . , N = dim Xh.

3.5. IMPLEMENTATION OF BASIS FUNCTIONS 159

Now, consider the basis functions {ϕ̄i}mi=1 of P̄ with the associated Lagrange nodes {λi}mi=1

given in barycentric coordinates:

ϕ̄i(λj) = δij for i, j = 1, . . . ,m.

Basis functions are located at the vertices, center, edges, or faces of an element. The corre-
sponding DOF is a vertex, center, edge, or face DOF, respectively. The boundary type of a
basis function is the boundary type of the associated vertex (or edge or face). Basis functions
at the center are always INTERIOR. Such boundary information is filled by the get bound()

function in the BAS FCTS structure and is straight forward.

The interpolation coefficient for a function f for basis function ϕ̄i on element S is the value
of f at the Lagrange node: f(x(λi)). These coefficients are calculated by the interpol[d]()

function in the BAS FCTS structure. Examples for both functions are given below for linear
finite elements.

3.5.4.1 Piecewise linear finite elements

Piecewise linear, continuous finite elements are uniquely defined by their values at the vertices
of the triangulation. On each element we have N VERTICES(dim) basis functions which are
the barycentric coordinates of the element. Thus, in 1d we have two, in 2d we have three,
and in 3d four basis functions for Lagrange elements of first order; the basis functions and
the corresponding Lagrange nodes in barycentric coordinates are shown in Tables 3.4, 3.5 and
3.6. The calculation of derivatives is straight forward. The global DOF index of the i–th

function position Lagrange node

ϕ̄0(λ) = λ0 vertex 0 λ0 = (1, 0)
ϕ̄1(λ) = λ1 vertex 1 λ1 = (0, 1)

Table 3.4: Local basis functions for linear finite elements in 1d.

function position Lagrange node

ϕ̄0(λ) = λ0 vertex 0 λ0 = (1, 0, 0)
ϕ̄1(λ) = λ1 vertex 1 λ1 = (0, 1, 0)
ϕ̄2(λ) = λ2 vertex 2 λ2 = (0, 0, 1)

Table 3.5: Local basis functions for linear finite elements in 2d.

function position Lagrange node

ϕ̄0(λ) = λ0 vertex 0 λ0 = (1, 0, 0, 0)
ϕ̄1(λ) = λ1 vertex 1 λ1 = (0, 1, 0, 0)
ϕ̄2(λ) = λ2 vertex 2 λ2 = (0, 0, 1, 0)
ϕ̄3(λ) = λ3 vertex 3 λ3 = (0, 0, 0, 1)

Table 3.6: Local basis functions for linear finite elements in 3d.

basis functions on element el is stored for linear finite elements at

e l−>dof [i] [admin−>n0 dof [VERTEX]]

160 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

Setting nv = admin->n0 dof[VERTEX] the associated DOFs are shown in Figure 3.5.
For linear finite elements we want to give examples for the implementation of some routines

in the corresponding BAS FCTS structure.

3.5.7 Example (Accessing DOFs for piecewise linear finite elements). The implementation
of get dof indices() can be done in as in the following 2d example code, compare Figure 3.5
and Remark 3.5.4 with the implementation of the function get int vec() for accessing a local
element vector from a global DOF INT VEC for piecewise linear finite elements.

stat ic const EL DOFVEC ∗
g e t d o f i n d i c e s 1 2 d (DOF ∗vec , const EL ∗ e l , const DOF ADMIN ∗admin ,

const BAS FCTS ∗ t h i s p t r)
{

stat ic DEF EL VEC CONST(DOF, rvec space , N BAS LAG 1 2d , N BAS LAG 1 2d) ;
DOF ∗ rvec = vec ? vec : rvec space−>vec ;
int n0 , /∗ node , ∗/ i ba s ;
DOF ∗∗ do fpt r = el−>dof , dof ;

/∗ node = admin−>mesh−>node [VERTEX] ; ∗/
n0 = admin−>n0 dof [VERTEX] ;
for (i ba s = 0 ; iba s < N BAS LAG 1 2D ; iba s++) {

dof = do fpt r [/∗ node+ ∗/ i ba s] [n0] ;
body ;

}

return vec ? NULL : rve c space ;
}

0

0

1

2

2

3

1

dof[0][nv]

dof[1][nv]

dof[2][nv]

dof[0][nv]

dof[1][nv]

dof[2][nv]

dof[3][nv]

Figure 3.5: DOFs and local numbering of the basis functions for linear elements in 2d and 3d.

3.5.8 Example (Accessing the boundary types of DOFs for piecewise linear finite elements in
2d). The get bound() function fills the bound vector with the boundary type of the vertices,
shown here for 2d:

stat ic const EL BNDRY VEC ∗
get bound1 2d (BNDRY FLAGS ∗vec , const EL INFO ∗ e l i n f o , const BAS FCTS

∗ t h i s p t r)
{

FUNCNAME(”get bound1 2d”) ;

3.5. IMPLEMENTATION OF BASIS FUNCTIONS 161

stat ic DEF EL VEC CONST(BNDRY, rvec space , N BAS LAG 1 2d ,
N BAS LAG 1 2d) ;) ;

BNDRY FLAGS ∗ rvec = vec ? vec : rvec space−>vec ;
int i ;

DEBUG TEST FLAG(FILL BOUND, e l i n f o) ;

for (i = 0 ; i < N VERTICES 2D ; i++) {
BNDRY FLAGS CPY(rvec [i] , e l i n f o −>vertex bound [i]) ;

}

return vec ? NULL : rvec space ;
}

3.5.9 Example (Interpolation for piecewise linear finite elements in 2d). For the interpolation
interpol() routine we have to evaluate the given function at the vertices. Assuming a 2d
mesh, the interpolation can be implemented as follows. Note the use of a “lumping” quadrature
rule; the application supplied function f() has the task to return its value at the quadrature
point iq.

stat ic void i n t e r po l 1 2d (EL REAL VEC ∗ e l v e c ,
const EL INFO ∗ e l i n f o , int wall ,
int no , const int ∗b no ,
REAL (∗ f) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad , int iq ,
void ∗ud) ,

void ∗ f data ,
const BAS FCTS ∗ t h i s p t r)

{
FUNCNAME(” i n t e rpo l 1 2d ”) ;
LAGRANGEDATA ∗ ld = &lag 1 2d da ta ;
REAL ∗ rvec = e l v e c−>vec ;
const QUAD ∗ l q ;
const int ∗ trace map ;
int i ;

DEBUG TEST EXIT(ld−>lumping quad != NULL,
” c a l l e d f o r u n i n i t i a l i z e d Lagrange ba s i s f un c t i on s \n”) ;

i f (wa l l < 0) {
l q = ld−>lumping quad ;
trace map = NULL;

} else {
int type = e l i n f o −>e l t yp e > 0 ;
int o r i e n t = e l i n f o −>o r i e n t a t i o n < 0 ;
l q = &ld−>trace lumping quad [type] [o r i e n t] [wa l l] ;
trace map = th i sp t r−>t race dof map [type] [o r i e n t] [wa l l] ;

}

DEBUG TEST EXIT(! b no | | (no >= 0 && no <= lq−>n po in t s) ,
”not f o r %d po in t s \n” , no) ;

e l v e c−>n components = th i sp t r−>n b a s f c t s ;

i f (b no) {
for (i = 0 ; i < no ; i++) {

162 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

int ib = wal l < 0 ? b no [i] : trace map [b no [i]] ;
rvec [ib] = f (e l i n f o , lq , b no [i] , f d a t a) ;

}
} else {

for (i = 0 ; i < lq−>n po in t s ; i++) {
int ib = wal l < 0 ? i : trace map [i] ;
rvec [ib] = f (e l i n f o , lq , i , f d a t a) ;

}
}

}

3.5.10 Example (Interpolation and restriction routines for piecewise linear finite elements
in 2d). The implementation of functions for interpolation during refinement and restriction
of linear functionals during coarsening is very simple for linear elements; we do not have to
loop over the refinement patch since only the vertices at the refinement/coarsening edge and
the new DOF at the midpoint are involved in this process. No interpolation during coarsening
has to be done since all values at the remaining vertices stay the same; no function has to be
defined.

stat ic void r e a l r e f i n e i n t e r 1 2 d (DOF REAL VEC ∗drv , RC LIST EL ∗ l i s t , int n)
{

FUNCNAME(” r e a l r e f i n e i n t e r 1 2 d ”) ;
EL ∗ e l ;
REAL ∗vec = n i l ;
DOF dof new , dof0 , dof1 ;
int n0 ;

i f (n < 1) return ;
GET DOF VEC(vec , drv) ;
n0 = drv−>f e space−>admin−>n0 dof [VERTEX] ;
e l = l i s t −>e l i n f o . e l ;
dof0 = el−>dof [0] [n0] ; /∗ 1 s t endpoint o f re f inement edge ∗/
dof1 = el−>dof [1] [n0] ; /∗ 2nd endpoint o f re f inement edge ∗/
dof new = el−>ch i l d [0]−>dof [2] [n0] ; /∗ newest v e r t e x i s dim==2 ∗/
vec [dof new] = 0 . 5∗ (vec [dof0] + vec [dof1]) ;

return ;
}

stat ic void r e a l c o a r s e r e s t r 1 2 d (DOF REAL VEC ∗drv , RC LIST EL ∗ l i s t , int n)
{

FUNCNAME(” r e a l c o a r s e r e s t r 1 2 d ”) ;
EL ∗ e l ;
REAL ∗vec = n i l ;
DOF dof new , dof0 , dof1 ;
int n0 ;

i f (n < 1) return ;
GET DOF VEC(vec , drv) ;
n0 = drv−>f e space−>admin−>n0 dof [VERTEX] ;
e l = l i s t −>e l i n f o . e l ;
dof0 = el−>dof [0] [n0] ; /∗ 1 s t endpoint o f re f inement edge ∗/
dof1 = el−>dof [1] [n0] ; /∗ 2nd endpoint o f re f inement edge ∗/

3.5. IMPLEMENTATION OF BASIS FUNCTIONS 163

dof new = el−>ch i l d [0]−>dof [2] [n0] ; /∗ newest v e r t e x i s dim==2 ∗/
vec [dof0] += 0.5∗ vec [dof new] ;
vec [dof1] += 0.5∗ vec [dof new] ;

return ;
}

3.5.4.2 Piecewise quadratic finite elements

Piecewise quadratic, continuous finite elements are uniquely defined by their values at the
vertices and the edges’ midpoints (center in 1d) of the triangulation. In 1d we have three,
in 2d we have six, and in 3d we have ten basis functions for Lagrange elements of second
order; the basis functions and the corresponding Lagrange nodes in barycentric coordinates
are shown in Tables 3.7, 3.8, and 3.9.

function position Lagrange node

ϕ̄0(λ) = λ0(2λ0 − 1) vertex 0 λ0 = (1, 0)

ϕ̄1(λ) = λ1(2λ1 − 1) vertex 1 λ1 = (0, 1)

ϕ̄2(λ) = 4λ0 λ1 center λ2 = (1
2 ,

1
2)

Table 3.7: Local basis functions for quadratic finite elements in 1d.

function position Lagrange node

ϕ̄0(λ) = λ0(2λ0 − 1) vertex 0 λ0 = (1, 0, 0)

ϕ̄1(λ) = λ1(2λ1 − 1) vertex 1 λ1 = (0, 1, 0)

ϕ̄2(λ) = λ2(2λ2 − 1) vertex 2 λ2 = (0, 0, 1)

ϕ̄3(λ) = 4λ1 λ2 edge 0 λ3 = (0, 12 ,
1
2)

ϕ̄4(λ) = 4λ2 λ0 edge 1 λ4 = (1
2 , 0,

1
2)

ϕ̄5(λ) = 4λ0 λ1 edge 2 λ5 = (1
2 ,

1
2 , 0)

Table 3.8: Local basis functions for quadratic finite elements in 2d.

function position Lagrange node

ϕ̄0(λ) = λ0(2λ0 − 1) vertex 0 λ0 = (1, 0, 0, 0)

ϕ̄1(λ) = λ1(2λ1 − 1) vertex 1 λ1 = (0, 1, 0, 0)

ϕ̄2(λ) = λ2(2λ2 − 1) vertex 2 λ2 = (0, 0, 1, 0)

ϕ̄3(λ) = λ3(2λ3 − 1) vertex 3 λ3 = (0, 0, 0, 1)

ϕ̄4(λ) = 4λ0 λ1 edge 0 λ4 = (1
2 ,

1
2 , 0, 0)

ϕ̄5(λ) = 4λ0 λ2 edge 1 λ5 = (1
2 , 0,

1
2 , 0)

ϕ̄6(λ) = 4λ0 λ3 edge 2 λ6 = (1
2 , 0, 0,

1
2)

ϕ̄7(λ) = 4λ1 λ2 edge 3 λ7 = (0, 12 ,
1
2 , 0)

ϕ̄8(λ) = 4λ1 λ3 edge 4 λ8 = (0, 12 , 0,
1
2)

ϕ̄9(λ) = 4λ2 λ3 edge 5 λ9 = (0, 0, 12 ,
1
2)

Table 3.9: Local basis functions for quadratic finite elements in 3d.

164 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

0

1

2

dof[0][nv]

dof[1][nv]

dof[2][nv]

dof[5][ne]

dof[3][ne]

dof[4][ne]

3
4

5

0

1

2

3

4
5

6

8

7

9
dof[0][nv]

dof[1][nv]

dof[2][nv]

dof[3][nv]

dof[4][ne]

dof[5][ne]

dof[6][ne]

dof[8][ne]

dof[7][ne]

dof[9][ne]

Figure 3.6: DOFs and local numbering of the basis functions for quadratic elements in 2d and
3d.

The associated DOFs for basis functions at vertices/edges are located at the vertices/edges
of the element; the entry in the vector of DOF indices at the vertices/edges is determined by
the vertex/edge offset in the corresponding admin of the finite element space: the DOF index
of the i–th basis functions on element el is

e l−>dof [i] [admin−>n0 dof [VERTEX]]

for i = 0,...,N VERTICES-1 and

e l−>dof [i] [admin−>n0 dof [EDGE]]

for i = N VERTICES,...,N VERTICES+N EDGES-1. Here we used the fact, that for quadratic
elements DOFs are located at the vertices and the edges on the mesh. Thus, regardless of
any other set of DOFs, the offset mesh->node[VERTEX] is zero and mesh->node[EDGE] is
N VERTICES.

Setting nv = admin->n0 dof[VERTEX] and ne = admin->n0 dof[EDGE], the associated
DOFs are shown in Figure 3.6.

3.5.11 Example (Accessing DOFs for piecewise quadratic finite elements). The function
get dof indices() for quadratic finite elements can be implemented in 2d by (compare
Figure 3.6):

stat ic const EL DOF VEC ∗
g e t d o f i n d i c e s 2 2 d (DOF ∗vec , const EL ∗ e l , const DOF ADMIN ∗admin ,

const BAS FCTS ∗ t h i s p t r)
{

stat ic DEF EL VEC CONST(DOF, rvec space , N BAS LAG 2 2D , N BAS LAG 2 2D) ;
DOF VEC DOF ∗ rvec = vec ? vec : rvec space−>vec ;
int n0 , ibas , inode ;
DOF ∗∗ do fpt r = el−>dof , dof ;

n0 = (admin)−>n0 dof [VERTEX] ;
for (i ba s = inode = 0 ; iba s < N VERTICES 2D ; inode++, iba s++) {

dof = do fpt r [inode] [n0] ;
body ;

}
n0 = (admin)−>n0 dof [EDGE] ;
for (inode = 0 ; inode < N EDGES 2D ; inode++, iba s++) {

dof = do fpt r [N VERTICES 2D+inode] [n0] ;

3.5. IMPLEMENTATION OF BASIS FUNCTIONS 165

body ;
}

return vec ? NULL : rvec space ;
}

The boundary type of a basis functions at a vertex is the the boundary type of the vertex,
and the boundary type of a basis function at an edge is the boundary type of the edge. The i–
th interpolation coefficient of a function f on element S is just f(x(λi)). The implementation
is similar to that for linear finite elements and is not shown here.

The implementation of functions for interpolation during refinement and coarsening and
the restriction during coarsening becomes more complicated and differs between the dimen-
sions. Here we have to set values for all elements of the refinement patch. The interpolation
during coarsening in not trivial anymore. As an example of such implementations we present
the interpolation during refinement for 2d and 3d.

3.5.12 Example (Interpolation during refinement for piecewise quadratic finite elements in
2d). We have to set values for the new vertex in the refinement edge, and for the two midpoints
of the bisected edge. Then we have to set the value for the midpoint of the common edge of
the two children of the bisected triangle and we have to set the corresponding value on the
neighbor in the case that the refinement edge is not a boundary edge:

stat ic void r e a l r e f i n e i n t e r 2 3 d (DOF REAL VEC ∗drv , RC LIST EL ∗ l i s t , int n)
{

FUNCNAME(” r e a l r e f i n e i n t e r 2 3 d ”) ;
DOF pdof [N BAS LAG 2 3D] ;
DOF cdof [N BAS LAG 2 3D] ;
EL ∗ e l ;
REAL ∗v = NULL;
DOF cdo f i ;
int i , l r s e t ;
int node0 , n0 ;
const DOF ADMIN ∗admin ;
const BAS FCTS ∗ b a s f c t s ;

i f (n < 1) return ;
e l = l i s t −>e l i n f o . e l ;

GET DOF VEC(v , drv) ;
i f (! drv−>f e s p a c e)
{

ERROR(”no f e s p a c e in d o f r e a l v e c %s \n” , NAME(drv)) ;
return ;

}
else i f (! drv−>f e space−>b a s f c t s)
{

ERROR(”no ba s i s f un c t i on s in f e s p a c e %s \n” , NAME(drv−>f e s p a c e)) ;
return ;

}
GET STRUCT(admin , drv−>f e s p a c e) ;
GET STRUCT(ba s f c t s , drv−>f e s p a c e) ;

g e t d o f i n d i c e s 2 3 d (pdof , e l , admin , b a s f c t s) ;

166 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

node0 = drv−>f e space−>mesh−>node [EDGE] ;
n0 = admin−>n0 dof [EDGE] ;

/∗−−∗/
/∗ va l u e s on c h i l d [0]

∗/
/∗−−∗/

g e t d o f i n d i c e s 2 3 d (cdof , e l−>ch i l d [0] , admin , b a s f c t s) ;

v [cdof [3]] = (v [pdof [4]]) ;
v [cdof [6]] = (0 .375∗ v [pdof [0]] − 0 .125∗v [pdof [1]]

+ 0 .75∗v [pdof [4]]) ;
v [cdof [8]] = (0.125∗(−v [pdof [0]] − v [pdof [1]]) + 0.25∗v [pdof [4]]

+ 0 . 5∗ (v [pdof [5]] + v [pdof [7]])) ;
v [cdof [9]] = (0.125∗(−v [pdof [0]] − v [pdof [1]]) + 0.25∗v [pdof [4]]

+ 0 . 5∗ (v [pdof [6]] + v [pdof [8]])) ;

/∗−−∗/
/∗ va l u e s on c h i l d [1]

∗/
/∗−−∗/

c d o f i = e l−>ch i l d [1]−>dof [node0+2] [n0] ;
v [c d o f i] = (−0.125∗v [pdof [0]] + 0.375∗v [pdof [1]]

+ 0 .75∗v [pdof [4]]) ;

/∗−−∗/
/∗ ad j u s t ne ighbour va l u e s

∗/
/∗−−∗/

for (i = 1 ; i < n ; i++)
{

e l = l i s t [i] . e l i n f o . e l ;
g e t d o f i n d i c e s 2 3 d (pdof , e l , admin , b a s f c t s) ;

l r s e t = 0 ;
i f (l i s t [i] . ne igh [0] && l i s t [i] . ne igh [0]−>no < i)

l r s e t = 1 ;

i f (l i s t [i] . ne igh [1] && l i s t [i] . ne igh [1]−>no < i)
l r s e t += 2 ;

DEBUG TEST EXIT(l r s e t , ”no va lue s s e t on both ne ighbours \n”) ;

/∗−−∗/
/∗ va l u e s on c h i l d [0]

∗/
/∗−−∗/

switch (l r s e t)
{
case 1 :

c d o f i = e l−>ch i l d [0]−>dof [node0+4] [n0] ;
v [c d o f i] = (0.125∗(−v [pdof [0]] − v [pdof [1]]) + 0.25∗v [pdof [4]]

+ 0 . 5∗ (v [pdof [5]] + v [pdof [7]])) ;

3.5. IMPLEMENTATION OF BASIS FUNCTIONS 167

break ;
case 2 :

c d o f i = e l−>ch i l d [0]−>dof [node0+5] [n0] ;
v [c d o f i] = (0.125∗(−v [pdof [0]] − v [pdof [1]]) + 0.25∗v [pdof [4]]

+ 0 . 5∗ (v [pdof [6]] + v [pdof [8]])) ;
}

}
return ;

}

3.5.13 Example (Interpolation during refinement for piecewise quadratic finite elements in
3d). Here, we first have to set values for all DOFs that belong to the first element of the
refinement patch. Then we have to loop over the refinement patch and set all DOFs that
have not previously been set on another patch element. In order to set values only once, by
the variable lr set we check, if a common DOFs with a left or right neighbor is set by the
neighbor. Such values are already set if the neighbor is a prior element in the list. Since all
values are set on the first element for all subsequent elements there must be DOFs which have
been set by another element.

stat ic void r e a l r e f i n e i n t e r 2 3 d (DOF REAL VEC ∗drv , RC LIST EL ∗ l i s t , int n)
{

FUNCNAME(” r e a l r e f i n e i n t e r 2 3 d ”) ;
EL ∗ e l ;
REAL ∗v = n i l ;
const DOF ∗ cdof ;
DOF pdof [N BAS2 3D] , c d o f i ;
int i , l r s e t ;
int node0 , n0 ;
const DOF ∗(∗ g e t d o f i n d i c e s) (const EL ∗ , const DOF ADMIN ∗ , DOF ∗) ;
const DOF ADMIN ∗admin ;

i f (n < 1) return ;
e l = l i s t −>e l i n f o . e l ;

GET DOF VEC(v , drv) ;
i f (! drv−>f e s p a c e)
{

ERROR(”no f e s p a c e in d o f r e a l v e c %s \n” , NAME(drv)) ;
return ;

}
else i f (! drv−>f e space−>b a s f c t s)
{

ERROR(”no ba s i s f un c t i on s in f e s p a c e %s \n” , NAME(drv−>f e s p a c e)) ;
return ;

}
g e t d o f i n d i c e s = drv−>f e space−>ba s f c t s−>g e t d o f i n d i c e s ;
GET STRUCT(admin , drv−>f e s p a c e) ;

g e t d o f i n d i c e s (e l , admin , pdof) ;

node0 = drv−>f e space−>mesh−>node [EDGE] ;
n0 = admin−>n0 dof [EDGE] ;

/∗−−∗/
/∗ va l u e s on c h i l d [0]

∗/

168 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

/∗−−∗/

cdof = g e t d o f i n d i c e s (e l−>ch i l d [0] , admin , n i l) ;

v [cdof [3]] = (v [pdof [4]]) ;
v [cdof [6]] = (0 .375∗ v [pdof [0]] − 0 .125∗v [pdof [1]]

+ 0 .75∗v [pdof [4]]) ;
v [cdof [8]] = (0.125∗(−v [pdof [0]] − v [pdof [1]]) + 0.25∗v [pdof [4]]

+ 0 . 5∗ (v [pdof [5]] + v [pdof [7]])) ;
v [cdof [9]] = (0.125∗(−v [pdof [0]] − v [pdof [1]]) + 0.25∗v [pdof [4]]

+ 0 . 5∗ (v [pdof [6]] + v [pdof [8]])) ;

/∗−−∗/
/∗ va l u e s on c h i l d [1]

∗/
/∗−−∗/

c d o f i = e l−>ch i l d [1]−>dof [node0+2] [n0] ;
v [c d o f i] = (−0.125∗v [pdof [0]] + 0.375∗v [pdof [1]]

+ 0 .75∗v [pdof [4]]) ;

/∗−−∗/
/∗ ad j u s t ne ighbour va l u e s

∗/
/∗−−∗/

for (i = 1 ; i < n ; i++)
{

e l = l i s t [i] . e l i n f o . e l ;
g e t d o f i n d i c e s (e l , admin , pdof) ;

l r s e t = 0 ;
i f (l i s t [i] . ne igh [0] && l i s t [i] . ne igh [0]−>no < i)

l r s e t = 1 ;

i f (l i s t [i] . ne igh [1] && l i s t [i] . ne igh [1]−>no < i)
l r s e t += 2 ;

DEBUG TEST EXIT(l r s e t , ”no va lue s s e t on both ne ighbours \n”) ;

/∗−−∗/
/∗ va l u e s on c h i l d [0]

∗/
/∗−−∗/

switch (l r s e t)
{
case 1 :

c d o f i = e l−>ch i l d [0]−>dof [node0+4] [n0] ;
v [c d o f i] = (0.125∗(−v [pdof [0]] − v [pdof [1]]) + 0.25∗v [pdof [4]]

+ 0 . 5∗ (v [pdof [5]] + v [pdof [7]])) ;
break ;

case 2 :
c d o f i = e l−>ch i l d [0]−>dof [node0+5] [n0] ;
v [c d o f i] = (0.125∗(−v [pdof [0]] − v [pdof [1]]) + 0.25∗v [pdof [4]]

+ 0 . 5∗ (v [pdof [6]] + v [pdof [8]])) ;
}

3.5. IMPLEMENTATION OF BASIS FUNCTIONS 169

}
return ;

}

3.5.4.3 Piecewise cubic finite elements

For Lagrange elements of third order we have four basis functions in 1d, ten basis functions
in 2d, and 20 in 3d; the basis functions and the corresponding Lagrange nodes in barycentric
coordinates are shown in Tables 3.10, 3.11, and 3.12.

function position Lagrange node

ϕ̄0(λ) = 1
2 (3λ0 − 1)(3λ0 − 2)λ0 vertex 0 λ0 = (1, 0)

ϕ̄1(λ) = 1
2 (3λ1 − 1)(3λ1 − 2)λ1 vertex 1 λ1 = (0, 1)

ϕ̄2(λ) = 9
2 (3λ0 − 1)λ0λ1 center λ2 = (2

3 ,
1
3)

ϕ̄3(λ) = 9
2 (3λ1 − 1)λ1λ0 center λ3 = (1

3 ,
2
3)

Table 3.10: Local basis functions for cubic finite elements in 1d.

function position Lagrange node

ϕ̄0(λ) = 1
2 (3λ0 − 1)(3λ0 − 2)λ0 vertex 0 λ0 = (1, 0, 0)

ϕ̄1(λ) = 1
2 (3λ1 − 1)(3λ1 − 2)λ1 vertex 1 λ1 = (0, 1, 0)

ϕ̄2(λ) = 1
2 (3λ2 − 1)(3λ2 − 2)λ2 vertex 2 λ2 = (0, 0, 1)

ϕ̄3(λ) = 9
2 (3λ1 − 1)λ1λ2 edge 0 λ3 = (0, 23 ,

1
3)

ϕ̄4(λ) = 9
2 (3λ2 − 1)λ2λ1 edge 0 λ4 = (0, 13 ,

2
3)

ϕ̄5(λ) = 9
2 (3λ2 − 1)λ2λ0 edge 1 λ5 = (1

3 , 0,
2
3)

ϕ̄6(λ) = 9
2 (3λ0 − 1)λ0λ2 edge 1 λ6 = (2

3 , 0,
1
3)

ϕ̄7(λ) = 9
2 (3λ0 − 1)λ0λ1 edge 2 λ7 = (2

3 ,
1
3 , 0)

ϕ̄8(λ) = 9
2 (3λ1 − 1)λ1λ0 edge 2 λ8 = (1

3 ,
2
3 , 0)

ϕ̄9(λ) = 27λ0λ1λ2 center λ9 = (1
3 ,

1
3 ,

1
3)

Table 3.11: Local basis functions for cubic finite elements in 2d.

For cubic elements we have to face a further difficulty. At each edge two basis functions
are located. The two DOFs of the i–th edge are subsequent entries in the vector el->dof[i].
For two neighboring triangles the common edge has a different orientation with respect to the
local numbering of vertices on the two triangles. In Figure 3.7 the 3rd local basis function on
the left and the 4th on the right triangle built up the global basis function, e.g.; thus, both
local basis function must have access to the same global DOF.

In order to combine the global DOF with the local basis function in the implementation
of the get dof indices() function, we have to give every edge a global orientation, i.e, every
edge has a unique beginning and end point. Using the orientation of an edge we are able
to order the DOFs stored at this edge. Let for example the common edge in Figure 3.7 be
oriented from bottom to top. The global DOF corresponding to 3rd local DOF on the left
and the 4th local DOF on the right is then

e l−>dof [N VERTICES+0] [admin−>n0 dof [EDGE]]

170 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

function position Lagrange node

ϕ̄0(λ) = 1
2 (3λ0 − 1)(3λ0 − 2)λ0 vertex 0 λ0 = (1, 0, 0, 0)

ϕ̄1(λ) = 1
2 (3λ1 − 1)(3λ1 − 2)λ1 vertex 1 λ1 = (0, 1, 0, 0)

ϕ̄2(λ) = 1
2 (3λ2 − 1)(3λ2 − 2)λ2 vertex 2 λ2 = (0, 0, 1, 0)

ϕ̄3(λ) = 1
2 (3λ3 − 1)(3λ3 − 2)λ3 vertex 3 λ3 = (0, 0, 0, 1)

ϕ̄4(λ) = 9
2 (3λ0 − 1)λ0λ1 edge 0 λ4 = (2

3 ,
1
3 , 0, 0)

ϕ̄5(λ) = 9
2 (3λ1 − 1)λ1λ0 edge 0 λ5 = (1

3 ,
2
3 , 0, 0)

ϕ̄6(λ) = 9
2 (3λ0 − 1)λ0λ2 edge 1 λ6 = (2

3 , 0,
1
3 , 0)

ϕ̄7(λ) = 9
2 (3λ2 − 1)λ2λ0 edge 1 λ7 = (1

3 , 0,
2
3 , 0)

ϕ̄8(λ) = 9
2 (3λ0 − 1)λ0λ3 edge 2 λ8 = (2

3 , 0, 0,
1
3)

ϕ̄9(λ) = 9
2 (3λ3 − 1)λ3λ0 edge 2 λ9 = (1

3 , 0, 0,
2
3)

ϕ̄10(λ) = 9
2 (3λ1 − 1)λ1λ2 edge 3 λ10 = (0, 23 ,

1
3 , 0)

ϕ̄11(λ) = 9
2 (3λ2 − 1)λ2λ1 edge 3 λ11 = (0, 13 ,

2
3 , 0)

ϕ̄12(λ) = 9
2 (3λ1 − 1)λ1λ3 edge 4 λ12 = (0, 23 , 0,

1
3)

ϕ̄13(λ) = 9
2 (3λ3 − 1)λ3λ1 edge 4 λ13 = (0, 13 , 0,

2
3)

ϕ̄14(λ) = 9
2 (3λ2 − 1)λ2λ3 edge 5 λ14 = (0, 0, 23 ,

1
3)

ϕ̄15(λ) = 9
2 (3λ3 − 1)λ3λ2 edge 5 λ15 = (0, 0, 13 ,

2
3)

ϕ̄16(λ) = 27λ1λ2λ3 face 0 λ16 = (0, 13 ,
1
3 ,

1
3)

ϕ̄17(λ) = 27λ2λ3λ0 face 1 λ17 = (1
3 , 0,

1
3 ,

1
3)

ϕ̄18(λ) = 27λ3λ0λ1 face 2 λ18 = (1
3 ,

1
3 , 0,

1
3)

ϕ̄19(λ) = 27λ0λ1λ2 face 3 λ19 = (1
3 ,

1
3 ,

1
3 , 0)

Table 3.12: Local basis functions for cubic finite elements in 3d.

0

1

2

5

6

9

4

3
7

8
2

5

6

0

7

8

3

9

4

1

Figure 3.7: Cubic DOFs on a patch of two triangles.

and for the 4th local DOF on the left and 3rd local DOF on the right

e l−>dof [N VERTICES+0] [admin−>n0 dof [EDGE]+1]

The global orientation gives a unique access to local DOFs from global ones.

3.5.14 Example (Accessing DOFs for piecewise cubic finite elements). For the implemen-
tation, we use in 2d as well as in 3d an orientation defined by the DOF indices at the edges’
vertices. The vertex with the smaller (global) DOF index is the beginning point, the vertex
with the higher index the end point. For cubics the implementation differs between 2d and
3d. In 2d we have one degree of freedom at the center and in 3d one degree of freedom at each

3.5. IMPLEMENTATION OF BASIS FUNCTIONS 171

face and none at the center. The DOFs at an edge are accessed according to the orientation
of the edge. We present the implementation in 2d:

#define N BAS LAG 3 2D (N VERTICES 2D+2∗N EDGES 2D+1)

stat ic const EL DOF VEC ∗
g e t d o f i n d i c e s 3 2 d (DOF ∗vec , const EL ∗ e l , const DOF ADMIN ∗admin ,

const BAS FCTS ∗ t h i s p t r)
{

stat ic DEF EL VEC CONST(type , rvec space , N BAS LAG 3 2D , N BAS LAG 3 2D) ;
DOF ∗ rvec = vec ? vec : rvec space−>vec ;
int n0 , ibas , inode ;
DOF ∗∗ do fpt r = el−>dof , dof ;

n0 = admin−>n0 dof [VERTEX] ;
for (i ba s = 0 ; iba s < N VERTICES 2D ; iba s++) {

dof = do fpt r [i ba s] [n0] ;
body ;

}
n0 = admin−>n0 dof [EDGE] ;
for (inode = 0 , iba s = N VERTICES 2D ; inode < N EDGES 2D ; inode++) {

i f (do fpt r [v e r t e x o f edg e 2d [inode] [0]] [0]
< do fpt r [v e r t e x o f edg e 2d [inode] [1]] [0]) {

dof = do fpt r [N VERTICES 2D+inode] [n0] ;
body ;
i ba s++;
dof = do fpt r [N VERTICES 2D+inode] [n0+1] ;
body ;
i ba s++;

} else {
dof = do fpt r [N VERTICES 2D+inode] [n0+1] ;
body ;
i ba s++;
dof = do fpt r [N VERTICES 2D+inode] [n0] ;
body ;
i ba s++;

}
}
n0 = admin−>n0 dof [CENTER] ;
dof = do fpt r [6] [n0] ;
body ;

return vec ? NULL : rvec space ;
}

3.5.4.4 Piecewise quartic finite elements

For Lagrange elements of fourth order we have 5 basis functions in 1d, 15 in 2d, and 35 in
3d; the basis functions and the corresponding Lagrange nodes in barycentric coordinates are
shown in Tables 3.13, 3.14, and 3.15.

For the implementation of get dof indices() for quartics, we again need a global ori-
entation of the edges on the mesh. At every edge three DOFs are located, which can then
be ordered with respect to the orientation of the corresponding edge. In 3d, we also need a
global orientation of faces for a one to one mapping of global DOFs located at a face to local

172 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

function position Lagrange node

ϕ̄0(λ) = 1
3 (4λ0 − 1)(2λ0 − 1)(4λ0 − 3)λ0 vertex 0 λ0 = (1, 0)

ϕ̄1(λ) = 1
3 (4λ1 − 1)(2λ1 − 1)(4λ1 − 3)λ1 vertex 1 λ1 = (0, 1)

ϕ̄2(λ) = 16
3 (4λ0 − 1)(2λ0 − 1)λ0λ1 center λ2 = (3

4 ,
1
4)

ϕ̄3(λ) = 4(4λ0 − 1)(4λ1 − 1)λ0λ1 center λ3 = (1
2 ,

1
2)

ϕ̄4(λ) = 16
3 (4λ1 − 1)(2λ1 − 1)λ0λ1 center λ4 = (1

4 ,
3
4)

Table 3.13: Local basis functions for quartic finite elements in 1d.

function position Lagrange node

ϕ̄0(λ) = 1
3 (4λ0 − 1)(2λ0 − 1)(4λ0 − 3)λ0 vertex 0 λ0 = (1, 0, 0)

ϕ̄1(λ) = 1
3 (4λ1 − 1)(2λ1 − 1)(4λ1 − 3)λ1 vertex 1 λ1 = (0, 1, 0)

ϕ̄2(λ) = 1
3 (4λ2 − 1)(2λ2 − 1)(4λ2 − 3)λ2 vertex 2 λ2 = (0, 0, 1)

ϕ̄3(λ) = 16
3 (4λ1 − 1)(2λ1 − 1)λ1λ2 edge 0 λ3 = (0, 34 ,

1
4)

ϕ̄4(λ) = 4(4λ1 − 1)(4λ2 − 1)λ1λ2 edge 0 λ4 = (0, 12 ,
1
2)

ϕ̄5(λ) = 16
3 (4λ2 − 1)(2λ2 − 1)λ1λ2 edge 0 λ5 = (0, 14 ,

3
4)

ϕ̄6(λ) = 16
3 (4λ2 − 1)(2λ2 − 1)λ0λ2 edge 1 λ6 = (1

4 , 0,
3
4)

ϕ̄7(λ) = 4(4λ2 − 1)(4λ0 − 1)λ0λ2 edge 1 λ7 = (1
2 , 0,

1
2)

ϕ̄8(λ) = 16
3 (4λ0 − 1)(2λ0 − 1)λ0λ2 edge 1 λ8 = (3

4 , 0,
1
4)

ϕ̄9(λ) = 16
3 (4λ0 − 1)(2λ0 − 1)λ0λ1 edge 2 λ9 = (3

4 ,
1
4 , 0)

ϕ̄10(λ) = 4(4λ0 − 1)(4λ1 − 1)λ0λ1 edge 2 λ10 = (1
2 ,

1
2 , 0)

ϕ̄11(λ) = 16
3 (4λ1 − 1)(2λ1 − 1)λ0λ1 edge 2 λ11 = (1

4 ,
3
4 , 0)

ϕ̄12(λ) = 32(4λ0 − 1)λ0λ1λ2 center λ12 = (1
2 ,

1
4 ,

1
4)

ϕ̄13(λ) = 32(4λ1 − 1)λ0λ1λ2 center λ13 = (1
4 ,

1
2 ,

1
4)

ϕ̄14(λ) = 32(4λ2 − 1)λ0λ1λ2 center λ14 = (1
4 ,

1
4 ,

1
2)

Table 3.14: Local basis functions for quartic finite elements in 2d.

DOFs on an element at that face. Such an orientation can again be defined by DOF indices
at the face’s vertices.

3.5.4.5 Access to Lagrange elements

The Lagrange elements described above are already implemented in ALBERTA; access to
Lagrange elements is given by the function

const BAS FCTS ∗ ge t l a g r ange (int , int) ;

Description:

get lagrange(dim, degree) returns a pointer to a filled BAS FCTS structure for Lagrange
elements of order degree, where 1 ≤ degree ≤ 4, for dimension dim; no additional call of
new bas fcts() is needed.

3.5.5 Discontinuous Lagrange finite elements

Similar to the standard Lagrange elements described above, discontinuous polynomial finite
elements are piecewise polynomial functions. However, the functions are not globally continu-

3.5. IMPLEMENTATION OF BASIS FUNCTIONS 173

function position Lagrange node

ϕ̄0(λ) = 1
3 (4λ0 − 1)(2λ0 − 1)(4λ0 − 3)λ0 vertex 0 λ0 = (1, 0, 0, 0)

ϕ̄1(λ) = 1
3 (4λ1 − 1)(2λ1 − 1)(4λ1 − 3)λ1 vertex 1 λ1 = (0, 1, 0, 0)

ϕ̄2(λ) = 1
3 (4λ2 − 1)(2λ2 − 1)(4λ2 − 3)λ2 vertex 2 λ2 = (0, 0, 1, 0)

ϕ̄3(λ) = 1
3 (4λ3 − 1)(2λ3 − 1)(4λ3 − 3)λ3 vertex 3 λ3 = (0, 0, 0, 1)

ϕ̄4(λ) = 16
3 (4λ0 − 1)(2λ0 − 1)λ0λ1 edge 0 λ4 = (3

4 ,
1
4 , 0, 0)

ϕ̄5(λ) = 4(4λ0 − 1)(4λ1 − 1)λ0λ1 edge 0 λ5 = (1
2 ,

1
2 , 0, 0)

ϕ̄6(λ) = 16
3 (4λ1 − 1)(2λ1 − 1)λ0λ1 edge 0 λ6 = (1

4 ,
3
4 , 0, 0)

ϕ̄7(λ) = 16
3 (4λ0 − 1)(2λ0 − 1)λ0λ2 edge 1 λ7 = (3

4 , 0,
1
4 , 0)

ϕ̄8(λ) = 4(4λ0 − 1)(4λ2 − 1)λ0λ2 edge 1 λ8 = (1
2 , 0,

1
2 , 0)

ϕ̄9(λ) = 16
3 (4λ2 − 1)(2λ2 − 1)λ0λ2 edge 1 λ9 = (1

4 , 0,
3
4 , 0)

ϕ̄10(λ) = 16
3 (4λ0 − 1)(2λ0 − 1)λ0λ3 edge 2 λ10 = (3

4 , 0, 0,
1
4)

ϕ̄11(λ) = 4(4λ0 − 1)(4λ3 − 1)λ0λ3 edge 2 λ11 = (1
2 , 0, 0,

1
2)

ϕ̄12(λ) = 16
3 (4λ3 − 1)(2λ3 − 1)λ0λ3 edge 2 λ12 = (1

4 , 0, 0,
3
4)

ϕ̄13(λ) = 16
3 (4λ1 − 1)(2λ1 − 1)λ1λ2 edge 3 λ13 = (0, 34 ,

1
4 , 0)

ϕ̄14(λ) = 4(4λ1 − 1)(4λ2 − 1)λ1λ2 edge 3 λ14 = (0, 12 ,
1
2 , 0)

ϕ̄15(λ) = 16
3 (4λ2 − 1)(2λ2 − 1)λ1λ2 edge 3 λ15 = (0, 14 ,

3
4 , 0)

ϕ̄16(λ) = 16
3 (4λ1 − 1)(2λ1 − 1)λ1λ3 edge 4 λ16 = (0, 34 , 0,

1
4)

ϕ̄17(λ) = 4(4λ1 − 1)(4λ3 − 1)λ1λ3 edge 4 λ17 = (0, 12 , 0,
1
2)

ϕ̄18(λ) = 16
3 (4λ3 − 1)(2λ3 − 1)λ1λ3 edge 4 λ18 = (0, 14 , 0,

3
4)

ϕ̄19(λ) = 16
3 (4λ2 − 1)(2λ2 − 1)λ2λ3 edge 5 λ19 = (0, 0, 34 ,

1
4)

ϕ̄20(λ) = 4(4λ2 − 1)(4λ3 − 1)λ2λ3 edge 5 λ20 = (0, 0, 12 ,
1
2)

ϕ̄21(λ) = 16
3 (4λ3 − 1)(2λ3 − 1)λ2λ3 edge 5 λ21 = (0, 0, 14 ,

3
4)

ϕ̄22(λ) = 32(4λ1 − 1)λ1λ2λ3 face 0 λ22 = (0, 12 ,
1
4 ,

1
4)

ϕ̄23(λ) = 32(4λ2 − 1)λ1λ2λ3 face 0 λ23 = (0, 14 ,
1
2 ,

1
4)

ϕ̄24(λ) = 32(4λ3 − 1)λ1λ2λ3 face 0 λ24 = (0, 14 ,
1
4 ,

1
2)

ϕ̄25(λ) = 32(4λ0 − 1)λ0λ2λ3 face 1 λ25 = (1
2 , 0,

1
4 ,

1
4)

ϕ̄26(λ) = 32(4λ2 − 1)λ0λ2λ3 face 1 λ26 = (1
4 , 0,

1
2 ,

1
4)

ϕ̄27(λ) = 32(4λ3 − 1)λ0λ2λ3 face 1 λ27 = (1
4 , 0,

1
4 ,

1
2)

ϕ̄28(λ) = 32(4λ0 − 1)λ0λ1λ3 face 2 λ28 = (1
2 ,

1
4 , 0,

1
4)

ϕ̄29(λ) = 32(4λ1 − 1)λ0λ1λ3 face 2 λ29 = (1
4 ,

1
2 , 0,

1
4)

ϕ̄30(λ) = 32(4λ3 − 1)λ0λ1λ3 face 2 λ30 = (1
4 ,

1
4 , 0,

1
2)

ϕ̄31(λ) = 32(4λ0 − 1)λ0λ1λ2 face 3 λ31 = (1
2 ,

1
4 ,

1
4 , 0)

ϕ̄32(λ) = 32(4λ1 − 1)λ0λ1λ2 face 3 λ32 = (1
4 ,

1
2 ,

1
4 , 0)

ϕ̄33(λ) = 32(4λ2 − 1)λ0λ1λ2 face 3 λ33 = (1
4 ,

1
4 ,

1
2 , 0)

ϕ̄34(λ) = 256λ0λ1λ2λ3 center λ34 = (1
4 ,

1
4 ,

1
4 ,

1
4)

Table 3.15: Local basis functions for quartic finite elements in 3d.

ous. This is implemented in ALBERTA by assigning all DOFs to be of type CENTER, implying
that they will not be shared among elements. At the moment these elements are available for
polynomial degree 0 (piecewise constants), degree 1 (piecewise linears), and degree 2 (piece-
wise quadratics). Much of the implementation is similiar to the case of standard Lagrange

174 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

elements, hence we will not provide a detailed description.

Access to discontinuous elements is provided by the function

const BAS FCTS ∗ g e t d i s c on t i nuou s l a g r ang e (int dim , int degree) ;

Description:

get discontinuous lagrange(dim, degree) returns a pointer to a filled BAS FCTS

structure for discontinuous polynomial elements of order degree, where 0 ≤ degree ≤ 2
for dimension dim; no additional call of new bas fcts() is needed.

3.5.6 Discontinuous orthogonal finite elements

In the context of discontinuous Galerkin methods it is often easier to use basis-functions
which are orthogonal w.r.t. the L2 scalar product, especially in the context of explicit time
discretization schemes where the use of orthogonal basis functions eliminates the need for
the inversion of the mass-matrix. ALBERTA implements discontinuous L2-orthogonal basis
functions of degree 1 and 2 in all supported mesh-dimensions.

Access to discontinuous elements is provided by the function

const BAS FCTS ∗ g e t d i s c o r t h o p o l y (int dim , int degree) ;

Description:

get disc ortho poly(dim, degree) returns a pointer to a filled BAS FCTS structure for
discontinuous polynomial elements of order degree, where 1 ≤ degree ≤ 2 for dimension
dim; no additional call of new bas fcts() is needed.

3.5.7 Basis-function plug-in module

ALBERTA also supports a rudimentary plug-in scheme, if get bas fcts(dim,

name) cannot find an instance of basis functions requested by the parameter
name, then it looks for the environment variable ALBERTA_BAS_FCTS_LIB_XD re-
spectively ALBERTA_BAS_FCTS_LIB_XD_DEBUG, where the X has to be replaced by
the value of DIM OF WORLD. The environment variable is supposed to contain the
full path to a shared library containing additional basis-function implementations.
The module must define (and export) a function in C-calling convention named
const BAS_FCTS *bas_fcts_init(int dim, dim dow, const char *name), which is
called to resolve the request of the application program. By pointing to a basis-function
plug-in module via that environment variable it is, e.g., possible to post-process finite element
data using “fancy” basis function implementations with the GRAPE or Paraview interface
tools (see Section 4.11), without having to recompile and relink the converter-tools (like
alberta2paraview_Xd).

Additionally, the function

typedef const BAS FCTS ∗
(∗BAS FCTS INIT FCT) (int dim , int dow , const char ∗name) ;

void add ba s f c t s p l u g i n (BAS FCTS INIT FCT i n i t f c t) ;

3.6. IMPLEMENTATION OF FINITE ELEMENT SPACES 175

can be used to supply additional plug-in functions defining even more basis-functions.
During the installation of the ALBERTA package the basis-function add-on module in
add_ons/libalbas/ is compiled and installed under the name

PREFIX/ l i b / l i ba lba s Xd [debug] .DYNEXT,

where the X again has to be replaced by the value of DIM OF WORLD and DYNEXT stands for the
architecture dependent extension attached to dynamic libraries.

libalbas currently implements wall-bubbles (i.e. face-bubbles and edge-bubbles), ele-
ment bubbles and the corresponding trace-spaces. There is also a very rudimentary and
untested version of the lowest order Raviart-Thomas element. Additionally, the function
stokes_pair() implements some of the known stable mixed discretizations for the Stokes-
problem.

typedef struct s t o k e s p a i r STOKES PAIR;
struct s t o k e s p a i r
{

const BAS FCTS ∗ v e l o c i t y ;
const BAS FCTS ∗ pre s su r e ;
/∗ cons t BAS FCTS ∗ s l i p s t r e s s ; ∗/

} ;

STOKES PAIR s t o k e s p a i r (const char ∗name , unsigned dim , unsigned degree) ;

The application must be linked against libalbas and include the header file albas.h to
use it. stokes_pair() can be invoked with the symbolic names "Mini", "BernardiRaugel",
"CrouzeixRaviar" and "TaylorHood" and returns the requested Stokes-discretization, which
in all cases except for Taylor-Hood consists of a chain of local basis functions where the first
part of the chain contains the Lagrange-component and the other parts the ”bubbly” add-ons
used to stabilize the resulting Stokes-pair. See also Section 3.5.3 and Section 3.7.

3.6 Implementation of finite element spaces

3.6.1 The finite element space data structure

All information about the underlying mesh, the local basis functions, and the DOFs are
collected in the following data structure which defines one single finite element space:

typedef struct f e s p a c e FE SPACE;

struct f e s p a c e
{

const char ∗name ;
const DOF ADMIN ∗admin ;
const BAS FCTS ∗ b a s f c t s ;
MESH ∗mesh ;
int rdim ;
DBL LIST NODE chain ;
const FE SPACE ∗unchained ;

} ;

176 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

Description:

name holds a textual description of the finite element space. Note that name is duplicated
by calling strdup(3)

admin pointer to the DOF administration for the DOFs of this finite element space, see
Section 3.3.1.

bas fcts pointer to the local basis functions, see Section 3.5.1.

mesh pointer to the underlying mesh, see Section 3.2.12.

rdim The dimension of the range of the elements of this finite element space, as ALBERTA
nowadays supports vector-valued basis functions it becomes now important whether a
given finite element space is actually meant for scalar functions or for vector fields. See
also Section 3.5.2.

chain List pointer to a chain of finite element spaces which form a direct sum, see Sec-
tion 3.7. Such a direct sum is based on a chain of local basis functions as described by
Section 3.5.3.

unchained If the finite element space is part of a direct sum of finite element spaces (and
thus chain is the link to the other elements of this direct sum) then unchained is a copy
of the FE SPACE which is unaware of this fact, i.e. FE SPACE.unchained.chain points back
to itself. If the finite element space does not form part of a direct sum, then unchained

simply points back to the same FE_SPACE. See also Section 3.7 and Section 3.5.

Some remarks:

• Several finite element spaces can be handled on the same mesh. Different finite element
spaces can use the same DOF administration, if they share exactly the same DOFs.

• Using direct sums of finite element spaces which are chained together using the
FE_SPACE.chain-component has the effect that all derived structures are also chains of
objects, coefficient vectors become chains of coefficient vectors, matrices become block
matrices, where the blocks are chained together using chains for rows and columns. The
same holds for the per-element vectors and matrices.

• ALBERTA provides full support for these chains in its infra-structure for the assembling
of the discrete systems, as well as in the solver infra-structure and in the support
functions for the computation of errors and error estimates.

3.6.2 Access to finite element spaces

A finite element space can only be accessed by the function

const FE SPACE ∗ g e t f e s p a c e (MESH ∗mesh , const char ∗name ,
const BAS FCTS ∗ ba s f c t s , int rdim ,
FLAGS adm f lags) ;

const FE SPACE ∗ g e t do f s pa c e (MESH ∗mesh , const char ∗name ,
const int ndof [N NODE TYPES] ,
FLAGS adm f lags) ;

3.6. IMPLEMENTATION OF FINITE ELEMENT SPACES 177

Descriptions

get fe space(mesh, name, bas fcts, rdim, adm flags) defines a new finite element
space on mesh; it looks for an existing dof admin defined on mesh, which manages DOFs
uniquely defined by bas fcts->dof admin->n dof (compare Section 3.3.1); if such a
dof admin is not found, a new dof admin is created.

Parameters

mesh A pointer to the underlying triangulation.

name A fancy name, used for pretty-printing and debugging.

bas fcts The underlying basis functions. If bas fcts is a disjoint union, or
“chain”, of local basis functions sets, then the resulting finite element space will be
the direct sum of the finite element spaces defined by the respective components
of the disjoint union of local basis function sets, see Section 3.7 and Section 3.5.
The component unchained of the FE SPACE structure will – for each component of
the direct sum – point to an FE SPACE instance which is ignorant of the fact that
it forms part of a direct sum of finite element spaces.

rdim The dimension of the range of the elements of the finite element space. Now
that ALBERTA also support DIM OF WORLD-valued basis functions, this parameter
plays an important role; without attaching a “range-dimension” to a finite element
space it would be hardly possible to assemble discrete systems in a consistent man-
ner. Of course, if the underlying basis functions are vector-valued for themselves,
then rdim has to equal DIM OF WORLD as well. If the underlying local basis func-
tions are scalar-valued, then rdim may be either 1 to generate a finite element
space consisting of scalar functions, or DIM OF WORLD to generate a finite element
space consisting of DIM OF WORLD-valued functions. Other values for rdim are not
supported.

adm flags Currently adm_flags is the bit-wise or of ADM_PRESERVE_COARSE_DOFS
and/or ADM_PERIODIC. If the flag ADM_PRESERVE_COARSE_DOFS is set, then it re-
quests that DOFs normally be deleted during refinement should be preserved in-
stead. This is necessary for higher order multi-grid implementations as well as for
the internal maintenance of submeshes, see Section 3.9. For a detailed description
of which DOFs would normally be deleted, see Section 3.3.

ADM_PERIODIC requests a periodic finite element space where DOFs across periodic
walls are identified. See Section 3.10.

return value The return value is a newly created FE SPACE structure, where name is
duplicated, and the members mesh, bas fcts and admin are adjusted correctly.

get dof space(mesh, name, n dof, adm flags) performs a similar task as
get_fe_space(), however, the resulting “space” is not bound to a BAS_FCTS in-
stance. Instead, the argument n_dof determines the distribution of the DOFs across the
sub-simplices. The elements of n dof determine how many degrees of freedom are tied to
each sub-simplex on each element, the mapping is defined by the NODE TYPE enumeration
type, see the source code listing on page 74, i.e. VERTEX == 0, CENTER == 1, EDGE == 2,
FACE == 3. The following code-snippet defines an “FE SPACE” with 42 DOFs on each face:

178 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

int n dof [N NODE TYPES] = {0 , 0 , 0 , 42} ;
const FE SPACE ∗ f a c e d o f s p a c e ;

f a c e d o f s p a c e =
ge t do f s pa c e (mesh , ” f a c e do f s ” , n dof , ADM FLAGS DFLT) ;

The selection of finite element spaces defines the DOFs that must be present on the mesh
elements. For each finite element space there must be a corresponding DOF administration,
having information about the used DOFs. Each call of get fe space() requires the internal
adjustment of the el->dof pointer arrays which is potentially expensive, since information
about which elements share a vertex/edge/face must be calculated for the current triangula-
tion. It is therefore advisable (but not necessary) to allocate all finite element spaces before
refining the mesh.

Since a mesh only gives access to the DOF ADMINs defined on it, the user has to store
pointers to the FE SPACE structures in some global variable; no access to FE SPACEs is possible
via the underlying mesh.

3.6.1 Example (Initializing DOFs for Stokes and Navier–Stokes). Now, as an example we
look at a possible main function. In the example we want to define two finite element spaces
on the mesh, for a mixed finite element formulation of the Stokes or Navier–Stokes equations
with the Taylor–Hood element, e.g. we want to use Lagrange finite elements of order degree
(for the velocity) and degree− 1 (for the pressure). Pointers to the corresponding FE SPACE

structures are stored in the global variables u fe and p fe.

stat ic FE SPACE ∗ u fe , ∗ p f e ;
stat ic int degree , dim ;

int main ()
{

const MESH ∗mesh ;
const BAS FCTS ∗ l ag range ;
MACRODATA ∗data ;

TEST EXIT(degree > 1) (” degree must be g r e a t e r than 1\n”) ;

. . .

data = read macro (f i l ename) ;
mesh = GETMESH(dim , ”ALBERTA mesh” , data , NULL, NULL) ;
f r e e macro data (data) ;

l agrange = ge t l a g r ange (mesh−>dim , degree) ;
u f e = g e t f e s p a c e (

mesh , ” Ve loc i ty space ” , lagrange , DIM OFWORLD, ADM FLAGS DFLT) ;

lagrange = ge t l a g r ange (mesh−>dim , degree −1) ;
p f e = g e t f e s p a c e (mesh , ” Pressure space ” , lagrange , 1 , ADM FLAGS DFLT) ;

. . .

return ;
}

3.7. DIRECT SUMS OF FINITE ELEMENT SPACES 179

This will provide all DOFs for the two finite element spaces on the elements and the corre-
sponding DOF ADMINs will have information about the access to local DOFs for both finite
element spaces.

It is also possible to define only one or even more finite element spaces; the use of special
user defined basis functions is possible too. These should be added to the list of all used basis
functions by a call of new bas fcts() before allocating finite element spaces.

3.7 Direct sums of finite element spaces

Sometimes it is necessary to use finite element spaces which are direct sums of a standard space
plus a more or less bizarre add-on. The velocity space for several stable mixed discretizations
of the Stokes problem, for instance, has this structure: it consists of piece-wise linear elements
plus an element bubble for the so-called “Mini”-element, piece-wise linear elements plus face-
bubbles for the “Bernardi-Raugel”-element, for the “Crouzeix-Raviart” element it consists of
piece-wise quadratic elements plus an element-bubble in 2d, and forms a direct sum with three
components in 3d, where face-bubble have to be added in addition to the element-bubble,
which was already present in 2d.

3.7.1 Data structures for disjoint unions and direct sums

ALBERTA support such direct sums of finite element spaces. The fundaments for such direct
sums are formed by “chains” of BAS FCTS-structures, modeling the disjoint union of local
basis-function sets, see Section 3.5.3. A disjoint union of basis functions sets is implemented
using a cyclic, doubly linked list. This affects all structures which are functionally based on the
structure of the local set of basis functions: the FE SPACE-structure, the DOF XXX VEC coeffi-
cient vectors, and their local counter parts name EL XXX VEC (XXX being used as a place holder
for the type, e.g. XXX ≡ REAL), the matrix structure DOF MATRIX (and its local count-part), the
frame-work used for assembling the discrete systems and – of course – the quadrature caches
defined by the QUAD FAST structure. Basically, all structures which are directly of indirectly
derived from such a disjoint union of local basis function sets inherit this “disjoint union”
layout and come with a list-node component which implements this connectivity within AL-
BERTA. The list node itself is a simple doubly-linked list node, namely

typedef struct db l l i s t n o d e DBL LIST NODE;

struct db l l i s t n o d e
{

struct db l l i s t n o d e ∗next ;
struct db l l i s t n o d e ∗prev ;

} ;

In all the structures needing such a list-node, there are components named ...chain, compare
for instance the source code listing for the BAS FCTS structure on page 145:

struct b a s f c t s
{

. . . /∗ o ther s t u f f ∗/
DBL LIST NODE chain ;
. . . /∗ more s t u f f ∗/

} ;

180 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

This becomes even more complicated in the context of matrix-structures, the EL MATRIX

structure (compare the source-code listing on page 252), for instance, needs two list-node
components, namely

struct e l mat r i x
{

. . . /∗ o ther s t u f f ∗/
DBL LIST NODE row chain ;
DBL LIST NODE co l c ha i n ;
. . . /∗ more s t u f f ∗/

} ;

because the local row-space as well as the local column-space may be direct sums of local
finite element spaces. So matrices carry a block-matrix structure if the underlying spaces are
direct sums, and the col chain and row chain give the link between the different blocks,
each block being a single EL MATRIX structure (or whatever other matrix-structure).

Conceptionally, all these lists are cyclic, and there is no dedicated list-head. This may bear
the risk for certain kinds of programming errors, but is, on the other hand, quite nice for the
implementation, because in this setting an ordinary BAS FCTS structure which is not a disjoint
union of several basis function sets is at the same time a disjoint union with one component,
so the code does not need to differentiate between direct sums and single-component objects,
thus eliminating the need to introduce new data-types to model direct sums of function spaces.

3.7.2 List-management and looping constructs

This section describes some basic support macro and functions for list-management like adding
to direct sum or deleting from them, as well as some loop-constructs. Generally, all the macros
come in three flavours: with a CHAIN ...-, ROW CHAIN ... and a COL CHAIN ... prefix, acting
on the chain, row chain and col chain list-nodes in the respective data-structures. This is
the only difference between the three flavours of macros, so we describe only the variant with
the CHAIN-prefix.

CHAIN INIT(elem) Initialize elem->chain; that is make elem->chain.next and
elem->chain.prev to &elem->chain. This defines the empty, respectively one-component
list.

CHAIN INITIALIZER(name) Perform the same task as CHAIN INIT(elem), but in the con-
text of a static initialization, e.g.

stat ic BAS\ FCTS b f c t s = {
. . . /∗ o ther s t u f ∗/ ,
CHAIN INITIALIZER(b f c t s) ,
. . . /∗ more s t u f f ∗/

} ;

CHAIN LENGTH(head) Compute the number of list elements in the cyclic list head->chain.

CHAIN SINGLE(var) Evaluate to true if var->chain is the one-element list.

CHAIN NEXT(var, type)

CHAIN PREV(var, type) Return a pointer to the element following, respectively preceding
var. The argument type must denote the data-type of var, e.g.

3.7. DIRECT SUMS OF FINITE ELEMENT SPACES 181

const BAS FCTS ∗ nex t b f c t s = CHAIN NEXT(b fc t s , const BAS FCTS) ;
const BAS FCTS ∗ p r ev b f c t s = CHAIN PREV(b fc t s , const BAS FCTS) ;

CHAIN ADD HEAD(head, elem)

CHAIN ADD TAIL(head, elem) Add elem to the head, respectively to the tail of
head->chain. Adding to the head means that elem will become the element following
head, and adding to the tail means that elem will become the list element preceding head.
In particular, adding to either the end or tail of an one-element list will produce the same
results.

CHAIN DEL(elem) Delete elem->chain from any list it may belong to, and call
CHAIN INIT(elem) afterwards. The result will be that elem becomes a one-element list.

CHAIN FOREACH(ptr, head, type) Loop over all element of head->chain which fol-
low head->chain, excluding the element pointed to by head itself. Something similar to
CHAIN LENGTH(head) mentioned above could for instance be implemented as

int b f c t s c h a i n l e n g t h (const BAS FCTS ∗head)
{

const BAS FCTS ∗pos ;

int l en = 1 ;
CHAIN FOREACH(pos , head , const BAS FCTS) {

++len ;
}
return l en ;

}

CHAIN FOREACH SAVE(ptr, next, head, type) Similar to CHAIN FOREACH(), but allow
for deletion of list-elements during the loop. For this to work an additional pointer has to
be provided which is points to the element following the current element. This way, the
current element – pos – maybe safely removed from the list and deleted during the loop:

typedef struct my chained object
{

. . . /∗ s t u f f ∗/
DBL LIST NODE chain ;
. . . /∗ o ther s u f f ∗/

} ;

int de l e t e my cha ined ob j e c t (MY CHAINED OBJECT ∗ l i s t)
{

MY CHAINED OBJECT ∗pos , ∗next ;

CHAIN FOREACH SAFE(pos , next , l i s t , MY CHAINED OBJECT) {
CHAIN DEL(pos) ;
MEMFREE(pos , 1 , MY CHAINED OBJECT) ;

}
MEMFREE(head , 1 , MY CHAINED OBJECT) ;

}

CHAIN FOREACH REV(ptr, head, type)

182 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

CHAIN FOREACH REV SAVE(ptr, next, head, type) Same as the non-REV-counterparts
explained above, but the loop is perform in the reverse direction, following
head->chain.prev instead of head->chain.next.

CHAIN DO(list, type)

CHAIN WHILE(list, type) Perform a loop over the list, include the first element (in con-
trast to CHAIN FOREACH() which always skips the first element:

int b f c t s c h a i n l e n g t h (const BAS FCTS ∗pos)
{

int l en = 0 ;
CHAIN DO(pos , const BAS FCTS) {

++len ;
} CHAIN WHILE(pos , const BAS FCTS) ;
return l en ;

}

CHAIN DO REV(list, type)

CHAIN WHILE REV(list, type) Same as the CHAIN DO()-CHAIN WHILE() pair, but loop
in reverse direction, following list->head.prev instead of list->head.next.

FOREACH DOF(fe space, todo, next) A replacement for FOR ALL DOFS(), which imple-
ments an outer loop over the components of the chain, calling FOR ALL DOFS() for each
component in turn. In this setting todo is a code-block which is executed for each DOF and
next is a code block which is executed at the end of the inner FOR ALL DOFS() call and
should be used to roll data to the next chain-component. The first argument is moved on
to Compare also Section 3.3.5. Example:

void p r i n t a l l v a l u e s (const DOF REAL VEC ∗ do f vec)
{

FOREACHDOF(dof vec−>f e space ,
/∗ todo−b l o c k ∗/
MSG(” value : %e\n” , dof vec−>vec [dof]) ,
/∗ next−b l o c k ∗/
do f vec = CHAIN NEXT(dof vec , const DOF REAL VEC)) ;

}

FOREACH DOF DOW(fe space, todo, todo cart, next) A special version of
FOREACH DOF() for chains mixing vector-valued finite element functions based on
either scalar- or DIM OF WORLD-valued basis functions: in this context the coefficient
vectors for scalar basis functions consist of vector valued coefficients, while the coefficient
vectors for scalar basis-functions consist of scalars, e.g.

void p r i n t a l l v a l u e s d ow (const DOF REAL VEC D ∗ do f vec)
{

FOREACHDOFDOW(dof vec−>f e space ,
/∗ todo−b l o c k ∗/
MSG(” value : %e\n” , dof vec−>vec [dof]) ,
/∗ t odo car t−b l o c k ∗/
MSG(” value : ”FORMATDOW”\n” ,

EXPANDDOW(((const DOF REAL D VEC ∗) do f vec)−>vec [dof])) ,
/∗ next−b l o c k ∗/
do f vec = CHAIN NEXT(dof vec , const DOF REAL VEC D)) ;

}

3.7. DIRECT SUMS OF FINITE ELEMENT SPACES 183

Note the difference between a DOF REAL VEC D coding a vector valued finite-element func-
tion, and a DOF REAL D VEC, coding for a vector storing REAL D-valued coefficients. The
name todo cart stems from the fact that the parts of the direct sum belonging to scalar-
valued basis functions is in fact a Cartesian product space of scalar finite element spaces.

FOREACH FREE DOF(fe space, todo, next)

FOREACH FREE DOF DOW(fe space, todo, todo cart, next) Similar to the other two
loop-macros, but in the inner loop the FOR ALL FREE DOFS)-macro is called, see Sec-
tion 3.3.5.

3.7.3 Managing temporary coefficient vectors

Sometimes it is useful to hook a contiguous, flat array of values into a “dummy” DOF XXX VEC

structure. Most iterative solver available from third party sources, for instance, as well as the
“OEM”-library functions (Orthogonal Error Methods, see Section 4.10) expect matrix-vector
routines which accept pointers to such arrays, but the matrix-vector routines implementing
the operation of DOF MATRIXes on finite element coefficient vectors only accept arguments of
type DOF REAL[D] VEC[D]-type (see Section 3.3.7).

3.7.1 Compatibility Note. Prior to the introduction of the support for direct sums of
finite element spaces, this task was quite easy, have a look at the following code-excerpt,
implementing a matrix-vector routine for an older version of ALBERTA:

void mat vec s (void ∗ud , int dim , const REAL ∗x , REAL ∗y)
{

DOF REAL VEC do f x = { n i l , n i l , ”x” , 0 , n i l , n i l , n i l } ;
DOF REAL VEC do f y = { n i l , n i l , ”y” , 0 , n i l , n i l , n i l } ;
struct mv data ∗ data = (struct mv data ∗) ud ;
const DOF ADMIN ∗admin = data−>matrix−>row f e space−>admin ;

d o f x . f e s p a c e = data−>matrix−>c o l f e s p a c e ;
d o f y . f e s p a c e = data−>matrix−>r ow f e s pa c e ;
d o f x . s i z e = do f y . s i z e = dim ;
d o f x . vec = (REAL ∗) x ;
d o f y . vec = y ;

dof mv (data−>t ranspose , data−>matrix , &do f x , &do f y) ;
}

However, this will no longer work, because the dof mv() routine expects its argument to model
direct sums of finite element spaces, and even for the standard case it expects the dof x.chain

and dof y.chain list-nodes to be initialized properly, defining “direct sums” consisting of a
single summand.

To aid the task of defining such “dummy”-vectors, there are some support functions which
take care of transferring the direct-sum-structure of the finite element space in question to
the temporaries which are needed to interface, e.g., to the matrix-vector routines pairing
DOF MATRIXes with DOF-vectors. To improve the readability of the code, it is maybe advisable
to use the new routines anyway. The example given above in Compatibility Note 3.7.1 collapses
to the following, using the routines explained further below:

184 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

void mat vec s (void ∗ud , int dim , const REAL ∗x , REAL ∗y)
struct mv data ∗data = (struct mv data ∗)ud ;
DOF REAL VEC ∗ dof x = data−>x s k e l ;
DOF REAL VEC ∗ dof y = data−>y s k e l ;

d i s t r i b u t e t o d o f r e a l v e c s k e l (data−>x ske l , x) ;
d i s t r i b u t e t o d o f r e a l v e c s k e l (data−>y ske l , y) ;

dof mv (data−>transpose , data−>matrix , data−>mask , dof x , do f y) ;
}

Well, it spares only a few lines. But on the other hand, prescribing an API for tasks like
this increases portability between different versions of ALBERTA, because only with such an
API it is possible to hide the more “dirty” details, or future extensions, from application
programs. We continue with the description of the available functions. The example program
for the non-linear reaction diffusion program contained in the demo-package (and described
in Section 2.3 also makes use of these support functions.

The available functions are as follows:

s i z e t d o f r e a l v e c d l e n g t h (const FE SPACE ∗ f e s p a c e) ;
s i z e t d o f r e a l d v e c l e n g t h (const FE SPACE ∗ f e s p a c e) ;
s i z e t d o f r e a l v e c l e n g t h (const FE SPACE ∗ f e s p a c e) ;

DOF REAL VEC ∗ i n i t d o f r e a l v e c s k e l (DOF REAL VEC vecs [] ,
const char ∗name ,
const FE SPACE ∗ f e s p a c e) ;

DOF REAL D VEC ∗ i n i t d o f r e a l d v e c s k e l (DOF REAL D VEC vecs [] ,
const char ∗name ,
const FE SPACE ∗ f e s p a c e) ;

DOF REAL VEC D ∗ i n i t d o f r e a l v e c d s k e l (DOF REAL VEC D vecs [] ,
const char ∗name ,
const FE SPACE ∗ f e s p a c e) ;

DOF SCHAR VEC ∗ i n i t d o f s c h a r v e c s k e l (DOF SCHAR VEC vecs [] ,
const char ∗name ,
const FE SPACE ∗ f e s p a c e) ;

DOF REAL VEC ∗ g e t d o f r e a l v e c s k e l (const char ∗name ,
const FE SPACE ∗ f e space ,
SCRATCHMEM sc r) ;

DOF REAL D VEC ∗ g e t d o f r e a l d v e c s k e l (const char ∗name ,
const FE SPACE ∗ f e space ,
SCRATCHMEM sc r) ;

DOF REAL VEC D ∗ g e t d o f r e a l v e c d s k e l (const char ∗name ,
const FE SPACE ∗ f e space ,
SCRATCHMEM sc r) ;

DOF SCHAR VEC ∗ g e t d o f s c h a r v e c s k e l (const char ∗name ,
const FE SPACE ∗ f e space ,
SCRATCHMEM sc r) ;

void d i s t r i b u t e t o d o f r e a l v e c s k e l (DOF REAL VEC ∗ ske l , const REAL ∗data) ;
void d i s t r i b u t e t o d o f r e a l d v e c s k e l (DOF REAL D VEC ∗ ske l , const REAL

∗ data) ;
void d i s t r i b u t e t o d o f r e a l v e c d s k e l (DOF REAL VEC D ∗ ske l , const REAL ∗data) ;
void d i s t r i b u t e t o d o f s c h a r v e c s k e l (DOF SCHAR VEC ∗ ske l , const S CHAR ∗data) ;

void c o py t o d o f r e a l v e c (DOF REAL VEC ∗vecs , const REAL ∗data) ;

3.7. DIRECT SUMS OF FINITE ELEMENT SPACES 185

void c opy t o d o f r e a l d v e c (DOF REAL D VEC ∗vecs , const REAL ∗ data) ;
void c opy t o d o f r e a l v e c d (DOF REAL VEC D ∗vecs , const REAL ∗data) ;
void c opy t o do f s cha r v e c (DOF SCHAR VEC ∗vecs , const S CHAR ∗data) ;

void c opy f r om do f r e a l v e c (REAL ∗data , const DOF REAL VEC ∗ vecs) ;
void c opy f r om do f r e a l d v e c (REAL D ∗data , const DOF REAL D VEC ∗ vecs) ;
void c opy f r om do f r e a l v e c d (REAL ∗data , const DOF REAL VEC D ∗ vecs) ;
void copy f rom do f s cha r vec (S CHAR ∗data , const DOF SCHAR VEC ∗ vecs) ;

Descriptions for each of the functions listed above:

Synopsis

l ength = do f r e a l v e c d l e n g t h (f e s p a c e) ;
l ength = do f r e a l d v e c l e n g t h (f e s p a c e) ;
l ength d o f r e a l v e c l e n g t h (f e s p a c e) ;

Description

Compute the total dimension of fe space.

Parameters

fe space The finite element space to compute the dimension of.

Return Value

The total dimension of the direct sum of finite element spaces. Note that vector-valued
coefficients are counted with their DIM OF WORLD-multiplicity. The return value is of type
size t.

Synopsis

head vec = i n i t d o f r e a l v e c s k e l (&do f v e c s t o r a g e [0] , name , f e s p a c e) ;
head vec = i n i t d o f r e a l d v e c s k e l (&do f v e c s t o r a g e [0] , name , f e s p a c e) ;
head vec = i n i t d o f r e a l v e c d s k e l (&do f v e c s t o r a g e [0] , name , f e s p a c e) ;
head vec = i n i t d o f s c h a r v e c s k e l (&do f v e c s t o r a g e [0] , name , f e s p a c e) ;

Description

Turn an uninitialized storage area consisting of sufficiently many DOF REAL[D] VEC[D]

or DOF SCHAR VEC objects and turn it into a concatenated list, describing a coefficient
vector for the finite element space specified by fe space. The resulting dof-vectors
are, of course, not hooked into the lists of fe space->admin, and are not subject
to automatic resizing during mesh adaptation. Further, they do not carry storage
for data, i.e. their vec component does not point to a valid storage area (but see
distribute to dof XXX vec skel() below). Therefore we call the resulting object a
“skeleton”, which also explains the name of this function.

Arguments

dof vec storage Pointer to a storage area, pointing to sufficiently many DOF-
vectors, stored consecutively in memory (i.e. dof vec storage is a flat array of
sufficient size). The number of the objects needed can be determined by calling
CHAIN LENGTH(fe space).

186 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

name A descriptive name for the skeleton. It is hooked into the name component of
each of the individual DOF-vectors.

fe space The underlying finite element space. fe space determines the layout of the
resulting chained coefficient vector.

Return Value

The first component of the multi-component coefficient vector.

Synopsis

head vec = g e t d o f r e a l v e c s k e l (name , f e space , s c r) ;
head vec = g e t d o f r e a l d v e c s k e l (name , f e space , s c r) ;
head vec = g e t d o f r e a l v e c d s k e l (name , f e space , s c r) ;
head vec = g e t d o f s c h a r v e c s k e l (name , f e space , s c r) ;

Description

Allocate and initialize a temporary DOF-vector from a scratch-memory pool, see Sec-
tion 3.1.3.4. This functionally equivalent to

DOF REAL VEC ∗ g e t d o f r e a l v e c s k e l (const char ∗name ,
const FE SPACE ∗ f e space ,
SCRATCHMEM sc r)

{
DOF REAL VEC ∗ vecs ;

vecs = SCRATCHMEMALLOC(scr , CHAIN LENGTH(f e s p a c e) , DOF REAL VEC) ;

return i n i t d o f r e a l v e c s k e l (vecs , name , f e s p a c e) ;
}

Likewise for the other types of DOF-vectors.

Arguments

name Symbolic name.

fe space The underlying finite element space.

scr Pointer to a scratch-memory pool, see Section 3.1.3.4. Consequently, the objects
generated here can and will be destroyed when the scratch-memory pool is deleted
by calling SCRATCH MEM ZAP(scr).

Return Value

A pointer to the head of the chain.

Synopsis

d i s t r i b u t e t o d o f r e a l v e c s k e l (d o f v e c s k e l , cont iguous data) ;
d i s t r i b u t e t o d o f r e a l d v e c s k e l (d o f v e c s k e l , cont iguous data) ;
d i s t r i b u t e t o d o f r e a l v e c d s k e l (d o f v e c s k e l , cont iguous data) ;
d i s t r i b u t e t o d o f s c h a r v e c s k e l (d o f v e c s k e l , cont iguous data) ;

3.7. DIRECT SUMS OF FINITE ELEMENT SPACES 187

Description

Distribute a contiguous piece of data specified by contiguous data to a DOF-vector
skeleton as generated by a call to get dof XXX vec skel() or init dof XXX vec skel()

described above. “Distribute” in this context means to initialize the vec component of
each part of the DOF-vector chain with the proper location into contiguous data. The
data will be distributed to the individual components according to the dimension of the
component of the finite element space they belong to.

This function must be called prior to passing a DOF-vector skeleton to any function
expecting a “real” DOF-vector.

To only copy data between contiguous arrays and DOF-vectors, see
copy to|from dof XXX vec() below.

Arguments

dof vec skel The DOF-vector skeleton.

contiguous data A piece of contiguous data with dof XXX vec length(fe space)

many items.

Synopsis

c o py t o d o f r e a l v e c (dof vec , cont iguous data) ;
c o py t o d o f r e a l d v e c (dof vec , cont iguous data) ;
c o py t o d o f r e a l v e c d (dof vec , cont iguous data) ;
c opy t o do f s cha r v e c (dof vec , cont iguous data) ;

Description

Copy data from a flat array containing at least dof XXX vec length() many items to a
DOF-vector object, taking care of the chained structure of coefficient vectors belonging
to direct sums of finite element spaces.

This function will overwrite all the data stored in dof vec.

Arguments

dof vec The destination of the copy operation.

contiguous data The source of the copy operation.

Return Value

Synopsis

c opy f r om do f r e a l v e c (cont iguous data , do f vec) ;
c opy f r om do f r e a l d v e c (cont iguous data , do f vec) ;
c opy f r om do f r e a l v e c d (cont iguous data , do f vec) ;
c opy f rom do f s cha r vec (cont iguous data , do f vec) ;

188 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

Description

Copy data from a DOF-vector to a flat array containing at least dof XXX vec length()

many items, taking care of the chained structure of coefficient vectors belonging to direct
sums of finite element spaces.

This function will overwrite all the data stored in contiguous data.

Arguments

contiguous data Destination of the copy operation.

dof vec Source of the copy operation.

Return Value

3.7.4 Data transfer during mesh adaptation

If the underlying finite element space is indeed a direct sum, then it is an inconvenient task
to install the default refinement and coarsening functions into each component of the chain.
For a single-component sum, the following suffices:

extern DOF REAL VEC D ∗ vec to r ;

vector−>r e f i n e i n t e r = vector−>f e space−>ba s f c t s−>r e a l r e f i n e i n t e r d ;

However, if vector is only the first part of a chain, then the following elements of the chain
are not touched by this operation, one would have to do something similar to the following:

extern DOF REAL VEC D ∗ vec to r ;

CHAIN DO(uh ,DOF REAL VEC D) {
uh−>r e f i n e i n t e r p o l = uh−>f e space−>ba s f c t s−>r e a l r e f i n e i n t e r d ;

} CHAIN WHILE(uh , DOF REAL VEC D) ;

There are small inline functions defined through the inclusion which perform just this, above
code, e.g., is wrapped into the following function:

stat ic i n l i n e void s e t r e f i n e i n t e r d ow (DOF REAL VEC D ∗uh)
{

CHAIN DO(uh ,DOF REAL VEC D) {
uh−>r e f i n e i n t e r p o l = uh−>f e space−>ba s f c t s−>r e a l r e f i n e i n t e r d ;

} CHAIN WHILE(uh , DOF REAL VEC D) ;
}

As the code is self-explaining (at least after reading Section 3.7.2 and Section 3.3.3), we only
list the proto-types here:

stat ic i n l i n e void s e t r e f i n e i n t e r (DOF REAL VEC ∗uh) ;
stat ic i n l i n e void s e t r e f i n e i n t e r d (DOF REAL D VEC ∗uh) ;
stat ic i n l i n e void s e t r e f i n e i n t e r d ow (DOF REAL VEC D ∗uh) ;

stat ic i n l i n e void s e t c o a r s e i n t e r (DOF REAL VEC ∗uh) ;
stat ic i n l i n e void s e t c o a r s e i n t e r d (DOF REAL D VEC ∗uh) ;
stat ic i n l i n e void s e t c o a r s e i n t e r d ow (DOF REAL VEC D ∗uh) ;

stat ic i n l i n e void s e t c o a r s e r e s t r i c t (DOF REAL VEC ∗uh) ;
stat ic i n l i n e void s e t c o a r s e r e s t r i c t d (DOF REAL D VEC ∗uh) ;
stat ic i n l i n e void s e t c o a r s e r e s t r i c t d ow (DOF REAL VEC D ∗uh) ;

3.7. DIRECT SUMS OF FINITE ELEMENT SPACES 189

3.7.5 Forming direct sub-sums

Sometimes it is handy to refer only to selected components of a chain of objects. The following
routines perform this task by forming sub-chains of objects, which then belong to a direct
sub-sum, so to say:

BAS FCTS ∗ ba s f c t s s ub cha i n (SCRATCHMEM scr , const BAS FCTS ∗ ba s f c t s ,
FLAGS which) ;

void upda t e ba s f c t s s ub cha i n (BAS FCTS ∗ b a s f c t s) ;
FE SPACE ∗ f e s p a c e sub cha i n (SCRATCHMEM scr , const FE SPACE ∗ f e space ,

FLAGS which) ;
void upda t e f e spac e sub cha in (FE SPACE ∗ f e s p a c e) ;

DOF REAL VEC ∗ do f r e a l v e c s ub cha i n (SCRATCHMEM scr ,
const DOF REAL VEC ∗vec ,
FLAGS which) ;

DOF REALD VEC ∗ do f r e a l d v e c s ub cha i n (SCRATCHMEM scr ,
const DOF REAL D VEC ∗vec ,
FLAGS which) ;

DOF REAL VEC D ∗ do f r e a l v e c d s ub cha i n (SCRATCHMEM scr ,
const DOF REAL VEC D ∗vec ,
FLAGS which) ;

DOF DOF VEC ∗ do f do f v e c sub cha i n (SCRATCHMEM scr ,
const DOF DOF VEC ∗vec ,
FLAGS which) ;

DOF INT VEC ∗ do f i n t v e c s ub cha i n (SCRATCHMEM scr ,
const DOF INT VEC ∗vec ,
FLAGS which) ;

DOF UCHARVEC ∗ do f ucha r ve c sub cha in (SCRATCHMEM scr ,
const DOF UCHARVEC ∗vec ,
FLAGS which) ;

DOF SCHAR VEC ∗ do f s cha r v e c sub cha i n (SCRATCHMEM scr ,
const DOF SCHAR VEC ∗vec ,
FLAGS which) ;

DOF PTR VEC ∗ do f p t r v e c sub cha i n (SCRATCHMEM scr ,
const DOF PTR VEC ∗vec ,
FLAGS which) ;

void upda t e do f r e a l v e c sub cha i n (const DOF REAL VEC ∗ sub vec) ;
void upda t e do f r e a l d v e c sub cha i n (const DOF REAL D VEC ∗ sub vec) ;
void upda t e do f r e a l v e c d sub cha i n (const DOF REAL VEC D ∗ sub vec) ;
void upda t e do f do f v e c sub cha in (const DOF DOF VEC ∗ sub vec) ;
void upda t e do f i n t v e c sub cha i n (const DOF INT VEC ∗ sub vec) ;
void update do f uchar vec sub cha in (const DOF UCHARVEC ∗ sub vec) ;
void upda t e do f s cha r ve c sub cha in (const DOF SCHAR VEC ∗ sub vec) ;
void upda t e do f p t r v e c sub cha in (const DOF PTR VEC ∗ sub vec) ;

DOFMATRIX ∗ do f mat r i x sub cha in (SCRATCHMEM scr , const DOFMATRIX ∗A,
FLAGS row which , FLAGS co l wh ich) ;

void update do f mat r ix sub cha in (DOFMATRIX ∗sub M) ;

The general idea is to make shallow copies of selected components of the original chain,
shallow in the sense that the copies share the underlying data (e.g. such a shallow copy of a
DOF REAL VEC would share the vec component with the original instance). Those copies are
then chained-together, forming sub-chains. The selection of the components is performed by
means of a bit-mask, called which in the proto-types listed above. If bit n in the which-mask

190 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

is set, then the component number n takes part in forming the sub-chain. Analogously for
matrices where we need a two masks, one for the rows, and another one for the columns of
the block-matrix.

Descriptions for the individual groups of functions:

Synopsis

sub cha in = ba s f c t s s ub cha i n (scratch mem , master chain , which) ;
sub cha in = f e spa c e sub cha i n (scratch mem , master chain , which) ;
sub cha in = do f r e a l v e c s ub cha i n (scratch mem , master chain , which) ;
sub cha in = do f r e a l v e c d s ub cha i n (scratch mem , master chain , which) ;
sub cha in = do f r e a l d v e c s ub cha i n (scratch mem , master chain , which) ;
sub cha in = do f do f v e c sub cha i n (scratch mem , master chain , which) ;
sub cha in = do f i n t v e c s ub cha i n (scratch mem , master chain , which) ;
sub cha in = do f ucha r ve c sub cha in (scratch mem , master chain , which) ;
sub cha in = do f s cha r v e c sub cha i n (scratch mem , master chain , which) ;
sub cha in = do f p t r v e c sub cha i n (scratch mem , master chain , which) ;
sub matr ix =

do f mat r i x sub cha in (scratch mem , matrix , row which , co l wh ich)

Description

Form a sub-chain of the specified “master”-chain, using the number of bits set in which

to select the components to copy. Sub-chains are chains consisting of shallow copies of
the members of the master-chain, which share the underlying coefficient data which the
members of the master chain. A sub-chain is up-to-date after generating it, however, if
the size of the master objects changed, prominently because of mesh adaptation, the
corresponding update routine has to be called to update the sub-chain accordingly, see
below. Note that for DOF-vectors and -matrices the structure-component unchained

of the sub-chain objects will point to the original objects. Note also that this does not
hold for sub-chains of BAS FCTS and FE SPACE objects: here the component unchained
will always point to an instance of those objects which is not concatenated which any
other object, i.e. is indeed an unchained copy.

Note that the sub-chain will be destroyed when the scratch-memory handle scratch mem

is deleted by calling SCRATCH MEM ZAP(scratch mem).

Arguments

scratch mem A pointer to a scratch-memory area, see Section 3.1.3.4.

master chain The master-chain.

which A bit mask which determines which parts of master chain take part in forming
the sub-chain: if bit n is set in the which-mask, then component number n of the
master-chain will make its way into the sub-chain.

Return Value

A pointer to the first element of the sub-chain.

Synopsis

3.8. DATA STRUCTURES FOR PARAMETRIC MESHES 191

upda t e do f r e a l v e c sub cha i n (sub cha in) ;
upda t e do f r e a l d v e c sub cha i n (sub cha in) ;
upda t e do f r e a l v e c d sub cha i n (sub cha in) ;
upda t e do f do f v e c sub cha in (sub cha in) ;
upda t e do f i n t v e c sub cha i n (sub cha in) ;
update do f uchar vec sub cha in (sub cha in) ;
upda t e do f s cha r ve c sub cha in (sub cha in) ;
upda t e do f p t r v e c sub cha in (sub cha in) ;
update do f mat r ix sub cha in (sub cha in) ;

Description

Update a sub-chain after mesh-adaptation. Note that there are no “updaters” for sub-
chains of BAS FCTS and FE SPACE objects, simply because the sub-chains need not be
updated in this case.

Otherwise, the application must call update XXX sub chain() after adapting the mesh.
Otherwise the meta-data stored in the elements forming the sub-chain will be inconsis-
tent with the state of the mesh.

Arguments

sub chain The head of the sub-chain. The master chain is not needed, because it
can be accessed via sub chain->unchained.

3.8 Data structures for parametric meshes

The current version of ALBERTA offers support for so-called parametric meshes which are
triangulations where some or all of the simplices are non-linear images of the reference element.
Typically, the transformation from the reference element Ŝ to the curved simplex S is a
polynomial, but in principle this need not be the case. ALBERTA has predefined polynomial
parameterisations up to polynomial degree 4: S = FS(Ŝ), FS ∈ Pk(Ŝ) for k = 1, 2, 3, 4. The
limitation k ≤ 4 just means that piecewise polynomial parameterisations up to the maximal
degree for the Lagrange basis functions within ALBERTA are supported (Section 3.5).

The standard case for applications is the iso-parametric approximation of curved bound-
aries; care has to be taken when the polynomial degree of the parameterisation is so high that
some of the Lagrange-nodes fall into the interior of the simplex. ALBERTA implements the
algorithm developed in [15]. The suite of demo-programs shipped with the ALBERTA-package
contains a program called ellipt-isoparam, which implements the discretization of Poisson’s
equation on an iso-parametric triangulation of a unit-disc.

Many other applications besides isoparametric boundary approximation are conceivable,
for example in moving finite elements, where the positions of nodes may change with time and
need to be described by a time dependent parameterization. Stationary example programs
for 1, 2 and 3 dimensional parametric meshes can again be found in the demo-suite:

src/Common/ellipt-sphere.c Poisson’s equation on the 1-, 2- and 3-dimensional unit-
sphere, i.e. Sk ⊂ Rk+1 (1 ≤ k ≤ 3).

src/Common/ellipt-torus.c Poisson’s equation on the 1- , 2- and 3-torus, i.e. T k ⊂ Rk+1

(1 ≤ k ≤ 3).

192 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

src/3d/ellipt-moebius.c Poisson’s equation on an embedded Moebius-strip (yes, AL-
BERTA can handle unorientable meshes).

src/4d/ellipt-klein-bottle.c Embedded Klein’s bottle.

src/5d/ellipt-klein-3-bottle.c Embedded non-orientable 3-manifold in R5, similar to
a Klein’s bottle, but one dimension higher.

Using parametric elements does not imply a fundamental change of data structures within
ALBERTA. The mesh still consists of a hierarchical collection of EL structures, however these
only represent the topological structure of the mesh. The coordinate and shape information
of all elements, standard or parametric, is stored using an internal DOF REAL D VEC coords

representing the global parametrization encoded in FS for all S. The finite element space
containing coords is a standard Lagrange space of order 1, 2, 3 or 4.

A mesh may be turned into a parametric mesh with piece-wise polynomial parameteri-
zation by calling the function use lagrange parametric() described below. This allocates
coords and turns some or all mesh elements into parametric simplices, depending on the op-
tions determined by the user. The shape of the parametric simplices is furthermore uniquely
determined by the value of coords at the Lagrange nodes. There are interface routines
get lagrange coords(), copy lagrange coords() and get lagrange touched edges() to
give an application access to the coordinate data, see below in Sections 3.8.1-3.8.4.

Note that on curved elements the ordinary routines to convert between barycentric co-
ordinates and Cartesian coordinates, or to compute their derivatives (see Section 4.1), may
no longer be used. Instead, the corresponding hooks in the PARAMETRIC-structure described
below have to be called. It may be convenient in this case to use calls to the per-element
quadrature caches (see Section 4.2.6). An exception is the case of affine-linear “parametric”
meshes, or the case of affine-linear mesh elements of only partially parametric meshes: there
the standard routines described in Section 4.1 may still be used.

We start with a more detailed description of how to use “standard” piece-wise polyno-
mial parameterizations and continue with the description of the general interface in Section
Section 3.8.2 further below.

3.8.1 Piece-wise polynomial parametric meshes

The following functions are available to access and manipulate meshes with “standard” piece-
wise polynomial parameterizations:

typedef enum param strategy {
PARAMALL = 0 ,
PARAMCURVED CHILDS = 1 ,
PARAM STRAIGHT CHILDS = 2

} PARAMSTRATEGY;
#define PARAM PERIODIC COORDS 0x04

void use l ag range pa ramet r i c (MESH ∗mesh , int degree ,
NODE PROJECTION ∗n proj , FLAGS f l a g s) ;

DOF REAL D VEC ∗ g e t l a g r ang e c oo rd s (MESH ∗mesh) ;
DOF UCHARVEC ∗ ge t l ag range touched edge s (MESH ∗mesh) ;
void copy lag range coo rds (MESH ∗mesh , DOF REAL D VEC ∗ coords , bool to mesh) ;

3.8. DATA STRUCTURES FOR PARAMETRIC MESHES 193

Figure 3.8: Successive refinements of the triangulation of a disc with strategy ==

PARAM STRAIGHT CHILDS. Parametric simplices are shaded in gray.

FS

42 0

3 5

1

2

3 1

5

0

4

Figure 3.9: Mapping of the standard simplex under a quadratic transformation FS with stan-
dard numbering of the local Lagrange nodes. The curve λ0 = λ1 is shown dashed.

3.8.1 Function (use lagrange parametric()).

Prototype

void use l ag range pa ramet r i c (MESH ∗mesh , int degree ,
NODE PROJECTION ∗ s e l e c t i v e , FLAGS

s t r a t egy) ;

typedef enum param strategy {
PARAMALL = 0 , PARAMCURVED CHILDS = 1 , PARAM STRAIGHT CHILDS = 2

} PARAMSTRATEGY;

#define PARAM PERIODIC COORDS 0x04

Synopsis

use l ag range pa ramet r i c (mesh , degree , s e l e c t i v e , s t r a t e g y) ;

194 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

Description

Convert the given mesh into a parametric mesh. The mesh may already be refined.
Parametric simplices will be the image of the reference simplex under a polynomial
transformation of specified degree. The maximal value of degree is limited by the
maximal degree of the Lagrange basis functions implemented in ALBERTA (currently
4). Internally a coordinate vector coords is allocated within the standard Lagrange
finite element space of order degree Specifying 1 means that simplices will still be the
images of an affine transformation, which is useful for special applications.

The coords vector employs special refine interpol and coarse restrict entries to
enable the described refinement of curved simplices. Concerning the coarsening of the
mesh, all parents of parametric elements are automatically parametric elements them-
selves. The information describing the shape of children is passed back up to parents in
a straight forward fashion.

The function generates a filled PARAMETRIC structure and sets the entry
mesh->parametric to point at it. Only one call of the function is possible per mesh. If
the mesh belongs to a submesh-hierarchy, then use lagrange parametric() must be
called on the top-level master mesh. The sub-meshes will then inherit the parametric
structure from the top-level master mesh. Sub-meshes are discussed in Section 3.9.

When use lagrange parametric() is invoked, then this will initiate a mesh-traversal
to initialize the coordinate vector coords mentioned above. On all curved elements –
see the parameter selective – the corresponding projection routine will be invoked to
project the affine (non-curved) coordinates of the Lagrange nodes to whatever manifold
is defined by the projection function. As described in Section 3.2.14 ALBERTA allows
for a default projection for the entire element, or for distinct projections attached to
the “walls” of the elements.

Parameters

mesh The mesh to be equipped with a parametric structure.

degree The degree of the parameterization. Currently, the maximum degree is 4,
limited only by the maximum degree of the Lagrange basis functions implemented in
ALBERTA. ALBERTA takes special care – implementing the algorithm explained in
[15] – that higher degree iso-parametric boundary approximation will yield optimal
convergence rates.

selective Optional, maybe NULL. If non-NULL, then ALBERTA only treats those
elements as curved ones which carry exactly this NODE PROJECTION structure. If
selective == NULL, then all elements carrying a projection routine (see Sec-
tion 3.2.14) will be treated as curved elements.

strategy The parameter strategy splits in two parts: (strategy &

PARAM STRATEGY MASK) determines which newly created simplices are treated
as parametric simplices during refinement of the mesh. The remaining flag is
PARAM PERIODIC COORDS. It determines whether the finite element function which
holds the coordinate information of the parametric mesh is itself a periodic function.
The demo-program demo/src/4d/ellipt-klein-bottle.c contains an example
application.

The following values are defined for (strategy & PARAM STRATEGY MASK).

3.8. DATA STRUCTURES FOR PARAMETRIC MESHES 195

PARAM ALL All elements of the mesh will be treated as parametric elements, imply-
ing that determinants and Jacobeans will be calculated at all quadrature points
during assembly. This is useful e.g. for triangulations of embedded curved mani-
folds. Please note that during refinement a parent element will be split along the
surface defined by the equation lambda0 = lambda1.

PARAM CURVED CHILDS Only those elements of the mesh affected by n proj will be
treated as parametric elements. Simplices are split along the surface lambda0 =
lambda1 during mesh refinement. Using PARAM CURVED CHILDS should be avoided
for parameterisations of degree > 2, maybe it should not be used at all.

PARAM STRAIGHT CHILDS Only those elements of the mesh affected by n proj will
be treated as parametric elements. PARAM STRAIGHT CHILDS should be used for the
approximation of curved boundaries. This keeps the number of curved simplices
as small as possible and ALBERTA takes care to position the Lagrange nodes of
the parametric elements such that optimal approximation order can be achieved;
this is not trivial, see [15].

Examples

See below Example 3.8.5.

3.8.2 Function (get lagrange coords()).

Prototype

DOF REAL D VEC ∗ g e t l a g r ang e c oo rd s (MESH ∗mesh) ;

Synopsis

coo rd do f ve c = g e t l a g r a n g e c o o r d s (mesh) ;

Description

Returns the internal DOF REAL D VEC coords used to store the coordinates of parametric
elements. The user may change entries of this vector by hand, if some care is used
if the parametric mesh was initialized with strategy != PARAM ALL. See below the
description for get lagrange touched edges().

See also copy lagrange coords() for a more secure interface to the coordinate infor-
mation.

Parameters

mesh A mesh-structure carrying a parametric structure previously initialized by a call
to use lagrange parametric(), see Section 3.8.1 above.

196 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

Return Value

A pointer to the underlying coordinate function, a DOF REAL D VEC belonging to a finite
element space of the piece-wise polynomial degree as specified by the degree parameter
passed to use lagrange parametric().

3.8.3 Function (copy lagrange coords()).

Prototype

typedef enum param copy d i rec t ion {
COPYFROMMESH = f a l s e ,
COPY TOMESH = true

} PARAMCOPY DIRECTION;

void copy lag range coo rds (MESH ∗mesh , DOF REAL D VEC ∗ coords , bool
to mesh) ;

Synopsis

copy lag range coo rds (mesh , coord copy , to mesh) ;

Description

This is the recommended interface to the coordinate information for (Lagrange-) para-
metric meshes. Only the coordinate values are copied; the function also makes sure
that affine elements remain affine by using linear interpolation between the vertices of
a simplex if that simplex has no curved edge. The state of the edges is determined
by the touched edges vector returned by get lagrange touched edges(), see below.
copy lagrange coords() handles also a case when a mesh has no parametric struc-
ture, but uses EL->new coord to store coordinate information for the vertices, see Sec-
tion 3.2.14. See also get lagrange coords().

Parameters

mesh A mesh-structure carrying a parametric structure previously initialized by a call
to use lagrange parametric(), see Section 3.8.1 above.

coord copy A DOF REAL D VEC, storage for the coordinate information. Note that
coord copy is not itself installed as coordinate vector in the mesh, just the coordinate
data is copied to and from coord copy, where the direction of the copy-operation is
specified by the parametric to mesh, see below.

to mesh If true, then the coordinate data is copied from coord copy to the mesh,
otherwise the coordinate function of the mesh is copied to coord copy.

3.8.4 Function (get lagrange touched edges()).

Prototype

3.8. DATA STRUCTURES FOR PARAMETRIC MESHES 197

DOF UCHARVEC ∗ ge t l ag range touched edge s (MESH ∗mesh) ;

Synopsis

touched edges vec = ge t l a g ran ge to uche d ed ge s (mesh) ;

Description

Returns the internally used DOF UCHAR VEC touched edges. Internally ALBERTA main-
tains the “projection-state” of all edges. 1 means that the corresponding edge has suf-
fered a projection, 0 means that it is still in the affine linear state. A simplex is treated
as parametric simplex if and only if any of its edges has been projected. Otherwise a
simplex is not curved. The flags vector is only used if strategy != PARAM ALL, this
function will produce a warning and return NULL if strategy == PARAM ALL.

When changing the coordinate vector returned by get lagrange coords() it falls into
the responsibility of the application to also change the projection status of the edges.

Parameters

mesh A mesh-structure carrying a parametric structure previously initialized by a call
to use lagrange parametric(), see Section 3.8.1 above.

Return Value

A pointer to a DOF SCHAR VEC, with one DOF per edge, indicating whether the respective
edge is curved or not, with touched edges->vec[dof] == true meaning the edge is
curved and touched edges->vec[dof] == false meaning the edge is not curved.

3.8.5 Example (Isoparametric elements for the unit ball). We turn again to the triangulation
of the unit ball treated in Example 3.2.7.

static void ball_proj_func(REAL_D x,

const EL_INFO *el_info, const REAL_B lambda)

{

SCAL_DOW(1.0/NORM_DOW(x), x);

}

static NODE_PROJECTION ball_proj = {ball_proj_func};

static NODE_PROJECTION *init_node_proj(MESH *mesh, MACRO_EL *mel, int c)

{

if(c > 0 && !mel->neigh[c-1])

return &ball_proj;

else

return NULL;

}

int main()

{

198 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

MESH *mesh;

const BAS_FCTS *bas_fcts;

const FE_SPACE *fe_space;

MACRO_DATA *data;

...

data = read_macro("ball.amc");

mesh = GET_MESH(MESH_DIM, "ALBERTA mesh", data,

init_node_proj, NULL /* init_wall_trafos */);

free_macro_data(data);

bas_fcts = get_lagrange(mesh->dim, /* degree == */ 3);

use_lagrange_parametric(mesh, 3, NULL, PARAM_STRAIGHT_CHILDS);

...

}

ALBERTA compares the node-projections of all elements with the value of &ball proj,
in our example only the boundary faces will have produce a match. Since strategy ==

PARAM STRAIGHT CHILDS, ALBERTA will only use parametric elements in a narrow bound-
ary layer, see Figure 3.8.

3.8.2 The PARAMETRIC structure

A parametric mesh is described by the structure PARAMETRIC. The structure is a collection of
function pointers – “methods” – which define the parameterisation. The piecewise polynomial
parameterisations predefined in ALBERTA work in arbitrary co-dimension, see Section 3.8.1
above.

typedef struct parametric PARAMETRIC;

struct parametric

{

char *name;

bool not_all;

bool use_reference_mesh;

bool (*init_element)(const EL_INFO *el_info, const PARAMETRIC *parametric);

void (*coord_to_world)(const EL_INFO *info, const QUAD *quad,

int n, const REAL_B lambda[], REAL_D *world);

void (*world_to_coord)(const EL_INFO *info, int n,

const REAL_D world[],

REAL_B lambda[], int *k);

void (*det)(const EL_INFO *info, const QUAD *quad,

int n, const REAL_B lambda[], REAL dets[]);

void (*grd_lambda)(const EL_INFO *info, const QUAD *quad,

int n, const REAL_B lambda[],

REAL_BD Lambda[], REAL_BDD DLambda[], REAL dets[]);

void (*grd_world)(const EL_INFO *info, const QUAD *quad,

int n, const REAL_B lambda[],

REAL_BD grd_Xtr[], REAL_BDB D2_Xtr[], REAL_BDBB D3_Xtr[]);

3.8. DATA STRUCTURES FOR PARAMETRIC MESHES 199

void (*wall_normal)(const EL_INFO *el_info, int wall,

const QUAD *wall_quad,

int n, const REAL_B lambda[],

REAL_D nu[], REAL_DB grd_nu[], REAL_DBB D2_nu[],

REAL dets[]);

void (*inherit_parametric)(MESH *slave);

void (*unchain_parametric)(MESH *slave);

void *data;

};

Description:

name a textual description of the parametric structure, intended as debugging aid.

not all , if nonzero, signifies that not all of the mesh elements are to be parametric (curved)
simplices. This entry must not be changed by the application program.

use reference mesh , if set, means that certain routines should use the reference triangu-
lation consisting of standard simplices instead of the parametric mesh, see the description
further below. Is set to false by default.

init element(el info, parametric) This is a per-element initialiser which must be
called for each el info during a mesh traversal before calling any other function hook
of the PARAMETRIC structure. The argument parametric must point to the PARAMETRIC

structure itself.

A specific implementation of a parametric mesh should use the init element()-hook to
perform all necessary initialisations needed to define the transformation from the reference
element to the given mesh element. The return value should be true if the given element
indeed is curved, and false if it is just an affine image of the reference element. In the latter
case init element(el info, ...) is supposed to fill el info->coord with the current
element’s coordinate information – despite the fact that the el info argument carries the
const attribute. This way the normal per-element functions can be used (e.g. el det(),
el grd lambda() etc.) instead of the parametric replacements defined in the PARAMETRIC

structure. This simplifies the program flow (and source code) for applications using only
partially parametric meshes a lot.

coord to world(el info, quad, n, lambda, world) Implements the function FS it-
self. Given an element el info, a vector of barycentric coordinates lambda of length n,
this function writes the corresponding vector of length n of world coordinates into world.
Using this function on multiple sets of coordinates at once may be more efficient than
repeatedly calling this function. If the quad attribute is not NULL, then quad->n points

and quad->lambda instead of n and lambda. Additionally, a specific parametric implemen-
tation may handle the case quad != NULL more efficiently by using caching QUAD FAST

quadratures and the like.

world to coord() This entry replaces the standard world to coord() function available
for standard simplices. It represents the inverse F−1

S . Currently, there is only a partial
implementation available, which may or may not work in the context of iso-parametric
boundary approximation.

det(el info, quad, n, lambda, dets) This function computes | detDFS(x̂(λ))|
which is required for numerical integration, see Remark 1.4.3. The barycentric coordinates
are again passed as an array lambda of length n. The absolute value of the determinant
at each λ is written into the array dets. Since this routine is mostly used for numerical

200 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

integration the user may pass a pointer quad to a quadrature structure instead of lambda.
The function will then calculate the determinants at all quadrature nodes of the given
numerical quadrature. Additionally, a specific parametric implementation may handle the
case quad != NULL more efficiently by using caching QUAD FAST quadratures and the like.
See Section 4.2 for details on using numerical quadrature routines and structures.

grd lambda(el info, quad, n, lambda, Lambda, DLambda, dets) This routine is
similar to the entry dets above. It additionally fills the array Lambda with the values
of the derivative ΛS of the barycentric coordinates defined in Section 1.4.3.1. Optionally,
grd lambda() also computes the second derivatives of the barycentric coordinates. The
second derivatives of the barycentric coordinates are necessary to compute the second
derivatives of finite element functions on curved simplices, e.g. for the implementation of
residual error estimators. The arguments DLambda and dets may be NULL.

grd world(el info, quad, n, lambda, grd Xtr, D2 Xtr, D3 Xtr) Compute the
derivatives of the Cartesian coordinates with respect to the barycentric coordinates. The
arguments D2 Xtr and D3 Xtr may be NULL, in which case the quantities are simply not
computed. The tr-suffix stands for “transposed”, meaning that actually the transposed of
the Jacobians is computed. This way, in the affine linear case grd Xtr is just the matrix
formed by the vertex coordinates as rows.

wall normal(el info, wall, quad, n, lambda, nu, grd nu, D2 nu, dets) This
function hook is the parametric replacement for library function get wall normal().
Again, quad->lambda and quad->n points is used instead of lambda and n if quad !=

NULL. quad must be a co-dimension 1 quadrature as returned by get wall quad() or
get bndry quad(). Either of the arguments nu, grd nu, D2 nu or dets may be NULL;
otherwise normals stores the outer unit normal field of the face opposite of the vertex
with local number wall and dets stores the values of the surface element. The derivatives
of the normal-field are, for instance, needed for vector-valued basis functions like face-
or edge-bubbles (“wall-bubbles”). To this aim the outer normal field is extended into
the interior of an element by setting it constant on the coordinate lines defined by the
barycentric coordinates on the reference element.

inherit parametric(slave), unchain parametric(slave)

inherit parametric() is used by get submesh(), unchain parametric() is used by
unchain submesh(). An application which defines its own PARAMETRIC structure can set
both pointers to NULL if the sub-mesh feature is not needed.

data This void * pointer is intended for the purpose of chaining implementation specific
information to the PARAMETRIC structure. In a C++ context the function hooks defined
in the PARAMETRIC structure could be virtual methods, and implementations would just
inherit the PARAMETRIC base-class.

Using the flag FILL COORDS on a mesh traversal (see Section 3.2.17) would fill the EL INFO

structures with coordinate information of the so-called reference mesh based on the orig-
inal macro triangulation. The reference mesh is what is would be used without a call to
use lagrange parametric(). This reference mesh is normally hidden from the applica-
tion unless specifically requested by setting the entry PARAMETRIC->use reference mesh

to true. Furthermore, the mesh traversal routines ignore the FILL COORDS flag unless
use reference mesh is true. However, special applications may profit from accessing the
reference mesh. On the other hand, most ALBERTA routines, e. g. routines to evaluate

3.8. DATA STRUCTURES FOR PARAMETRIC MESHES 201

derivatives of basis functions, will automatically use the parametric mesh structure when
present.

The function pointers PARAMETRIC->coord to world, PARAMETRIC->world to coord,
PARAMETRIC->det, PARAMETRIC->grd lambda, PARAMETRIC->wall normal should be used in-
stead of the standard routines for standard simplicial triangulations

• world to coord()

• coord to world()

• el det()

• el volume()

• el grd lambda()

• get wall normal()

described in detail in Section 4.1. The exception are affine elements on only partially paramet-
ric meshes: if PARAMETRIC->init element() returns false then the standard routines may be
used instead of the function hooks of the PARAMETRIC structure. The same holds when using a
“parametric” mesh of piece-wise polynomial degree through the use lagrange parametric()

call, simply because this implementation “fakes” a partially parametric mesh which is non-
curved on all elements. The use of the standard routines in the affine-linear context can
simplify application programs quite a bit.

If ALBERTA DEBUG==1 and use reference mesh == false then using the standard library
routines on parametric simplices will exit with an error message. This is a safety measure to
prevent accidental misuse.

3.8.6 Example (Use of a parametric mesh). This example shows how to write a rou-
tine which performs a global interpolation of a given function onto a finite element space.
This is a much simplified version of the interpol()-implementation which can be found in
alberta/src/Common/eval.c (path relative to the top-level directory of the source distribu-
tion of ALBERTA). Compare also with Section 4.7.8. The simplifications mostly concern the
missing support for direct sums of finite element spaces, but as this is a scalar-only example,
the restriction does not seem to be too severe.

The function interpol simple() defined here takes a pointer to an application de-
fined function REAL (*f)(const REAL D arg), and a DOF REAL VEC and loops over all mesh-
elements, calling the local interpolation routines in turn on all elements. We assume here
that the evaluation of f() is extremely costly, so we are careful not to evaluate f()

too often. There are two helper-function, inter fct loc() and inter fct loc param(),
which are used as arguments to the actual call to the bfcts->interpol() hook. Note
that the code uses the non-parametric version if either mesh->parametric is NULL, or if
mesh->parametric->init element() returns false.

The example also shows the use of another type of per-element initializers: basis functions
may also carry such a function-hook, refer to Section 3.11 for a detailed description.

stat ic
REAL i n t e r f c t l o c (const EL INFO ∗ e l i n f o , const QUAD ∗quad , int iq ,

void ∗ud)
{

202 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

FCT AT X f c t = ∗(FCT AT X ∗)ud ;
REAL D world ;

coord to wor ld (e l i n f o , quad−>lambda [i q] , world) ;

return f c t (world) ;
}

stat ic
REAL i n t e r f c t l o c p a r am (const EL INFO ∗ e l i n f o , const QUAD ∗quad , int iq ,

void ∗ud)
{

const PARAMETRIC ∗parametr ic = e l i n f o −>mesh−>parametr ic ;
FCT AT X f c t = ∗(FCT AT X ∗)ud ;
REAL D world ;

parametric−>coord to wor ld (e l i n f o , NULL, 1 , quad−>lambda + iq , &world) ;

return f c t (world) ;
}

void i n t e r p o l s imp l e (DOF REAL VEC ∗dv , FCT AT X f)
{

/∗ Some a b b r e v i a t i o n s . . . ∗/
const FE SPACE ∗ f e s p a c e = dv−>f e s p a c e ;
const BAS FCTS ∗ b f c t s = f e space−>b a s f c t s ;
const DOF ADMIN ∗admin = fe space−>admin ;
MESH ∗mesh = fe space−>mesh ;
const PARAMETRIC ∗param = mesh−>parametr ic ;
EL REAL VEC ∗ v e c l o c ;
bool i s param ;
FLAGS f i l l f l a g s ;
int i n d i c e s [b f c t s−>n bas f c t s max] ;
DOF dof s [b f c t s−>n bas f c t s max] ;

/∗ I n i t i a l i z e each component o f vec to HUGE VAL, misusing i t as
∗ f l a g−argument
∗/

FOR ALL DOFS(admin , dv−>vec [dof] = HUGEVAL) ;

/∗ Get an element v ec t o r to s t o r e the r e s u l t o f the i n t e r p o l a t i o n in ∗/
v e c l o c = g e t e l r e a l v e c (b f c t s) ;

/∗ Basis f unc t i on s may need s p e c i a l f i l l −f l a g s ∗/
f i l l f l a g s = FILL COORDS | b fc t s−> f i l l f l a g s ;
TRAVERSE FIRST(mesh , −1, CALL LEAF EL | f i l l f l a g s) {

int i , n i n d i c e s ;
REAL va l ;

/∗ Basis−f unc t i on s may need a per−element i n i t i a l i z a t i o n ∗/
i f (INIT ELEMENT(e l i n f o , b f c t s) == INIT EL TAG NULL) {

continue ;
}

/∗ Ca l l the per−element i n i t i a l i z e r o f mesh−>parametr ic () , i f needed ∗/
i s param = param != NULL && param−>i n i t e l emen t (e l i n f o , param) ;

3.8. DATA STRUCTURES FOR PARAMETRIC MESHES 203

/∗ Determine which o f the l o c a l c o e f f i c i e n t s need to be computed ∗/
GET DOF INDICES(b f c t s , e l i n f o −>e l , admin , do f s) ;
for (i = 0 , n i nd i c e s = 0 ; i < b fc t s−>n b a s f c t s ; i++) {

i f ((va l = dv−>vec [do f s [i]]) == HUGEVAL) {
i n d i c e s [n i n d i c e s++] = i ;

} else {
/∗ ” p a r t i a l ” i n t e r p o l a t i o n may need in format ion about the
∗ omit ted DOFs n e v e r t h e l e s s .
∗/

vec l o c−>vec [i] = va l ;
}

}

/∗ Do the ac t ua l i n t e r p o l a t i o n . The parametr ic ve r s i on cou ld be
∗ handled more e f f i c i e n t l y i f n i nd i c e s == n b a s f c t s ; in t h i s
∗ case we would on ly need a s i n g l e c a l l to
∗ param−>coord to wor l d () . Implementing such (and o ther
∗ op t im i z a t i on s) i s l e f t to the reader as an e x e r c i s e) .
∗/

i f (n i nd i c e s == bfc t s−>n b a s f c t s) {
/∗ I n t e r p o l a t i o n f o r a l l DOFs. The parametr ic ve r s i on cou ld be
∗ handled more e f f i c i e n t l y in t h i s case : we would on ly need a
∗ s i n g l e c a l l to param−>coord to wor l d () . Implementing such
∗ (and o ther ∗ op t im i z a t i on s) i s l e f t to the reader as an
∗ e x e r c i s e) .
∗/

INTERPOL(b fc t s , v e c l o c , e l i n f o , −1, −1, NULL,
is param ? i n t e r f c t l o c p a r am : i n t e r f c t l o c , &f) ;

/∗ Store the computed va l u e s in the g l o b a l DOF−vec tor , no need
∗ f o r the i n d i c e s i n d i r e c t i o n
∗/

for (i = 0 ; i < b fc t s−>n b a s f c t s ; i++) {
dv−>vec [do f s [i]] = vec l o c−>vec [i] ;

}
} else {

/∗ p a r t i a l i n t e r p o l a t i o n ∗/

INTERPOL(b fc t s , v e c l o c , e l i n f o , −1, n ind i c e s , i nd i c e s ,
i s param ? i n t e r f c t l o c p a r am : i n t e r f c t l o c , &f) ;

/∗ Store the computed va l u e s in the g l o b a l DOF−vec t o r . Note t ha t
∗ BOTH, the g l o b a l and the l o c a l c o e f f i c i e n t vec tor , are
∗ accessed i n d i r e c t l y over the i n d i c e s array .
∗/

for (i = 0 ; i < n i nd i c e s ; i++) {
dv−>vec [do f s [i n d i c e s [i]]] = vec l o c−>vec [i n d i c e s [i]] ;

}
}

} TRAVERSENEXT() ;

f r e e e l r e a l v e c (v e c l o c) ; /∗ Cleanup a f t e r ou r s e l v e s ∗/

i f (INIT ELEMENT NEEDED(b f c t s)) {
/∗ We po s s i b l y d id not ran over a l l e lementse , i n i t i a l i z e any
∗ l e f t −over DOFs to 0 . 0 .
∗/

FOR ALL DOFS(admin ,
i f (dv−>vec [dof] == HUGEVAL) {

204 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

dv−>vec [dof] = 0 . 0 ;
}) ;

}
}

3.9 Implementation of submeshes

The concepts and motivations behind submeshes in ALBERTA were already introduced in
Section 1.6. Shortly, a submesh or slave mesh (maybe better “trace-mesh”) of a given d-
dimensional master mesh is a collection of certain d− 1-dimensional subsimplices that should
be refined and coarsened in a conforming way to the master mesh. For parametric master
meshes, all submeshes should also be parametric.

The philosophy of submeshes is that their use should not involve major changes of data
structures nor excessive overhead in memory or CPU time as a price for their features. We
first describe how to allocate and use submeshes. The ideas of how refining and coarsening
work for submeshes is described later.

3.9.1 Allocating submeshes

Submeshes are ALBERTAMESH objects with some special properties. The user defines a sub-
mesh by selecting certain subsimplices of macro elements. The mechanism uses a callback
method similar to the case of node projections, refer Section 3.2.14.

MESH *get_submesh(MESH *, const char *,

int (*)(MESH *, MACRO_EL *, int, void *), void *);

get submesh(master, name, binding method, data) allocates a submesh with the identi-
fier name of the given master. The binding method is a callback function which is called by
ALBERTA for each macro element and each vertex/edge/face in 1d/2d/3d.

Given the master mesh, a macro element mel, a vertex/edge/face face, and arbitrary
user data, this function should return true if the subface is to be part of the submesh and
false otherwise. An example is shown below. The argument data is passed to the callback
and may contain arbitrary user data.

Calling this function will return the complete submesh. More than one submesh may be
defined. If the master mesh is already refined, then the submesh will automatically be refined
to maintain the conformity property (1.27) on page 41. If the master mesh used projection of
nodes, then the node projection is inherited by the slave mesh and automatically initialized
in such a way that all submesh vertices undergo the same projection as the master vertices.

If the master mesh is a parametric mesh (or is later defined to be one), then the parametric
structure is inherited in a straight forward manner to the submesh, a mechanism which is
only implemented for use lagrange parametric. This implies that the submesh elements
will also be described by element transformations of the same polynomial degree as for the
master mesh, and that the shape of submesh elements matches the shape of curved master
mash subsimplices.

The numbering of vertices on the macro triangulation of the submesh is done in such a way
as to always guarantee matching refinement edges of submesh and master mesh. Furthermore,
the orientation of the submesh elements for 2d submeshes follows a right hand rule for the
outward pointing unit normal of the master macro element, see Figure Figure 3.10.

3.9. IMPLEMENTATION OF SUBMESHES 205

1

20

1

2

1

2

0

1

0

3

2

0
2

1

0

Figure 3.10: Local vertex numbering of the 2d subsimplices of a 3d element of type 0 and
positive orientation. The 2d submesh numbering depends on type and orientation of the
master elements.

The connection of submesh and master mesh is described internally using two special
DOF PTR VECs. One of these, called master binding, is based on the submesh and contains
pointers from slave elements into master elements. To be precise, each CENTER DOF of this
vector is a pointer to the master EL structure describing the element along which the submesh
element lies.

The second vector, called slave binding, is based on the master mesh and points in
the opposite direction. It maps VERTEX/EDGE/FACE DOFs of the master element to the EL

structures of the slaves. If no slave element lies along the VERTEX/EDGE/FACE then the pointer
is NULL. Figure Figure 3.11 illustrates this.

nil

Figure 3.11: 2d master triangle with submesh intervals on all sides. Left: vector slave binding

connecting EDGE DOFs to slave elements. Right: vector master binding connecting CENTER

DOFs to master elements.

Both vectors have their refine interpol and coarse restrict entries set to special
internal routines. These routines automatically take care of updating the submesh during
refinement and coarsening, which is useful since mesh changes are most easily done simulta-

206 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

neously on refinement or coarsening patches. This is described in more detail below.
Submeshes can be disconnected from the master mesh using the function

void unchain_submesh(MESH *slave);

This function deletes the connection between master mesh and submesh. It does not delete
the submesh. After doing this, the submesh and master mesh are entirely independent and
separate MESH objects for ALBERTA and may be refined and coarsened independently.

3.9.2 Routines for submeshes

The following tools are available for submeshes:

MESH *read_submesh(MESH *master,

const char *slave_filename,

int (*binding_method)(MESH *master, MACRO_EL *el,

int face, void *data),

NODE_PROJECTION *(*)(MESH *, MACRO_EL *, int),

void *data);

MESH *read_submesh_xdr(MESH *master,

const char *slave_filename,

int (*binding_method)(MESH *master, MACRO_EL *el,

int face, void *data),

NODE_PROJECTION *(*)(MESH *, MACRO_EL *, int),

void *data);

MESH *get_bndry_submesh(MESH *master, const char *name);

MESH *get_bndry_submesh_by_type(MESH *master, const char *name,

BNDRY_TYPE type);

MESH *get_bndry_submesh_by_segment(MESH *master, const char *name,

BNDRY_FLAGS segment);

MESH *read_bndry_submesh(MESH *master, const char *slave_filename);

MESH *read_bndry_submesh_xdr(MESH *master, const char *slave_filename);

MESH *read_bndry_submesh_by_type(MESH *master,

const char *slave_filename, BNDRY_TYPE type);

MESH *read_bndry_submesh_by_type_xdr(MESH *master,

const char *slave_filename,

BNDRY_TYPE type);

MESH *read_bndry_submesh_by_segment(MESH *master,

const char *slave_filename,

BNDRY_FLAGS segment);

MESH *read_bndry_submesh_by_segment_xdr(MESH *master,

const char *slave_filename,

BNDRY_FLAGS segment);

void get_slave_dof_mapping(const FE_SPACE *m_fe_space, DOF_INT_VEC *s_map);

MESH *get_master(MESH *slave);

const DOF *get_master_dof_indices(const EL_INFO *s_el_info,

const FE_SPACE *m_fe_space,

DOF *result);

void trace_dof_real_vec(DOF_REAL_VEC *svec, const DOF_REAL_VEC *mvec);

void trace_dof_real_d_vec(DOF_REAL_D_VEC *svec, const DOF_REAL_D_VEC *mvec);

void trace_dof_int_vec(DOF_INT_VEC *svec, const DOF_INT_VEC *mvec);

void trace_dof_dof_vec(DOF_DOF_VEC *svec, const DOF_DOF_VEC *mvec);

void trace_int_dof_vec(DOF_DOF_VEC *svec, const DOF_DOF_VEC *mvec);

3.9. IMPLEMENTATION OF SUBMESHES 207

void trace_dof_uchar_vec(DOF_UCHAR_VEC *svec, const DOF_UCHAR_VEC *mvec);

void trace_dof_schar_vec(DOF_SCHAR_VEC *svec, const DOF_UCHAR_VEC *mvec);

void trace_dof_ptr_vec(DOF_PTR_VEC *svec, const DOF_PTR_VEC *mvec);

void update_master_matrix(DOF_MATRIX *m_dof_matrix,

const EL_MATRIX_INFO *s_minfo);

void update_master_real_vec(DOF_REAL_VEC *m_drv,

const EL_VEC_INFO *s_vec_info);

void update_master_real_d_vec(DOF_REAL_D_VEC *m_drdv,

const EL_VEC_D_INFO *s_vec_info);

3.9.1 Compatibility Note. The functionality of the function get master el() has been
shifted to the EL INFO structure; information about the ”master”-element is computed during
mesh-traversal if requested by the FILL MASTER INFO and FILL MASTER NEIGH fill-flags (see
also Section 3.2.17).

Description of the individual functions:

read submesh(master,filename,binding method,init node proj,data) This func-
tion must be used to read a submesh from disk which was previously saved by
write mesh(), see Section 3.3.8. Note that a write mesh() call using the master mesh
does not store submeshes as well. After this call the submesh is again connected with the
master mesh. The init node proj must be the same function as originally passed to the
master mesh. The binding method must also be the same function as used to define the
submesh originally. The reason for passing these pointers again is that there is no way to
store the C code describing these functions in a file.

read submesh xdr() Analogous function for submeshes stored by write mesh xdr().

get bndry submesh(master, name) A convenience function, internally get submesh()

is called with an appropriate binding method which turns all boundary simplices into a
sub-mesh.

get bndry submesh by type(master, name, type) Like the function above, but allows
for the specification of a boundary type. See Section 3.2.4.

get bndry submesh by segment(master, name, segment) Like the function above,
but allows for the specification of a boundary type bit-mask. See Section 3.2.4.

read bndry submesh(master, filename)

read bndry submesh xdr(master, filename)

read bndry submesh by type(master, filename, type)

read bndry submesh by type xdr(master, filename, type)

read bndry submesh by segment(master, filename, segment)

read bndry submesh by segment xdr(master, filename, segment)

Counterparts to read submesh() and read submesh xdr() to read back sub-meshes gen-
erated by get bndry submesh() and get bndry submesh by type(), respectively.

get slave dof mapping(m fe space, s map) Fills the vector s map on the submesh
with the corresponding DOF indices of the finite element space m fe space on the master
mesh. This only works if m fe space and s map->fe space are Lagrange type spaces of
equal degree. The master DOF indices are not updated during mesh changes, hence the
use of a DOF INT VEC, see Section 3.3.2.

get master(slave) returns the master mesh of slave.

208 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

fill slave el info(slv el info, el info, face, slave mesh) Fills a EL INFO ele-
ment descriptor refering to the slave mesh.

fill master el info(mst el info, el info, face, fill flags) Fills a EL INFO el-
ement descriptor refering to the slave mesh. fill flags determines what kind of informa-
tion is provided.

trace to bulk coords(result, lambda, el info)

bulk to trace coords(result, lambda, el info) Given local coordinates on either
the master or the trace mesh construct the matching local coordinates for the peer-element.
el info always refers to the lower-dimensional slave-mesh.

get master dof indices(result, s el info, m fe space) Find the DOFs of
m fe space – a finite element space belonging to a master mesh – belonging to the
s el info – an element descriptor for an element of the slave mesh. If result is not NULL,
then it is used as storage for the DOF-indices and its address is returned. Otherwise the
address of a static storage area is returned which holds the results until it is overwritten
on the call to get master dof indices().

get master bound(result, s el info, m fe space) Same for the boundary classifica-
tion.

trace <TYPE> vec(slave vec, master vec) Implement discrete trace operators. The
vector slave vec must be based on a submesh of the mesh defining master vec.
The entries of slave vec are overwritten with values of master vec along
the interface. The finite element spaces of slace vec and master vec must
be compatible, i.e. slave vec->fe space->bas fcts must be the trace space
master vec->fe space->bas fcts->trace bas fcts. <TYPE> is one of {dof real,
dof real d, dof int, dof dof, int dof, dof schar, dof uchar, dof ptr}, i.e. there is
a trace operation for all DOF-vector types.

update master matrix(m dof matrix, s minfo)

update master real vec(m drv, s vec info)

update master real d vec(m drdv, s vec info)

These functions take element-matrix descriptors s minfo designed for the slave-mesh and
update a matrix for the master-mesh. This can, e.g., be used to assemble Robin boundary
conditions and the like.

3.9.3 Refinement and coarsening of submeshes

As explained above, submeshes and master meshes are automatically refined and coarsened
simultaneously to maintain matching nodes and edges. To guarantee this property we need
to be careful in choosing the enumeration of vertices of the submesh. In the most complicated
case of a 2d submesh of a 3d master mesh, the numbering of a slave element tied to a given
face of a master tetrahedron depends on the master tetrahedron’s orientation, type, and the
face index. Figure Figure 3.10 demonstrates one given case. The 2d submesh triangles possess
the property that they are oriented in a right hand rule with the thumb pointing away from
the master element.

Any mesh, whether master mesh or submesh may be refined or coarsened by a call to the
routines refine() or coarsen, see Sections 3.4.1 and 3.4.2 respectively. As mentioned before,
an entire hierarchy of submeshes from 3d down to 1d is possible.

3.9. IMPLEMENTATION OF SUBMESHES 209

If a top-level master mesh is to be refined, then the refinement algorithm is carried
out as usual. The vector slave binding based on the top-level master mesh has an entry
refine interpol set to a special internal routine. This routine is called for each master
refinement patch. It creates a corresponding submesh refinement patch for the submesh ele-
ments adjoining the master patch. The submesh patch is then refined (in the process calling
in turn any refine interpols of the submesh).

If a submesh is to be refined, ALBERTA first transfers the refinement markers of the sub-
mesh elements to the corresponding master elements using master binding. Then refine()

is called recursively for the master mesh. Once we reach the top-level master mesh we proceed
as in the prior paragraph. The submesh refinement markers are reset during the refinement
of the master meshes. The diagram of Figure 3.12 describes this process.

(use master_binding!)

refinement of A

pass control to
refine(master(A))

The routine refines the slave mesh.

User asks for

Is A a submesh?
NO

YES

Transfer refinement marking of A
to corresponding master elements.

Perform normal
refinement loop.

Since slave_binding has an entry
for interpolation the interpolation
routine is called for each patch.

jumping down through the dimensions.

DONE, pass control
back to the user.

In a hierarchy this implies

Figure 3.12: Modified refinement algorithm.

Coarsening of master and submeshes works in much the same way. Note that coarsening
marks must be transferred to the master mesh to enable any change — this will overwrite
refinement marks on the master mesh elements along the interface! Furthermore, the master
mesh receives the same value of the coarsening mark as the slave mesh, which may not be
enough to guarantee the coarsening if the current refinement edge of a master element does
not lie along the interface with the submesh.

Another caveat is that the user should be careful when using other refinement interpolation
or coarsening interpolation/restriction routines on the master mesh that perform certain
operations using submeshes. The state of the submesh is undefined at the time of calling
these routines.

To conclude, submeshes offer advantages in many calculations where information based
on surfaces or interfaces is necessary. The price of using a submesh is the additional over-
head of one MESH structure plus the memory needed to store two DOF PTR VECs (and their
respective DOF administration). The vector slave binding is based on the master mesh,
while the vector master binding is based on the submesh. Both vector require the feature
preserve coarse dofs, see Section 3.4.1.1 for details. Allocating submeshes once the master
mesh is strongly refined is to be avoided, since a DOF administration for new element nodes
may have to be set up on the fly. This can be expensive in terms of CPU time. The user
should code the macro triangulations in a way that the interface defining the submesh is
easily accessible.

210 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

3.10 Periodic finite element spaces

In ALBERTA, a periodic mesh is thought of (part of) the fundamental domain of crystal-
lographic group. The periodic structure is induced by a set of face-transformation. Given a
fundamental domain of a crystallographic group, the face-transformations are the special set
of generators of that group which map the given fundamental domain to its neighbour across
on of the walls separating it from its neighbour.

3.10.1 Definition of periodic meshes

The most convenient way to define a peri-
odic structure for a mesh is to specify geomet-
ric face-transformations through the file which
defines the macro-triangulation; this has al-
ready been explained in Section 3.2.15. An 2d-
example, defining a periodic torus, would look
like follows. A corresponding example for 3d
can be found in the suite of demo-programs
which is shipped with the ALBERTA-package.
One thing which might be striking in Exam-
ple 3.10.1 on the right is that the triangula-
tion seems to be unnecessarily complicated: it
is possible to triangulate a square with just two
triangles, instead of the 8 elements which are
used in this example. The reason is the follow-
ing: ALBERTA uses the global numbering of
the vertex-nodes to compute the relative orien-
tation of neighboring elements. This is needed,
e.g., during mesh refinement and coarsening, or
when computing integrals over the walls of the
elements, assembling jump terms. Now, if the
mesh is periodic then the vertex nodes used to
orient neighboring elements are actually iden-
tified. Therefore, the simplest macro triangu-
lation with only two triangles would have just
one vertex-DOF, all vertices would have been
identified, making it impossible to orient neigh-
boring elements.

Therefore ALBERTA imposes the
restriction a face-transformation
must not map any vertex to a ver-
tex on the same element.

3.10.1 Example. A macro triangulation
for a topological torus.

DIM: 2
DIMOFWORLD: 2

number o f e lements : 8
number o f v e r t i c e s : 9

element v e r t i c e s :
4 0 1
2 4 1
4 2 5
8 4 5
4 8 7
6 4 7
4 6 3
0 4 3

ver tex coo rd ina t e s :
−1.0 −1.0
0 .0 −1.0
1 .0 −1.0
−1.0 0 .0
0 .0 0 .0
1 .0 0 .0
−1.0 1 .0
0 .0 1 .0
1 .0 1 .0

number o f wa l l t r ans f o rmat i ons : 2

wa l l t r ans f o rmat i ons :
generato r #1
1 0 2
0 1 0
0 0 1

generato r #2
1 0 0
0 1 2
0 0 1

There is, however, some limited support to cope with coarse macro-triangulations: if it
encounters a periodic macro-triangulations which violates this restriction then it tries to
resolve the issue by running some steps of global refinement over the mesh in the hope

3.10. PERIODIC FINITE ELEMENT SPACES 211

that the refined meshes fulfill the restriction. It then converts the refined meshes into a
macro triangulation and starts over with the refine macro-mesh. Thus, the following macro-
triangulation could be used by an application:

3.10.2 Example. Coarse periodic macro triangulation.

DIM: 2
DIMOFWORLD: 2

number o f e lements : 2
number o f v e r t i c e s : 4

element v e r t i c e s :
2 0 1 0 2 3

ver tex coo rd ina t e s :
−1.0 −1.0 1 .0 −1.0 1 .0 1 .0 −1.0 1 .0

number o f wa l l t r ans f o rmat i ons : 2

wa l l t r ans f o rmat i ons :
generato r #1
1 0 2
0 1 0
0 0 1

generato r #2
1 0 0
0 1 2
0 0 1

However, the application program will end up with a mesh which is based on a refined
mesh which probably looks very similar to the triangulation defined by Example 3.10.1.

There are two other methods to define a periodic structure on a mesh: by specifying com-
binatoric face-transformations in the macro triangulation, this is explained in Section 3.2.15,
or by passing geometric face-transformation to the GET MESH() call, see Section 3.2.13. Similar
to the mechanism of initializing node-projections (see Example 3.2.7) it is possible to pass a
second routine to the GET MESH() call to initialize face-transformations:

3.10.3 Example. 2d. Initialization of face-transformations through an init wall trafos()-
hook passed to GET MESH(). For this to work the macro-data file has assigned differ-
ent boundary “street-numbers” to the different periodic boundary segments: type 1 cor-
responds to a translation in x1-direction and type 2 to a translation in x2-direction.
The init wall trafos() function is called with fully-features macro-elements (except for
the missing periodic structure, of course). The convention is to return NULL if no face-
transformation applies, and a pointer to the face-transformation if the boundary-wall with
local number wall in mel belongs to a periodic boundary segment.

stat ic AFF TRAFO ∗ i n i t w a l l t r a f o s (MESH ∗mesh , MACROEL ∗mel , int wal l)
{

stat ic AFF TRAFO wa l l t r a f o s [DIMOFWORLD] = {
{ {{1 .0 , 0 . 0} ,

{0 . 0 , 1 . 0}} , {2 . 0 , 0 .0} } ,
{ {{1 .0 , 0 . 0} ,

212 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

{0 . 0 , 1 . 0}} , {0 . 0 , 2 .0} }
} ;
stat ic AFF TRAFO i n v e r s e w a l l t r a f o s [DIMOFWORLD] = {
{ {{1 .0 , 0 . 0} ,

{0 . 0 , 1 . 0}} , {−2.0 , 0 .0} } ,
{ {{1 .0 , 0 . 0} ,

{0 . 0 , 1 . 0}} , {0 . 0 , −2.0} }
} ;

switch (mel−>wall bound [wa l l]) {
case 1 : /∗ t r a n s l a t i o n in x [0] d i r e c t i o n ∗/

i f (mel−>coord [(wa l l+1) % N VERTICES(mesh−>dim)] [0] > 0 . 0) {
return &wa l l t r a f o s [0] ;

} else {
return &i n v e r s e w a l l t r a f o s [0] ;

}
case 2 : /∗ t r a n s l a t i o n in x [1] d i r e c t i o n ∗/

i f (mel−>coord [(wa l l+1) % N VERTICES(mesh−>dim)] [1] > 0 . 0) {
return &wa l l t r a f o s [1] ;

} else {
return &i n v e r s e w a l l t r a f o s [1] ;

}
}
return NULL;

}

3.10.2 Periodic meshes and finite element spaces

Defining a periodic structure on a mesh only generates a mesh could carry periodic finite
element spaces. GET MESH() indicates this by setting MESH.is periodic to true. Addition-
ally, the following components of the MESH-structure are maintained by ALBERTA and are
automatically updated during mesh adaptation.

is periodic Set to true by GET MESH() if the mesh admits periodic finite element spaces.

per n vertices, per n edges, per n faces Number of vertices, edges and faces taking
the identification of those sub-simplices on periodic boundary segments into account, i.e.
MESH.n faces counts periodic faces twice, MESH.per n faces counts them only once.

wall trafos If specified by the application this list contains the geometric face-
transformations and their inverses. This can be helpful, sometimes an application may
have the need to compute the orbit of geometric objects under the action of the underly-
ing crystallographic group. Internally, ALBERTA has the need to compute orbits of vertices
and edges when adding new periodic finite element spaces to the mesh.

n wall trafos Self-explanatory.

Having defined a periodic structure on a mesh, an application must do more to actually define
periodic function spaces: it must pass the flag ADM PERIODIC to get fe space() respectively
get dof space(). Otherwise the returned space will be non-periodic. Periodic finite element
spaces are implemented by actually identifying degrees of freedom, so – at least for scalar prob-
lems or in the context of mere translations – nothing more has to be done to implement peri-
odic boundary conditions. This is exercised by the example src/Common/ellipt-periodic.c
which can be found in the demo-package.

3.10. PERIODIC FINITE ELEMENT SPACES 213

3.10.4 Example. Allocating periodic and non-periodic finite element space on the same
mesh.

const BAS FCTS ∗ b f c t s = ge t l a g r ange (dim , degree)
const FE SPACE ∗ p e r f e s p a c e =

g e t f e s p a c e (mesh , ” p e r i o d i c space ” , b f c t s , 1 /∗ range dimension ∗/ ,
ADM PERIODIC) ;

const FE SPACE ∗ s t d f e s p a c e =
g e t f e s p a c e (mesh , ” p e r i o d i c space ” , b f c t s , 1 /∗ range dimension ∗/ ,

ADM FLAGS DFLT) ;

There are many good reasons to allow non-periodic finite element spaces on a periodic-
admissible mesh, some of them are:

• Parts of a specific problem may require periodic boundary conditions, others not.

• In the context of parametric meshes the coordinate functions defining the geometry of
the mesh are – of course – non-periodic.

• Vector-valued problems: e.g. for the simulation of fluids the velocity field can in general
not be chosen as a vector field consisting of component-wise periodic functions. This is
actually only possible in the most simple case were the face-transformations are mere
translations. Otherwise the identification of the velocity field across a periodic boundary
segment requires first the transformation of the components of the vector field by the
face-transformation.

This implies that in this context the linear systems have to be actively modified, a mere
identification of DOFs does not suffice.

Above reasoning implies that it is desirable to be able to loop over the mesh ignoring its
periodic structure altogether. This can be achieved like demonstrated below:

3.10.5 Example. Non-periodic mesh-traversal on a periodic mesh. The resulting EL INFO-
structures are completely unaware of the periodic structure, in particular the periodic neigh-
bors are not filled in. This is easily achieved by setting the FILL NON PERIODIC fill-flag.

TRAVERSE FIRST(mesh , −1,
CALL LEAF EL |FILL NON PERIODIC |
FILL NEIGH |FILL MACRO WALLS) {

int w;

for (w = 0 ; w < NWALLS(mesh−>dim) ; w++) {
int mwall = e l i n f o −>macro wal l [w] ;
i f (e l i n f o −>neigh [w] == NULL &&

e l i n f o −>macro el−>n e i g h v e r t i c e s [mwall] [0] >= 0) {
MSG(” I ’m a non−pe r i o d i c element ,

but my macro−element has p e r i o d i c boundar ies !\n”) ;
}

}

} TRAVERSENEXT() ;

214 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

3.10.3 Element-wise access to periodic data

Data like the face-transformations is stored only on the macro-element level, not in the
EL INFO-structure. However, requesting the FILL MACRO WALLS fill-flag gives an application
the link between the wall numbering of the current element and the numbering of walls of
the macro-element it is contained in, see also Section 3.2.7 and Example 3.10.6. The following
additional information is available through the MACRO EL-structure when the mesh carries a
periodic structure:

np vertex bound The non-periodic boundary classification of the vertices, i.e. in ignorance
of the periodicity of the mesh.

np edge bound Same, but for edges.

neigh vertices As explained in Section 3.2.5

wall trafo The geometric face-transformations for each wall. wall trafo[wall] is NULL

if the corresponding boundary segment is non-periodic, or is an interior wall.

3.10.6 Example. A demonstration of how to access information about periodic boundary
conditions during mesh-traversal. Long version:

TRAVERSE FIRST(mesh , −1, CALL LEAF EL |FILL MACRO WALLS) {
int w, mwall ;

for (w = 0 ; w < NWALLS(mesh−>dim) ; w++) {
i f ((mwall = e l i n f o −>macro wal l [w]) < 0) {

continue ; /∗ i n t e r i o r wa l l ∗/
}
i f (e l i n f o −>macro el−>wa l l t r a f o [mwall] != NULL) {
MSG(”Hurray , a f a c e t rans fo rmat ion !\n”) ;

}
}

} TRAVERSENEXT() ;

Slightly shorter, using the wall trafo() call:

TRAVERSE FIRST(mesh , −1, CALL LEAF EL |FILL MACRO WALLS) {
int w;
const AFF TRAFO ∗ f a c e t r a f o ;

for (w = 0 ; w < NWALLS(mesh−>dim) ; w++) {
i f ((f a c e t r a f o = wa l l t r a f o (e l i n f o , w)) != NULL) {
MSG(”Hurray , a f a c e t rans fo rmat ion @%p !\n” , f a c e t r a f o) ;

}
}

} TRAVERSENEXT() ;

3.10.4 Periodicity and trace-meshes

In principle, the periodic structure of a mesh is inherited by its trace-meshes. However, this
may not make sense in all cases. For instance, if the master-mesh is a topological torus then
the attempt to define a trace mesh consisting of all periodic boundaries will fail – or at least
that trace-mesh will have no consistent periodic structure. The reason is simple: periodicity
is induced by mapping walls to walls with face-transformations. In general this implies that

3.11. PER-ELEMENT INITIALIZERS FORQUADRATURE RULES AND BASIS FUNCTION SETS215

the orbits of co-dimension 2 and co-dimension 3 face-simplices under the group spanned by
the face-transformations contain more than two elements. So if the intersection of the trace-
mesh with those orbits also contains more than 2 elements, then the periodic structure on
the trace-mesh cannot be well-defined.

So in general a trace-mesh of a periodic master mesh must be perpendicular to the periodic
boundary segments of the ambient master-mesh.

3.11 Per-element initializers for quadrature rules and basis
function sets

This section is not concerned with the per-element initializers contained in the
OPERATOR INFO, BNDRY OPERATOR INFO and PARAMETRIC data-structures, they obey other
rules and are explained in the respective sections, see Section 4.7.3 and Section 3.8.

3.11.1 Basics

Several data-structure allow for a function hook which is used to perform per-element initial-
ization. This is useful in, e.g., for vector-valued basis functions which depend on the element
geometry like face-bubbles, or Raviart-Thomas elements, and in other contexts. Other promi-
nent examples can be quadrature rules in the context of unfitted finite element methods,
or for the integration of discontinues functions, where the discontinuity is co-dimension 1
sub-manifold intersecting the mesh, cutting wildly through the element, e.g. for interface
problems.

The basic data structures allowing for such initializers are

BAS FCTS (Section 3.5)

QUAD (Section 4.2.1)

WALL QUAD (Section 4.2.4)

Naturally, the quadrature caches should derive from any per-element initializers present in
the underlying quadrature and basis-function data-structures, so the following data-structures
may have per-element initializers as well:

QUAD FAST (Section 4.2.2)

WALL QUAD FAST (Section 4.2.5)

Q11 PSI PHI (Section 4.7.5)

Q01 PSI PHI (Section 4.7.5)

Q10 PSI PHI (Section 4.7.5)

Q00 PSI PHI (Section 4.7.5)

The derived initializers are assigned during the construction of the quadrature caches,
examining the underlying BAS FCTS and QUAD structures. The get quad fast() and
get wall quad fast() routines, as well as the constructors for the ... PSI PHI-caches take
care of this automatically.

The initialization-subroutine is hooked as a function-pointer into the data-structure. The
basic definitions are

216 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

typedef unsigned int INIT EL TAG ;
typedef INIT EL TAG (∗INIT ELEMENT FCT) (const EL INFO ∗ e l i n f o , void

∗ t h i s p t r) ;

enum {
INIT EL TAG NONE = 0 , /∗ i n v a l i d tag ∗/
INIT EL TAG DFLT = 1 , /∗ d e f a u l t case ∗/
INIT EL TAG NULL = 2 /∗ something i s 0 , e . g . no quad−points , b a s i s

∗ f unc t i on s are i d e n t i c a l l y zero and so on .
∗/

} ;

#define INIT ELEMENT(e l i n f o , ob j e c t) \
(i f (object−>i n i t e l emen t != NULL) \
? object−>i n i t e l emen t (e l i n f o , (void ∗) ob j e c t) : INIT EL TAG DFLT)

#define INIT OBJECT(ob j e c t) (void)INIT ELEMENT(NULL, ob j e c t)

The idea behind the “tag” definitions is that an object possibly may have a default-state
on the majority of mesh-elements, possibly may evaluate to an empty object on many elements
(e.g. the number of basis functions is zero, or the quadrature rule has no points), and has a
special state on some of the elements. This is, for example, the case when defining a quadra-
ture rule in the context of unfitted finite elements, where most mesh-elements belong to the
interior of the domain, may are located outside the domain of computation, and some are ac-
tually intersected by the boundary. To handle such cases efficiently, INIT ELEMENT(el info,

object) must follow these conventions:

• INIT ELEMENT(el info, object) evaluates to INIT EL TAG DFLT when no per-element
initializer is present.

• An init element() method must allow a NULL pointer for the el info argument. If
called with el info == NULL the init element() method must restore its default state.
The “default case” is what the implementation defines as default; for performance rea-
sons the default case should be the one which applies to the majority of mesh elements.
The convenience-macro INIT OBJECT(object) just forwards to INIT ELEMENT(NULL,

object).

• The return value of the init element() method must be INIT EL TAG DFLT for the
default case.

• The return value of the init element() method must be INIT EL TAG NULL for the NULL
case, meaning, e.g., the number of basis functions is zero, or the number of quadrature
points is zero. The application can assume that in the NULL case the structure does not
contain any real data.

• In all other cases the return value is a tag which is used to efficiently cache values of
intermediate computations, e.g. the values of basis functions at quadrature points. This
tag should be locally unique, meaning that consecutive invocations of init element()

should return different tags for different simplexes. This can be used for optimizations:
if the tag returned by an init element() routine does not change, then the calling
function may assume that the underlying object has not changed.

3.11. PER-ELEMENT INITIALIZERS FORQUADRATURE RULES AND BASIS FUNCTION SETS217

The meaning of the reserved tag-names is

INIT EL TAG NONE An invalid tag that does not correspond to any state of the underlying
object. If an object is in this state, then the data contained in the object is undefined and
its per-element initializer must be called before accessing any components of the object
(with the exception of the init element()-hook itself, of course.

INIT EL TAG NULL The object is in the NULL-state. An application can assume that in this
state a quadrature rule contains no points or that the local basis function set is empty.

INIT EL TAG DFLT The object is in a default state. What that means is implementation
dependent. A sensible implementation should choose as default state the state it attains on
the majority of mesh elements. It can be that an objects does not have any sensible default
state, for example if it is a local basis functions set depending on the element geometry.

...any other number defines a unique state. The implementation underlying a quadra-
ture rule or a local basis function set should make sure that repeated calls to the
init element()-hook return the same tag. This can then be used by applications to cache
derived data across sub-routine calls, using the tag-value to invalidate the caches.

3.11.2 Per-element initializers and vector-valued basis functions

There is one thing special for vector-valued geometry-dependent basis function sets. Follow-
ing the rules developed above, the init element()-hook for such functions would have to
return a unique tag on each element, thus invalidating the quadrature caches on each new
element. Because this is inefficient, ALBERTA’s implementation factors vector-valued basis-
functions into a geometry dependent vector-valued part and a geometry-independent scalar
part. Vector-valued BAS FCTS instances carrying a init element() method should therefore
return INIT EL TAG DFLT if just the vector-valued factor has changed, but the scalar factor
is not affected by the init element()-method. This way the quadratures caches defined by
QUAD FAST and the ... PSI PHI-caches are not invalidated, which helps to keep the assem-
bling of linear systems efficient. Compare also the remarks in Section 3.5.2, dealing with
vector-valued basis functions in general.

3.11.3 Tag management

To aid the implementation of the scheme described above there are some support structures
and macros concerning the management of the tags returned by the init element() hooks:

/∗ Tag con t ex t . ∗/
typedef struct i n i t e l t a g c t x {

INIT EL TAG tag ;
unsigned int cnt ;

} INIT EL TAG CTX ;

#define INIT EL TAG CTX INIT(ctx) \
{ \

(ctx)−>tag = INIT EL TAG DFLT ; \
(ctx)−>cnt = 0 ; \

}

/∗ Generate a new unique tag != NULL & DFLT ∗/

218 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

#define INIT EL TAG CTX UNIQ(ctx) \
{ \

(ctx)−>tag = INIT EL TAG NULL + (++((ctx)−>cnt)) ; \
i f ((ctx)−>tag == INIT EL TAG NONE) { \

(ctx)−>cnt = 1 ; \
(ctx)−>tag = INIT EL TAG NULL + 1 ; \

} \
}

#define INIT EL TAG CTX NULL(ctx) (ctx)−>tag = INIT EL TAG NULL
#define INIT EL TAG CTX DFLT(ctx) (ctx)−>tag = INIT EL TAG DFLT
#define INIT EL TAG CTX TAG(ctx) (ctx)−>tag

#define INIT ELEMENT DECL \
INIT ELEMENT FCT in i t e l emen t ; \
FLAGS f i l l f l a g s ; \
INIT EL TAG CTX tag c tx

#define INIT ELEMENT INITIALIZER(i n i t e l , f l a g s) \
(i n i t e l) , (f l a g s) , { INIT EL TAG DFLT , 0 }

The meaning of the components of INIT EL TAG CTX:

tag The current tag value.

cnt A counter, used to generate locally unique per-element tags.

An application must not access the two components of the tag-context directly, but has
direct the access to the tag and the counter through the access macros defined above. Some
for the implementation an object carrying such a per-element initializers. Obeying this rule
ensures compatibility with future version of ALBERTA, hopefully. The meaning of the tag-
management-macros is as follows:

INIT EL TAG CTX INIT(ctx) Initialize the points ctx, pointing to an existing tag-context.

INIT EL TAG CTX UNIQ(ctx) Generate a new uniquq tag by incrementing ctx->cnt.
The macro takes care of jumping over the reserved tags INIT EL TAG NONE,
INIT EL TAG CTX NULL and INIT EL TAG DFLT, thus protecting the generated tags against
wrap-around.

INIT EL TAG CTX NULL(ctx) Set ctx->tag to INIT EL TAG NULL.

INIT EL TAG CTX DFLT(ctx) Set ctx->tag to INIT EL TAG DFLT.

INIT EL TAG CTX TAG(ctx) Return the current tag.

3.11.4 Mesh-traversal and per-element initializers

Objects which depend on the mesh-element they are living on often may require special
information, for instance about the geometry of the mesh-element. Because this information
is only selectively available during a mesh-traversal – ALBERTA fills most information in
a root-to-leaf manner, compare Section 3.2.17 – there is danger that the current EL INFO

structure does not carry enough information in order for the init element()-method to do
its work. To cope with this problem an object with such an initializer should also record its
needs concerning the available information during mesh-traversal in an additional component
FLAGS fill flag. It is advisable that implementations for element-dependent objects make
use of the following definitions from alberta.h:

3.11. PER-ELEMENT INITIALIZERS FORQUADRATURE RULES AND BASIS FUNCTION SETS219

#define INIT ELEMENT DECL \
INIT ELEMENT FCT in i t e l emen t ; \
FLAGS f i l l f l a g s ; \
INIT EL TAG CTX tag c tx

#define INIT ELEMENT INITIALIZER(i n i t e l , f l a g s) \
(i n i t e l) , (f l a g s) , { INIT EL TAG DFLT , 0 }

The INIT ELEMENT DECL macro should be inserted in the definition of each structure car-
rying such an initializer, e.g.

struct foobar
{

. . . /∗ o ther s t u f f ∗/
INIT ELEMENT DECL;
. . . /∗ o ther s t u f f ∗/

} ;

The macro INIT ELEMENT INITIALIZER() can be used during the (static) initialization of
such data-structures, e.g.

stat ic struct foobar = {
. . . /∗ o ther s t u f f ∗/ ,
INIT ELEMENT INITIALIZER(FILL NEIGH |FILL COORDS, f o o b a r i n i t) ,
. . . /∗ o ther s t u f f ∗/

} ;

Compare also the definitions for the data-structures in the source-listings on the pages
223, 145, 232, 227, 233, 280, 284, 282, 286. Example 3.8.6 demonstrates in a half-real world
setting how to take care of such fill-flags and per-element initializers of BAS FCTS structures,
see there.

220 CHAPTER 3. DATA STRUCTURES AND IMPLEMENTATION

Chapter 4

Tools for finite element calculations

4.1 Routines for barycentric coordinates

Operations on single elements are performed using barycentric coordinates. In many applica-
tions, the world coordinates x of the local barycentric coordinates λ have to be calculated (see
Section 4.7, e.g.). Some other applications will need the calculation of barycentric coordinates
for given world coordinates (see Section 3.2.17, e.g.). Finally, derivatives of finite element
functions on elements involve the Jacobian of the barycentric coordinates (see Section 4.3,
e.g.).

In case of a grid with parametric elements, these operations strongly depend on the ele-
ment parameterization and no general routines can be supplied. For non-parametric simplices,
ALBERTA supplies functions to perform these basic tasks:

const REAL ∗ coord to wor ld (const EL INFO ∗ , const REAL ∗ , REAL D) ;
int wor ld to coord (const EL INFO ∗ , const REAL ∗ , REAL B) ;
REAL el grd lambda (const EL INFO ∗ , REAL [NLAMBDA] [DIMOFWORLD]) ;
REAL e l d e t (const EL INFO ∗) ;
REAL el vo lume (const EL INFO ∗) ;
REAL get wa l l no rma l (const EL INFO ∗ e l i n f o , int i0 , REAL ∗normal) ;

Description:

coord to world(el info, lambda, world) returns a pointer to a vector, which con-
tains the world coordinates of a point in barycentric coordinates lambda with respect to
the element el info->el;

if world is not NULL the world coordinates are stored in this vector; otherwise the function
itself provides memory for this vector; in this case the vector is overwritten during the
next call of coord to world();

coord to world() needs vertex coordinates information; the flag FILL COORDS has to be
set during mesh traversal when calling this routine on elements.

world to coord(el info, world, lambda) calculates the barycentric coordinates with
respect to the element el info->el of a point with world coordinates world and stores
them in the vector given by lambda. The return value is -1 when the point is inside the

221

222 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

simplex (or on its boundary), otherwise the index of the barycentric coordinate with largest
negative value (between 0 and d);

world to coord() needs vertex coordinates information; the flag FILL COORDS has to be
set during mesh traversal when calling this routine on elements.

Note that – with the exception of the 1d code – this function is only implemented for the
co-dimension 0 case, i.e. mesh->dim and DIM OF WORLD have to be equal, otherwise a call
to this function will terminate the application with a corresponding error-message.

el grd lambda(el info, Lambda) calculates the Jacobian of the barycentric coordinates
on el info->el and stores the matrix in Lambda; the return value of the function is the
absolute value of the determinant of the affine linear parameterization’s Jacobian. For
d < n the tangential gradient and the value of Gram’s determinant are calculated.

el grd lambda() needs vertex coordinates information; the flag FILL COORDS has to be
set during mesh traversal when calling this routine on elements.

el det(el info) returns the the absolute value of the determinant of the affine linear
parameterization’s Jacobian, or Gram’s determinant for d < n.

el det() needs vertex coordinates information; the flag FILL COORDS has to be set during
mesh traversal when calling this routine on elements.

el volume(el info) returns the the volume of the simplex; el volume() needs vertex
coordinates information; the flag FILL COORDS has to be set during mesh traversal when
calling this routine on elements.

get wall normal(el info, wall, normal) compute the outer unit normal of the face
opposite to vertex wall. The result is stored in normal. The return value is the “surface
element” of the given face, i.e. Gram’s determinant of the transformation to the respective
face of the reference element. normal may be NULL. In the case of non-zero co-dimension
normal is contained in the sub-space spanned by the edges of the given simplex.

All functions described above also come with a ... Xd variant, e.g. coord to world 2d().
For the case of 0 co-dimension there are also wrapper functions ... 0cd which call the appro-
priate ... Xd variant with X == DIM OF WORLD. The ... Xd and ... 0cd variants are very
slightly faster because otherwise the dimension of the underlying mesh has to be read out of
the mesh structure – e.g. via el info->mesh dim – and only then the functions branch to the
appropriate ... Xd variant.

4.2 Data structures for numerical quadrature

For the numerical calculation of general integrals∫
S
f(x) dx

we use quadrature formulas described in 1.4.7. ALBERTA supports numerical integration in
zero, one, two, and three dimensions on the standard simplex Ŝ in barycentric coordinates.

4.2. DATA STRUCTURES FOR NUMERICAL QUADRATURE 223

4.2.1 The QUAD data structure

A quadrature formula is described by the following structure, which is defined both as type
QUAD and QUADRATURE:

extern n quad points max [DIMMAX+1] ;
typedef struct quadrature QUAD;
typedef struct quadrature QUADRATURE;

struct quadrature
{

char ∗name ;
int degree ;

int dim ;
int codim ;
int subsp lx ;

int n po in t s ;
int n points max ;
const REAL B ∗ lambda ;
const REAL ∗w;

void ∗metadata ;

INIT ELEMENT DECL;
} ;

Description:

name Textual description of the quadrature.

degree Quadrature is exact of degree degree.

dim Quadrature for dimension dim. The barycentric co-cordinates of the quadrature points
always have dim+1 valid components.

codim Co-dimension; codim is always 0 for quadratures returned by get quadrature(),
and 1 for quadratures returned by get wall quad() and get bndry quad().

subsplx For codim == 1 the number of the wall-simplex this quadrature can be used for;
this implies that lambda[iq][subsplx] zero.

n points The number of quadrature points.

n points max The maximal number of quadrature points. The number of quadrature
points can vary from simplex to simplex if INIT ELEMENT METHOD(quad) is not NULL.

lambda Vector lambda[0], . . . , lambda[n points-1] of quadrature points given in bary-
centric coordinates (thus having N LAMBDA MAX components).

w vector w[0], . . . , w[n points-1] of quadrature weights.

metadata Pointer to an internal data structure for per-element quadrature caches and the
like, see e.g. Section 4.2.6

INIT ELEMENT DECL Function pointer to a per-element initializer. This pointer is al-
ways NULL for quadratures returned by get quadrature(), get wall quad() and
get bndry quad(). External extension modules make use of it. See Section 3.11.

224 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

Currently, numerical quadrature formulas exact up to degree 19 in one (Gauss formulas), up
to degree 17 in two, up to degree 7 in three dimensions are implemented. We only use stable
formulas; this results in more quadrature points for some formulas (for example in 3d the
formula which is exact of degree 3). A compilation of quadrature formulas on triangles and
tetrahedra is given in [5]. The implemented quadrature formulas are taken from [8, 11, 13, 26].

Using a conical product rule it is possible to construct new (non-symmetric) quadrature
formulas from the existing ones, if that is really needed.

Functions for numerical quadrature are

const QUAD ∗ get quadrature (int dim , int degree) ;
REAL in t e g r a t e s t d s imp (const QUAD ∗quad , REAL (∗ f) (const REAL ∗)) ;
const QUAD ∗ get product quad (const QUAD ∗oq) ;
const QUAD ∗ get lumping quadrature (int dim) ;
void r e g i s t e r quad r a t u r e (QUAD ∗quad) ;
bool new quadrature (const QUAD ∗quad) ;

Description:

get quadrature(dim, degree) returns a pointer to a QUAD structure for numerical
integration in dim dimensions which is exact of degree min(19, degree) for dim==1,
min(17, degree) for dim==2, and min(7, degree) for dim==3.

It is possible to extend the maximal degrees by installing an application-defined quadrature
rule via new quadrature().

register quadrature(quad) Equip an application-defined quadrature with
internal used meta-data for quadrature caches; this function also updates
n quad points max[quad->dim]. To install quad as a default quadrature which will
returned on request by get quadrature() the functions new quadrature() has to be
called additionally.

new quadrature(quad) Install the given quadrature as new default quadrature for its
dimension and polynomial degree; this means that get quadrature() will return a pointer
to quad when called with quad->dim and quad->degree.

get product quad(quad) Return a conical product quadrature rule. The returned
quadrature formula is non-symmetric and works for one dimension higher than quad and
is exact of the same degree as quad. The 3D formula for degree 7 found in [26] is of this
type, for example.

Note that get product quad() installs the new formula calling new quadrature(), so the
formula will be available through get quadrature().

get lumping quadrature(dim) Returns a lumping quadrature with quadrature nodes at
the vertices of the reference simplex.

integrate std simp(quad, f) approximates an integral by the numerical quadrature
described by quad;

f is a pointer to a function to be integrated, evaluated in barycentric coordinates; the
return value is

quad->n points-1∑
k = 0

quad->w[k] * (*f)(quad->lambda[k]);

4.2. DATA STRUCTURES FOR NUMERICAL QUADRATURE 225

for the approximation of
∫
S f we have to multiply this value with d!|S| for a sim-

plex S; for a parametric simplex, f should be a pointer to a function which calculates
f(λ)|detDFS(x̂(λ))|.
The following functions initialize values and gradients of functions at the quadrature

nodes:

REAL ∗ f a t qp (REAL vec [] , const QUAD ∗quad , REAL (∗ f) (const REAL B lambda)) ;
REAL D ∗ g rd f a t qp (REAL D vec [] , const QUAD ∗quad ,

const REAL ∗(∗ f) (const REAL B)) ;
REAL D ∗ f d a t qp (REAL D vec [] , const QUAD ∗quad ,

const REAL ∗(∗ f) (const REAL B lambda)) ;
REAL DD ∗ g rd f d a t qp (REAL DD vec [] , const QUAD ∗quad ,

const REAL D ∗(∗ f) (const REAL B lambda)) ;

REAL ∗ f l o c a t q p (REAL vec [] , const EL INFO ∗ e l i n f o , const QUAD ∗quad ,
REAL (∗ f) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad , int iq , void ∗ud) ,
void ∗ud) ;

REAL D ∗ g r d f l o c a t q p (REAL D vec [] , const EL INFO ∗ e l i n f o ,
const QUAD ∗quad , const REAL BD Lambda ,
GRD LOC FCT AT QP grd f , void ∗ud) ;

REAL D ∗ pa ram grd f l o c a t qp (REAL D vec [] , const EL INFO ∗ e l i n f o ,
const QUAD ∗quad , const REAL BD Lambda [] ,
GRD LOC FCT AT QP grd f , void ∗ud) ;

REAL D ∗ f l o c d a t q p (REAL D vec [] , const EL INFO ∗ e l i n f o , const QUAD ∗quad ,
const REAL ∗(∗ f) (REAL D re su l t , const EL INFO ∗ e l i n f o ,

const QUAD ∗quad , int iq , void ∗ud) ,
void ∗ud) ;

REAL DD ∗ g r d f l o c d a t q p (REAL DD vec [] , const EL INFO ∗ e l i n f o ,
const QUAD ∗quad , const REAL BD Lambda ,
GRD LOC FCT D AT QP grd f , void ∗ud) ;

REAL DD ∗ pa ram grd f l o c d a t qp (REAL DD vec [] , const EL INFO ∗ e l i n f o ,
const QUAD ∗quad , const REAL BD Lambda [] ,
GRD LOC FCT D AT QP grd f , void ∗ud) ;

REAL ∗ f x a t qp (REAL vec [] , const EL INFO ∗ e l i n f o , const QUAD ∗quad ,
FCT AT X f) ;

REAL D ∗ g rd f x a t qp (REAL D vec [] , const EL INFO ∗ e l i n f o , const QUAD ∗quad ,
GRD FCT AT X grd f) ;

REAL D ∗ f x d a t qp (REAL D vec [] , const EL INFO ∗ e l i n f o , const QUAD ∗quad ,
FCT D AT X f) ;

REAL DD ∗ g rd f x d a t qp (REAL DD vec [] , const EL INFO ∗ e l i n f o ,
const QUAD ∗quad , GRD FCT D AT X grd f) ;

Description:

f at qp(vec, quad, f) returns a pointer ptr to a vector quad->n points storing the
values of a REAL valued function at all quadrature points of quad; f is a pointer to that
function, evaluated in barycentric coordinates; if vec is not NULL, the values are stored in
this vector, otherwise the values are stored in some static local vector, which is overwritten
on the next call;

ptr[i]=(*f)(quad->lambda[i]) for 0 ≤ i < quad->n points.

grd f at qp(vec, quad, grd f) returns a pointer ptr to a vector quad->n points stor-
ing the gradient (with respect to world coordinates) of a REAL valued function at all
quadrature points of quad;

226 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

grd f is a pointer to a function, evaluated in barycentric coordinates and returning a
pointer to a vector of length DIM OF WORLD storing the gradient;

if vec is not NULL, the values are stored in this vector, otherwise the values are stored in
some local static vector, which is overwritten on the next call;

ptr[i][j]=(*grd f)(quad->lambda[i])[j], for 0 ≤ j < DIM OF WORLD and 0 ≤ i <
quad->n points,

f d at qp(vec, quad, fd) returns a pointer ptr to a vector quad->n points storing the
values of a REAL D valued function at all quadrature points of quad;

fd is a pointer to that function, evaluated in barycentric coordinates and returning a
pointer to a vector of length DIM OF WORLD storing all components; if the second argument
val of (*fd)(lambda, val) is not NULL, the values have to be stored at val, otherwise
fd has to provide memory for the vector which may be overwritten on the next call;

if vec is not NULL, the values are stored in this vector, otherwise the values are stored in
some static local vector, which is overwritten on the next call;

ptr[i][j]=(*fd)(quad->lambda[i],val)[j], for 0 ≤ j < DIM OF WORLD and 0 ≤ i <
quad->n points.

grd f d at qp(vec, quad, grd fd) returns a pointer ptr to a vector quad->n points

storing the Jacobian (with respect to world coordinates) of a REAL D valued function at all
quadrature points of quad;

grd fd is a pointer to a function, evaluated in barycentric coordinates and returning a
pointer to a matrix of size DIM OF WORLD ×DIM OF WORLD storing the Jacobian; if the second
argument val of (*grd fd)(x, val) is not NULL, the Jacobian has to be stored at val,
otherwise grd fd has to provide memory for the matrix which may be overwritten on the
next call;

if vec is not NULL, the values are stored in this vector, otherwise the values are stored in
some static local vector, which is overwritten on the next call;

ptr[i][j][k]=(*grd fd)(quad->lambda[i],val)[j][k], for 0 ≤ j, k < DIM OF WORLD

and 0 ≤ i < quad->n points,

f loc at qp(vec, el info, quad, f, ud)

grd f loc at qp(vec, el info, quad, Lambda, grd f, ud)

param grd f loc at qp(vec, el info, quad, Lambda, grd f, ud)

f loc d at qp(vec, el info, quad, fd, ud)

grd f loc d at qp(vec, el info, quad, Lambda, grd fd, ud)

param grd f loc d at qp(vec, el info, quad, Lambda, grd fd, ud)

fx at qp(vec, el info, quad, f)

grd fx at qp(vec, el info, quad, grd f)

fx d at qp(vec, el info, quad, fd)

grd fx d at qp(vec, el info, quad, grd fd)

4.2. DATA STRUCTURES FOR NUMERICAL QUADRATURE 227

4.2.2 The QUAD FAST data structure

Often numerical integration involves basis functions, such as the assembling of the system
matrix and right hand side, or the integration of finite element functions. Since numerical
quadrature involves only the values at the quadrature points and the values of basis functions
and its derivatives (with respect to barycentric coordinates) are the same at these points for all
elements of the grid, such routines can be much more efficient, if they can use pre–computed
values of the basis functions at the quadrature points. In this case the basis functions do not
have to be evaluated for each quadrature point newly on every element.

Information that should be pre–computed can be specified by the following symbolic
constants:

#define INIT PHI 0x01
#define INIT GRD PHI 0x02
#define INIT D2 PHI 0x04
#define INIT D3 PHI 0x08
#define INIT D4 PHI 0x10
#define INIT TANGENTIAL 0x80

Description:

INIT PHI pre–compute the values of all basis functions at all quadrature nodes;

INIT GRD PHI pre–compute the gradients (with respect to the barycentric coordinates) of
all basis functions at all quadrature nodes;

INIT D2 PHI pre–compute all 2nd derivatives (with respect to the barycentric coordinates)
of all basis functions at all quadrature nodes.

In order to store such information for one set of basis functions we define the data structure

typedef struct quad fa s t QUAD FAST;

struct quad fa s t
{

const QUAD ∗quad ;
const BAS FCTS ∗ b a s f c t s ;

FLAGS i n i t f l a g ;

int dim ;
int n po in t s ;
int n b a s f c t s ;
int n points max ;
int n bas f c t s max ;
const REAL ∗w; /∗ sha l l ow copy o f quad−>w ∗/
const REAL (∗ const∗phi) ; /∗ [qp] [b f] ∗/
const REAL B (∗ const∗ grd ph i) ;
const REAL BB (∗ const∗D2 phi) ;
const REAL BBB (∗ const∗D3 phi) ;
const REAL BBBB (∗ const∗D4 phi) ;

/∗ For vec t o r va lued b a s i s f unc t i on s wi th a p .w. cons tant
∗ d i r e c t i o n a l d e r i v a t i v e we cache t ha t d i r e c t i o n and make i t
∗ a v a i l a b l e f o r a p p l i c a t i o n s . The component i s i n i t i a l i z e d by the
∗ INIT ELEMENT() method .
∗

228 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

∗ So : ph i d [i] g i v e s the va lue o f the d i r e c t i o n a l f a c t o r f o r the
∗ i−th b a s i s f unc t i on . I f (! b a s f c t s−>d i r pw cons t) , then ph i d i s
∗ NULL.
∗/

const REAL D ∗phi d ;

/∗ chain to next s t ruc tu r e , i f b a s f c t s−>chain i s non−empty ∗/
DBL LIST NODE chain ;

/∗ a c lone o f t h i s s t ruc tu re , but as s i n g l e item . ∗/
const QUAD FAST ∗unchained ;

INIT ELEMENT DECL;

void ∗ i n t e r n a l ;
} ;

The entries yield following information:

quad Values stored for numerical quadrature quad.

bas fcts Values stored for basis functions bas fcts.

dim Clone of quad->dim.

init flag Indicates which information is initialized; may be one of, or a bitwise OR
of several of INIT PHI, INIT GRD PHI, INIT D2 PHI, INIT D3 PHI or INIT D4 PHI. Not
all basis functions have support for higher derivatives. There is one additional fill-flag,
INIT TANGENTIAL with the meaning that only the tangential derivatives of the basis func-
tions will be computed if quad is a co-dimension 1 quadrature rule.

n points The number of quadrature points; equals quad->n points.

n bas fcts number of basis functions; equals bas fcts->n bas fcts.

n points max The maximum number of quadrature points. If quad->init element() is
non-NULL, then the number of basis functions can vary on a per-element basis.

n bas fcts max The maximum number of basis functions. If bas fcts->init element is
non-NULL, then the number of basis functions can vary on a per-element basis.

w Vector of quadrature weights; w = quad->w.

phi Matrix storing function values if the flag INIT PHI is set.

phi[i][j] stores the value bas fcts->phi[j](quad->lambda[i]), 0 ≤ j < n bas fcts

and 0 ≤ i < n points;

grd phi Matrix storing all gradients (with respect to the barycentric coordinates) if the
flag INIT GRD PHI is set;

grd phi[i][j][k] Stores the value bas fcts->grd phi[j](quad->lambda[i])[k] for
0 ≤ j < n bas fcts, 0 ≤ i < n points, and 0 ≤ k ≤ d;

D2 phi Matrix storing all second derivatives (with respect to the barycentric coordinates)
if the flag INIT D2 PHI is set;

D2 phi[i][j][k][l] Stores the value bas fcts->D2 phi[j](quad->lambda[i])[k][l]

for 0 ≤ j < n bas fcts, 0 ≤ i < n points, and 0 ≤ k,l ≤ d.

4.2. DATA STRUCTURES FOR NUMERICAL QUADRATURE 229

D3 phi Matrix storing all third derivatives (with respect to the barycentric coordinates) if
the flag INIT D3 PHI is set;

D3 phi[i][j][k][l] Stores the value bas fcts->D3 phi[j](quad->lambda[i])[k][l][m]

for 0 ≤ j < n bas fcts, 0 ≤ i < n points, and 0 ≤ k,l,m ≤ d.

D4 phi Matrix storing all fourth derivatives (with respect to the barycentric coordinates)
if the flag INIT D4 PHI is set;

D4 phi[i][j][k][l] Stores the value bas fcts->D4 phi[j](quad->lambda[i])[k][l][m][n]

for 0 ≤ j < n bas fcts, 0 ≤ i < n points, and 0 ≤ k,l,m,n ≤ d.

phi d The directional part of vector-valued basis functions, if that is constant on each
element. This means, if bas fcts->rdim == DIM OF WORLD and bas fcts->dir pw const,
then phi d contains valid data, probably after calling QUAD FAST.init element() with
the current element and the instance of the QUAD FAST structure in question. See also
Section 3.5.2.

chain If bas fcts forms part of a chain of basis functions because the corresponding finite
element space is a direct sum, then this codeget quad fast() will also generate a chain of
QUAD FAST-structures, one for each component. The chain forms a doubly linked list, and
the chain-component is the list node. See also Section 3.5.3 and Section 3.7.

unchained A clone of the current structure, but as single element. Points back to the
structure itself if the underlying basis functions do not form part of chain of basis function
sets. See Section 3.5.3 and Section 3.7.

INIT ELEMENT DECL Per element initializer, see Section 3.11.

internal Pointer to internal meta-data stuff.

A filled structure can be accessed by a call of

const QUAD FAST ∗ g e t quad f a s t (const BAS FCTS ∗ , const QUAD ∗ , U CHAR) ;

Description:

get quad fast(bas fcts, quad, init flag) bas fcts is a pointer to a filled BAS FCTS

structure, quad a pointer to some quadrature (accessed by get quadrature(), e.g.) and
init flag indicates which information should be filled into the QUAD FAST structure; it
may be one of, or a bitwise OR of several of INIT PHI, INIT GRD PHI, INIT D2 PHI; the
function returns a pointer to a filled QUAD FAST structure where all demanded information
is computed and stored.

All used QUAD FAST structures are stored in a linked list and are identified uniquely by the
members quad and bas fcts; first, get quad fast() looks for a matching structure in the
linked list; if no structure is found, a new structure is generated and linked to the list; thus
for one combination bas fcts and quad only one QUAD FAST structure is created.

Then get quad fast() allocates memory for all information demanded by init flag and
which is not yet initialized for this structure; only such information is then computed and
stored; on the first call for bas fcts and quad, all information demanded init flag is
generated, on a subsequent call only missing information is generated.

get quad fast() will return a NULL pointer, if INIT PHI flag is set and bas fcts->phi is
NULL, INIT GRD PHI flag is set and bas fcts->grd phi is NULL, and INIT D2 PHI flag is
set and bas fcts->D2 phi is NULL.

230 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

There may be several QUAD FAST structures in the list for the same set of basis functions for
different quadratures, and there may be several QUAD FAST structures for one quadrature
for different sets of basis functions.

The function get quad fast() should not be called on each element during mesh traversal,
because it has to look in a list for an existing entry for a set of basis functions and a
quadrature; a pointer to the QUAD FAST structure should be accessed before mesh traversal
and passed to the element routine.

Many functions using the QUAD FAST structure need vectors for storing values at all quadrature
points; for these functions it can be of interest to get the count of the maximal number of
quadrature nodes used by the all initialized quad fast structures in order to avoid several
memory reallocations. This count can be accessed by the function

int max quad points (void) ;

Description:

max quad points() returns the maximal number of quadrature points for all yet initialized
quad fast structures; this value may change after a new initialization of a quad fast

structures;

this count is not the maximal number of quadrature points of all used QUAD structures,
since new quadratures can be used at any time without an initialization.

4.2.3 Integration over subsimplices (walls)

The weak formulation of non-homogeneous Neumann or Robin boundary values needs inte-
gration over d− 1 dimensional boundary simplices of d dimensional mesh elements (compare
Section 1.6), and the evaluation of jump residuals for error estimators (compare Sections
1.5, 4.9) needs integration over all interior d− 1 dimensional sub–simplices. The quadrature
formulas and data structures described above are available for any d dimensional simplex,
d = 0, 1, 2, 3. The above task can therefore be accomplished by using a d − 1 dimensional
quadrature formula and augmenting the corresponding d dimensional barycentric coordinates
of quadrature points on edges/faces to d + 1 dimensional coordinates on adjacent mesh ele-
ments.

When an integral over an edge/face involves values from both adjacent elements (in the
computation of jump residuals e. g.) it is necessary to have a common orientation of the
edge/face from both elements. Only a common orientation of the edges/faces ensures that
augmenting d dimensional barycentric coordinates of quadrature points on the edge/face to
d+ 1 dimensional barycentric coordinates on the adjacent mesh elements results in the same
points from both sides.

This augmentation process, taking the relative orientation of neighboring simplices into
account, is taken care of by dedicated co-dimension 1 quadrature rules, see Section 4.2.4
and 4.2.5. Additionally, the calculation of Gram’s determinant for the d − 1 dimensional
transformation as well as vertex/edge/face normals is needed. See Section 4.1 above.

Low-level access to the relative orientation of neighboring simplices is provided through
the routines and look-up tables

int wa l l o r i e n t a t i o n (int dim , const EL ∗ e l , int wall , int ∗∗ vec) ;
int wa l l r e l o r i e n t a t i o n (

int dim , const EL ∗ e l , const EL ∗neigh , int wall , int oppv) ;

4.2. DATA STRUCTURES FOR NUMERICAL QUADRATURE 231

const int s o r t e d wa l l v e r t i c e s 1 d [N WALLS 1D] [DIM FAC 1D] [2 ∗N VERTICES 0D−1] ;
const int s o r t e d wa l l v e r t i c e s 2 d [N WALLS 2D] [DIM FAC 2D] [2 ∗N VERTICES 1D−1] ;
const int s o r t e d wa l l v e r t i c e s 3 d [N WALLS 3D] [DIM FAC 3D] [2 ∗N VERTICES 2D−1] ;

Description:

wall orientation(dim, el, wall, vec) can be used to match the local enumera-
tion of the vertices of faces separating neighbouring simplexes. The return value is
a unique number between 1 and dim!. On return vec – if non-NULL– contains a
permutation of the local numbering of the vertices of face number wall on el. If
neigh vec is the corresponding permutation for the neighbour element, then (*vec)[i]

and (*neigh vec)[i] refer to the same vertex, e.g. el info->coord[(*vec)[i]] is the
same as neigh info->coord[(*neigh vec)[i]].

Actually, the return value of wall orientation() is just the index into the look-up ta-
bles sorted wall vertices Xd[][][], such that vec, if non-NULL point upon return to
sorted wall vertices Xd[wall][retval].

The principal purpose of this function is to match quadrature points during the numer-
ical integration of jumps of derivatives of finite element function across the faces of the
triangulation, see Section 4.2.3.

wall rel orientation(dim, el, neigh, wall, oppv) can be used to compute a rel-
ative orientation of a given wall separating two elements with respect to both elements.
The return value

perm = wa l l r e l o r i e n t a t i o n (dim , e l , neigh , wal l , oppv) ;

can be used as an offset into sorted wall vertices Xd in the sense that

nv = so r t e d wa l l v e r t i c e s Xd [oppv] [perm] [i] ;

matches

v = ve r t ex o f wa l l Xd [wa l l] [i] ;

So it holds el->dof[v][0] == neigh->dof[nv][0].

4.2.4 The WALL QUAD data structure

A collection of quadrature rules for the integration over walls (3d: faces, 2d: edges) of a
simplex. The quadrature points of these rules are given in barycentric coordinates with dim+1

valid components; the component corresponding to the respective wall will be set to zero.

Each of the quadrature rules WALL QUAD quad[wall] may have its own INIT ELEMENT

method. INIT ELEMENT(el info, WALL QUAD) may or may not be called: it is legal to only call
INIT ELEMENT(el info, WALL QUAD quad[wall]) individually. If INIT ELEMENT(el info,

WALL QUAD) is called, then it has to initialize all quadrature rules for all walls, so the sub-
ordinate initializers need not be called in this case.

232 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

typedef struct wal l quadrature WALLQUAD;

struct wal l quadrature
{

const char ∗name ;
int degree ;
int dim ;
int n points max ;
QUAD quad [NWALLSMAX] ;

INIT ELEMENT DECL;

void ∗metadata ;
} ;

Description:

name Textual description of the quadrature.

degree Quadrature is exact of degree degree.

dim Quadrature for dimension dim; the barycentric coordinates of the quadrature points
have dim+1 valid components.

n points max The maximal number of quadrature points.

quad Quadrature rules for each wall. These are co-dimension 1 rules.

INIT ELEMENT DECL Function pointer to a per-element initializer. This pointer is always
NULL for quadratures returned by get wall quad(). External extension modules may make
use of it. See Section 3.11.

metadata Pointer to an internal data structure for per-element quadrature caches and the
like.

Functions for numerical quadrature are:

const WALLQUAD ∗ ge t wa l l quad (int dim , int degree) ;
void r e g i s t e r wa l l q u ad r a t u r e (WALLQUAD ∗wal l quad) ;
const QUAD ∗ get ne igh quad (const EL INFO ∗ e l i n f o , const WALLQUAD

∗wall quad , int neigh) ;

Description:

get wall quad(dim, degree) returns a pointer to a WALL QUAD structure for numerical
integration in dim dimensions.

register wall quadrature(wall quad) initializes the meta-data for the given
WALL QUAD, no need to call this if the WALL QUAD has been acquired by get wall quad(),
only needed for externally defined extension quadrature rules.

4.2.5 The WALL QUAD FAST data structure

Convenience structure for WALL QUAD: its is legal to call get quad fast(bas fcts,

WALL QUAD::quad[wall], ...) (see Section 4.2.2 “The QUAD FAST data struc-
ture”) individually, however get wall quad fast() does this in a single run. If
INIT ELEMENT(el info, WALL QUAD FAST) is called, then the sub-ordinate initializers
INIT ELEMENT(el info,WALL QUAD FAST::quad fast[wall]) need not be called.

4.2. DATA STRUCTURES FOR NUMERICAL QUADRATURE 233

typedef struct wa l l quad f a s t WALL QUAD FAST;

struct wa l l quad f a s t
{

const WALLQUAD ∗wal l quad ;
const BAS FCTS ∗ b a s f c t s ;

FLAGS i n i t f l a g ;
const QUAD FAST ∗ quad fa s t [NWALLSMAX] ;

INIT ELEMENT DECL;
} ;

The entries yield following information:

wall quad values stored for numerical quadrature quad;

bas fcts values stored for basis functions bas fcts;

init flag indicates which information is initialized; may be one of, or a bitwise OR of
several of INIT PHI, INIT GRD PHI, INIT D2 PHI;

quad fast[N WALLS MAX] Pointer to N WALLS MAX quad fast structures.

INIT ELEMENT DECL Function pointer to for a per-element initialiser. This pointer is
always NULL for quadratures returned by get quadrature(), get wall quad() and
get bndry quad(). External extension modules make use of it. See Section 3.11.

const WALLQUAD ∗ g e t wa l l q u ad f a s t (const BAS FCTS ∗ , const WALLQUAD ∗ ,
FLAGS i n i t f l a g) ;

QUAD FAST ∗ g e t n e i gh quad f a s t (const EL INFO ∗ e l i n f o ,
const WALLQUAD FAST ∗wqfast ,
int neigh) ;

Description:

get wall quad fast(bas fcts, wall quad, init flag) bas fcts is a pointer to a
filled BAS FCTS structure, wall quad a pointer to some quadrature (accessed by
get wall quad(), e.g.) and init flag indicates which information should be filled into
the QUAD FAST structure. The function returns a pointer to a filled QUAD FAST structure
where all demanded information is computed and stored.

get neigh quad(el info, wall quad, neigh) returns a suitable quadrature for in-
tegrating over the given wall (neigh number), but the barycentric co-ordinates of
QUAD->lambda are relative to the neighbour element.

get neigh quad fast(el info, wall quad, neigh) returns a suitable QUAD FAST

structure for integrating over the given wall, but relative to the neighbour ele-
ment. If the returned QUAD FAST object has a per-element initializer, then it must
be called with an EL INFO structure for the neighbour element. It is also legal
to just call get quad fast(bas fcts, get neigh quad(el info, wall quad, neigh),

...) but get neigh quad fast() is slightly more efficient.

234 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

4.2.6 Caching of geometric quantities on quadrature nodes

Like for geometric quantities which are constant on a given mesh-element it is useful
to share geometric data attached to quadrature nodes between different places of pro-
gram code, see also Section 3.2.8. For this purpose there is a per-quadrature-per-element
cache, called QUAD EL CACHE, which can be filled and accessed through calls to the function
fill quad el cache(). This is in particular useful for higher-order parametric meshes, where
for example the transformation to the reference element is no longer piece-wise constant on
each element. Internally, the QUAD EL CACHE is maintained as part of the “metadata” attached
to each quadrature rule, see 4.2. The per-quadrature node cache and the related definitions
and proto-types are as follows:

typedef struct quad e l cache QUAD EL CACHE;

struct quad e l cache
{

EL ∗ c u r r e n t e l ;
FLAGS f i l l f l a g ;
REAL D ∗world ;
struct {

REAL ∗det ;
REAL BD ∗Lambda ;
REAL BDD ∗DLambda ;
REAL BD ∗ grd wor ld ;
REAL BDB ∗D2 world ;
REAL BDBB ∗D3 world ;
REAL ∗wa l l d e t ; /∗ f o r co−dim 1 ∗/
REAL D ∗wal l normal ; /∗ f o r co−dim 1 ∗/
REAL DB ∗ grd normal ; /∗ f o r co−dim 1 ∗/
REAL DBB ∗D2 normal ; /∗ f o r co−dim 1 ∗/

} param ;
} ;

#define FILL EL QUAD WORLD 0x0001
#define FILL EL QUAD DET 0x0002
#define FILL EL QUAD LAMBDA 0x0004
#define FILL EL QUAD DLAMBDA 0x0008
#define FILL EL QUAD GRD WORLD 0x0010
#define FILL EL QUAD D2 WORLD 0x0020
#define FILL EL QUAD D3 WORLD 0x0040
#define FILL EL QUAD WALL DET 0x0100
#define FILL EL QUAD WALL NORMAL 0x0200
#define FILL EL QUAD GRD NORMAL 0x0400
#define FILL EL QUAD D2 NORMAL 0x0800

stat ic i n l i n e const QUAD EL CACHE ∗ f i l l q u a d e l c a c h e (const EL INFO ∗ e l i n f o ,
const QUAD ∗quad ,
FLAGS f i l l) ;

The quadrature cache can be obtained and filled by calls to fill quad el cache(), see
also below Example 4.2.1. The members of QUAD EL CACHE have the following meaning:

current el For internal use only.

fill flag A bit-mask, bit-wise or of the fill flags listed above (4.17).

4.2. DATA STRUCTURES FOR NUMERICAL QUADRATURE 235

world The world co-ordinates of the quadrature points, filled by fill quad el cache(...,

FILL EL QUAD WORLD).

param A cache for geometric quantities which are constant on each element for affine-linear
meshes, but vary between quadrature points for higher-order parametric meshes.

det The determinant of the transformation to the reference element, filled by filled by
fill quad el cache(..., FILL EL QUAD DET).

Lambda The derivative of the barycentric coordinates w.r.t. the Cartesian coordinates,
filled by fill quad el cache(..., FILL EL QUAD LAMBDA).

DLambda The second derivatives of the barycentric coordinates w.r.t. the Cartesian co-
ordinates, filled by fill quad el cache(..., FILL EL QUAD DLAMBDA).

grd world The first derivatives of the Cartesian coordinates w.r.t. the barycentric co-
ordinates, filled by fill quad el cache(..., FILL EL QUAD GRD WORLD).

D2 world The second derivatives of the Cartesian coordinates w.r.t. the barycentric
coordinates, filled by fill quad el cache(..., FILL EL QUAD D2 WORLD).

D3 world The third derivatives of the Cartesian coordinates w.r.t. the barycentric co-
ordinates, filled by fill quad el cache(..., FILL EL QUAD D3 WORLD).

wall det The determinant of the transformation of the walls to the reference
element’s walls. This can be filled only for co-dimension 1 quadratures by
fill quad el cache(..., FILL EL QUAD WALL DET).

wall normal The outer wall-normal. This can be filled only for co-dimension 1 quadra-
tures by fill quad el cache(..., FILL EL QUAD WALL NORMAL).

grd normal The first derivative of the outer normal-field with respect to the
barycentric coordinates. This can be filled only for co-dimension 1 quadratures by
fill quad el cache(..., FILL EL QUAD GRD NORMAL).

D2 normal The second derivative of the outer normal-field with respect to the
barycentric coordinates. This can be filled only for co-dimension 1 quadratures by
fill quad el cache(..., FILL EL QUAD D2 NORMAL).

4.2.1 Example. A simple example which computes the measure of the region occupied by
the mesh (of course, this can be achieved more efficiently by computing a boundary integral
. . .). This example is, of course, quite artificial – and in this context it would be more efficient
not to read through the per-element caches.

const PARAMERIC ∗param = mesh−>parametr ic ;
const QUAD ∗quad = get quadrature (mesh−>dim , 3 /∗ degree ∗/) ;
REAL meas = 0 . 0 ;
TRAVERSE FIRST(mesh , −1, CALL LEAF EL |FILL COORDS) {

int i q ;
i f (param−>i n i t e l emen t (e l i n f o , param)) {

const QUAD EL CACHE ∗ qe l c = f i l l q u a d e l c a c h e (e l i n f o , quad ,
FILL EL QUAD DET) ;

for (i q = 0 ; i q < quad−>n po in t s ; i q++) {
meas += quad−>w[iq] ∗ qe lc−>param . det [i q] ;

}
} else {

const EL GEOMCACHE ∗ e l g c = f i l l e l g e om c a c h e (e l i n f o , FILL EL DET) ;
meas += elgc−>det / (REAL)DIM FAC(mesh−>dim) ;

}
} TRAVERSENEXT()

236 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

4.3 Functions for the evaluation of finite elements

Finite element functions are evaluated locally on single elements using barycentric coordi-
nates (compare Section 1.4.3). ALBERTA supplies several functions for calculating values and
first and second derivatives of finite element functions on single elements. Functions for the
calculation of derivatives are currently only implemented for (non–parametric) simplices.

Recalling (1.4.3) on page 19 we obtain for the value of a finite element function uh on an
element S

uh(x(λ)) =
m∑
i=1

uiS ϕ̄
i(λ) for all λ ∈ S̄,

where
(
ϕ̄1, . . . , ϕ̄m

)
is a basis of P̄ and

(
u1
S , . . . , u

m
S

)
the local coefficient vector of uh on S.

Derivatives are evaluated on S by

∇uh(x(λ)) = Λt
m∑
i=1

uiS ∇λϕ̄i(λ), λ ∈ S̄

and

D2uh(x(λ)) = Λt
m∑
i=1

uiS D
2
λϕ̄

i(λ)Λ, λ ∈ S̄,

where Λ is the Jacobian of the barycentric coordinates, compare Section 1.4.3.1.
These formulas are used for all evaluation routines. Information about values of basis func-

tions and their derivatives can be calculated via function pointers in the BAS FCTS structure.
Additionally, the local coefficient vector and the Jacobian of the barycentric coordinates are
needed (for the calculation of derivatives).

The following routines calculate values of a finite element function at a single point, given
in barycentric coordinates:

REAL eva l uh (const REAL B lambda , const EL REAL VEC ∗uh loc ,
const BAS FCTS ∗ b f c t s) ;

REAL ∗ eva l g rd uh (REAL D re su l t , const REAL B lambda , const REAL BD Lambda ,
const EL REAL VEC ∗uh loc , const BAS FCTS ∗ b f c t s) ;

REAL D ∗ eval D2 uh (REAL DD re su l t , const REAL B lambda , const REAL BD Lambda ,
const EL REAL VEC ∗uh loc , const BAS FCTS ∗ b f c t s) ;

REAL ∗ eva l uh d (REAL D re su l t , const REAL B lambda ,
const EL REAL D VEC ∗uh loc , const BAS FCTS ∗ b f c t s) ;

REAL D ∗ eva l g rd uh d (REAL DD re su l t , const REAL B lambda ,
const REAL BD Lambda , const EL REAL D VEC ∗uh loc ,
const BAS FCTS ∗ b f c t s) ;

REAL eva l d i v uh d (const REAL B lambda , const REAL BD Lambda ,
const EL REAL D VEC ∗uh loc , const BAS FCTS ∗ b f c t s) ;

REAL DD ∗ eval D2 uh d (REAL DDD re su l t , const REAL B lambda ,
const REAL BD Lambda , const EL REAL D VEC ∗uh loc ,
const BAS FCTS ∗ b f c t s) ;

REAL ∗ eval uh dow (REAL D re su l t , const REAL B lambda ,
const EL REAL VEC D ∗uh loc , const BAS FCTS ∗ b f c t s) ;

REAL D ∗ eval grd uh dow (REAL DD re su l t , const REAL B lambda ,
const REAL BD Lambda , const EL REAL VEC D ∗uh loc ,
const BAS FCTS ∗ b f c t s) ;

REAL eva l d iv uh dow (const REAL B lambda , const REAL BD Lambda ,

4.3. FUNCTIONS FOR THE EVALUATION OF FINITE ELEMENTS 237

const EL REAL VEC D ∗uh loc , const BAS FCTS ∗ b f c t s) ;
REAL DD ∗ eval D2 uh dow (REAL DDD re su l t , const REAL B lambda ,

const REAL BD Lambda , const EL REAL VEC D ∗uh loc ,
const BAS FCTS ∗ b f c t s) ;

Description:
In the following lambda = λ are the barycentric coordinates at which the function is

evaluated, Lambda = Λ is the Jacobian of the barycentric coordinates, uh the local coefficient
vector

(
u0
S , . . . , u

m−1
S

)
(where uiS is a REAL or a REAL D), and bas fcts is a pointer to a

BAS FCTS structure, storing information about the set of local basis functions
(
ϕ̄0, . . . , ϕ̄m−1

)
.

All functions returning a pointer to a vector or matrix provide memory for the vector or
matrix in a statically allocated memory area. This area is overwritten during the next call. If
the first argument of such a function is not NULL, then it is a pointer to a storage area where
the results are stored. This memory area must be of correct size, no check is performed.

4.3.1 Compatibility Note. Former versions of ALBERTA expected the argument providing
optional storage for the result at the last place in the parameter list. In the current version
of the library, storage for the result is still optional, but generally passed as first argument to
the respective function.

The functions for DIM OF WORLD-valued discrete functions come in two variants, one for
discrete functions based on scalar-valued local basis function sets, where the coefficients are
DIM OF WORLD-valued, and one for discrete functions which may be based on either scalar-
valued or DIM OF WORLD-valued local basis functions, modeled by DOF REAL VEC D – and locally
by EL REAL VEC D – objects. The names for the latter functions have a ... dow suffix, the
others a ... d suffix. Besides the slightly differing argument types the calling conventions for
both variants are the same, so they are documented together in the descriptions following
below.

eval uh(lambda, uh loc, bas fcts) the function returns uh(λ).

eval grd uh(result, lambda, Lambda, uh loc, bas fcts) the function returns a
pointer ptr to a vector of length DIM OF WORLD storing ∇uh(λ), i.e.

ptr[i] = uh,xi(λ), i = 0, . . . , DIM OF WORLD− 1;

result is optional and provides storage for the result if non-NULL. See Compatibil-
ity Note 4.3.1.

eval D2 uh(result, lambda, Lambda, uh loc, bas fcts) the function returns a
pointer ptr to a matrix of size (DIM OF WORLD× DIM OF WORLD) storing D2uh(λ), i.e.

ptr[i][j] = uh,xixj(λ), i, j = 0, . . . , DIM OF WORLD− 1;

result is optional and provides storage for the result if non-NULL. See Compatibil-
ity Note 4.3.1.

eval uh [d|dow](result, lambda, uh loc, bas fcts) the function returns a pointer
ptr to a vector of length DIM OF WORLD storing uh(λ), i.e.

ptr[k] = uhk(λ), k = 0, . . . , DIM OF WORLD− 1;

result is optional and provides storage for the result if non-NULL. See Compatibil-
ity Note 4.3.1.

238 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

eval grd uh [d|dow](result, lambda, Lambda, uh loc, bas fcts) the function
returns a pointer ptr to a vector of DIM OF WORLD vectors of length DIM OF WORLD storing
∇uh(λ), i.e.

ptr[k][i] = uhk,xi(λ), k, i = 0, . . . , DIM OF WORLD− 1;

result is optional and provides storage for the result if non-NULL. See Compatibil-
ity Note 4.3.1.

eval div uh [d|dow](lambda, Lambda, uh loc, bas fcts) the function returns
div uh(λ).

eval D2 uh [d|dow](result, lambda, Lambda, uh loc, bas fcts) the function re-
turns a pointer ptr to a vector of (DIM OF WORLD × DIM OF WORLD) matrices of length
DIM OF WORLD storing D2uh(λ), i.e.

ptr[k][i][j] = uhk,xixj(λ), k, i, j = 0, . . . , DIM OF WORLD− 1;

result is optional and provides storage for the result if non-NULL. See Compatibil-
ity Note 4.3.1.

Using pre–computed values of basis functions at the evaluation point, these routines can
be implemented more efficiently.

REAL eva l u h f a s t (const EL REAL VEC ∗uh loc , const QUAD FAST ∗ q fas t , int i q) ;
const REAL ∗ e v a l g r d uh f a s t (REAL D grd uh , const REAL BD Lambda ,

const EL REAL VEC ∗uh loc ,
const QUAD FAST ∗ q fas t , int i q) ;

const REAL D ∗ eva l D2 uh fa s t (REAL DD re su l t , const REAL BD Lambda ,
const EL REAL VEC ∗uh loc ,
const QUAD FAST ∗ q fas t , int i q) ;

const REAL ∗ e v a l u h d f a s t (REAL D re su l t , const EL REAL D VEC ∗uh loc ,
const QUAD FAST ∗ q fas t , int i q) ;

const REAL D ∗ e v a l g r d uh d f a s t (REAL DD re su l t , const REAL BD Lambda ,
const EL REAL D VEC ∗uh loc ,
const QUAD FAST ∗ q fas t , int i q) ;

REAL ev a l d i v uh d f a s t (const REAL BD Lambda , const EL REAL D VEC ∗uh loc ,
const QUAD FAST ∗ q fas t , int i q) ;

const REAL DD ∗ eva l D2 uh d fa s t (REAL DDD re su l t , const REAL BD Lambda ,
const EL REAL D VEC ∗uh loc ,
const QUAD FAST ∗ q fas t , int i q) ;

const REAL ∗ eva l uh dow fa s t (REAL D re su l t , const EL REAL VEC D ∗uh loc ,
const QUAD FAST ∗ q fas t , int i q) ;

const REAL D ∗ eva l g rd uh dow fa s t (REAL DD re su l t , const REAL BD Lambda ,
const EL REAL VEC D ∗uh loc ,
const QUAD FAST ∗ q fas t , int i q) ;

REAL eva l d i v uh dow fa s t (const REAL BD Lambda , const EL REAL VEC D ∗uh loc ,
const QUAD FAST ∗ q fas t , int i q) ;

const REAL DD ∗ eva l D2 uh dow fast (REAL DDD re su l t , const REAL BD Lambda ,
const EL REAL VEC D ∗uh loc ,
const QUAD FAST ∗ q fas t , int i q) ;

4.3.2 Compatibility Note. Former versions of ALBERTA didn’t expect the arguments

4.3. FUNCTIONS FOR THE EVALUATION OF FINITE ELEMENTS 239

. . . , const QUAD FAST ∗ q f a s t , int iq , . . .

– meaning the quadrature cache and the index of the quadrature point – but instead expected
the actual cached-values to be passed, i.e. for the computation of the gradient

. . . , q f a s t−>g r d ph i [i q] , q f a s t−>n b a s f c t s , . . .

There is some potential for confusion, in particular because the proto-types listed in the old
documentation often omit the parameter name and only give the parameter type. In the new
version, .., int iq , ... denotes the index of the quadrature point. The number of basis functions
on the reference element is not needed, because the evaluation functions fetch this quantity
themselves from the QUAD FAST data structure.

Description: In the following Lambda = Λ denotes the Jacobian of the barycentric coor-
dinates, uh loc the local coefficient vector (of type EL REAL VEC, EL REAL D VEC etc.) on an
element.

eval uh fast(uh loc, qfast, iq) the function returns uh(λ);

qfast is a quadrature cache storing the values ϕ̄0(λ), . . . , ϕ̄m−1(λ).

eval grd uh fast(grd, Lambda, uh loc, qfast, iq) the function returns a pointer
ptr to a vector of length DIM OF WORLD storing ∇uh(λ), i.e.

ptr[i] = uh,xi(λ), i = 0, . . . , DIM OF WORLD− 1;

grd is optional and provides storage for the result if non-NULL. See Compatibility Note 4.3.1.

qfast is a quadrature cache storing ∇λϕ̄0(λ), . . . ,∇λϕ̄m−1(λ);

eval D2 uh fast(D2, Lambda, uh loc, qfast, iq) the function returns a pointer ptr
to a matrix of size (DIM OF WORLD× DIM OF WORLD) storing D2uh(λ), i.e.

ptr[i][j] = uh,xixj(λ), i, j = 0, . . . , DIM OF WORLD− 1;

D2 is optional and provides storage for the result if non-NULL. See Compatibility Note 4.3.1.

qfast is a quadrature cache storing D2
λϕ̄

0(λ), . . . , D2λϕ̄
m−1(λ).

eval uh [d|dow] fast(result, uh loc, qfast, iq) the function returns a pointer
ptr to a vector of DIM OF WORLD vectors of length DIM OF WORLD storing ∇uh(λ), i.e.

ptr[k][i] = uhk,xi(λ), k, i = 0, . . . , DIM OF WORLD− 1;

qfast is a quadrature cache storing the values ϕ̄0(λ), . . . , ϕ̄m−1(λ);

result is optional and provides storage for the resulty if non-NULL. See Compatibil-
ity Note 4.3.1.

eval grd uh [d|dow] fast(grd, Lambda, uh loc, qfast, iq) the function returns
a pointer ptr to a vector of DIM OF WORLD vectors of length DIM OF WORLD storing ∇uh(λ),
i.e.

ptr[k][i] = uhk,xi(λ), k, i = 0, . . . , DIM OF WORLD− 1;

qfast is a quadrature cache storing ∇λϕ̄0(λ), . . . ,∇λϕ̄m−1(λ); grd is optional storage for
the result if non-NULL. See Compatibility Note 4.3.1.

eval div uh [d|dow] fast(Lambda, uh loc, qfast, iq) the function returns
div uh(λ);

qfast is a quadrature cache storing ∇λϕ̄0(λ), . . . ,∇λϕ̄m−1(λ). Unused entries must be set
to 0.0.

240 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

eval D2 uh [d|dow] fast(D2, Lambda, uh loc, qfast, iq) the function returns a
pointer ptr to a vector of (DIM OF WORLD×DIM OF WORLD) matrices of length DIM OF WORLD

storing D2uh(λ), i.e.

ptr[k][i][j] = uhk,xixj(λ), k, i, j = 0, . . . , DIM OF WORLD− 1;

qfast is a quadrature cache storing D2
λϕ̄

0(λ), . . . , D2λϕ̄
m−1(λ);

D2 is optional storage for the result if non-NULL. See Compatibility Note 4.3.1.

One important task is the evaluation of finite element functions at all quadrature nodes
for a given quadrature formula. Using the QUAD FAST data structures, the values of the basis
functions are known at the quadrature nodes which results in an efficient calculation of values
and derivatives of finite element functions at these quadrature points.

REAL ∗uh at qp (REAL ∗ r e su l t , const QUAD FAST ∗ q fas t ,
const EL REAL VEC ∗ uh loc) ;

REAL D ∗ grd uh at qp (REAL D ∗ r e su l t , const QUAD FAST ∗ q fas t ,
const REAL BD Lambda , const EL REAL VEC ∗ uh loc) ;

REAL DD ∗D2 uh at qp (REAL DD ∗ r e su l t , const QUAD FAST ∗ q fas t ,
const REAL BD Lambda , const EL REAL VEC ∗ uh loc) ;

REAL D ∗param grd uh at qp (REAL D vec [] , const QUAD FAST ∗ q fas t ,
const REAL BD Lambda [] , const EL REAL VEC

∗ uh loc) ;
REAL DD ∗param D2 uh at qp (REAL DD ∗ r e su l t , const QUAD FAST ∗ q fas t ,

const REAL BD Lambda [] , const REAL BDD DLambda [] ,
const EL REAL VEC ∗ uh loc) ;

REAL D ∗uh d at qp (REAL D ∗ r e su l t , const QUAD FAST ∗ q fas t ,
const EL REAL D VEC ∗ uh loc) ;

REAL DD ∗ grd uh d at qp (REAL DD ∗ r e su l t , const QUAD FAST ∗ q fas t ,
const REAL BD Lambda , const EL REAL D VEC ∗ uh loc) ;

REAL ∗ d iv uh d at qp (REAL ∗ r e su l t , const QUAD FAST ∗ q fas t ,
const REAL BD Lambda , const EL REAL D VEC ∗ uh loc) ;

REAL DDD ∗D2 uh d at qp (REAL DDD vec [] , const QUAD FAST ∗ q fas t ,
const REAL BD Lambda , const EL REAL D VEC ∗ uh loc) ;

REAL DD ∗param grd uh d at qp (REAL DD vec [] , const QUAD FAST ∗ q fas t ,
const REAL BD Lambda [] ,
const EL REAL D VEC ∗ uh loc) ;

REAL ∗param div uh d at qp (REAL vec [] , const QUAD FAST ∗ q fas t ,
const REAL BD Lambda [] ,
const EL REAL D VEC ∗ uh loc) ;

REAL DDD ∗param D2 uh d at qp (REAL DDD vec [] , const QUAD FAST ∗ q fas t ,
const REAL BD grd lam [] ,
const REAL BDD DLambda [] ,
const EL REAL D VEC ∗ uh loc) ;

REAL D ∗uh dow at qp (REAL D ∗ r e su l t , const QUAD FAST ∗ q fas t ,
const EL REAL VEC D ∗ uh loc) ;

REAL DD ∗ grd uh dow at qp (REAL DD ∗ r e su l t , const QUAD FAST ∗ q fas t ,
const REAL BD Lambda , const EL REAL VEC D ∗ uh loc) ;

REAL ∗div uh dow at qp (REAL ∗ r e su l t , const QUAD FAST ∗ q fas t ,
const REAL BD Lambda , const EL REAL VEC D ∗ uh loc) ;

REAL DDD ∗D2 uh dow at qp (REAL DDD vec [] , const QUAD FAST ∗ q fas t ,
const REAL BD Lambda , const EL REAL VEC D ∗ uh loc) ;

4.3. FUNCTIONS FOR THE EVALUATION OF FINITE ELEMENTS 241

REAL DD ∗param grd uh dow at qp (REAL DD vec [] , const QUAD FAST ∗ q fas t ,
const REAL BD ∗Lambda ,
const EL REAL VEC D ∗ uh loc) ;

REAL ∗param div uh dow at qp (REAL vec [] , const QUAD FAST ∗ q fas t ,
const REAL BD ∗Lambda ,
const EL REAL VEC D ∗ uh loc) ;

REAL DDD ∗param D2 uh dow at qp (REAL DDD ∗ r e su l t , const QUAD FAST ∗ q fas t ,
const REAL BD ∗Lambda , const REAL BDD

∗DLambda ,
const EL REAL VEC D ∗ uh loc) ;

Description: In the following uh loc denotes the local coefficient vector (of type EL REAL VEC,
EL REAL D VEC etc.) on an element.

uh at qp(result, qfast, uh loc) the function returns a pointer ptr to a vector of
length qfast->n points storing the values of uh at all quadrature points of qfast->quad,
i.e.

ptr[l] = uh(qfast->quad->lambda[l])

where l = 0, . . . , qfast->quad->n points− 1;

the INIT PHI flag must be set in qfast->init flag;

result is optional and provides storage for the result if non-NULL. See Compatibil-
ity Note 4.3.1.

grd uh at qp(result, qfast, Lambda, uh loc) the function returns a pointer ptr to
a vector of length qfast->n points of DIM OF WORLD vectors storing ∇uh at all quadrature
points of qfast->quad, i.e.

ptr[l][i] = uh,xi(qfast->quad->lambda[l])

where l = 0, . . . , qfast->quad->n points− 1, and i = 0, . . . , DIM OF WORLD− 1;

the INIT GRD PHI flag must be set in qfast->init flag;

result is optional and provides storage for the result if non-NULL. See Compatibil-
ity Note 4.3.1.

D2 uh at qp(result, qfast, Lambda, uh loc)

param grd uh at qp(result, qfast, Lambdas, uh loc) version for parametric
meshes; must be passed a vector storing the gradients of the barycentric coordinates at
each quadrature point. The same holds for the other param -prefixed routines.

[param]D2 uh at qp(result, qfast, Lambda[s], uh loc, D2) The function re-
turns a pointer ptr to a vector of length qfast->n points of (DIM OF WORLD ×
DIM OF WORLD) matrices storing D2uh at all quadrature points of qfast->quad, i.e.

ptr[l][i][j] = uh,xixj(qfast->quad->lambda[l])

where l = 0, . . . , qfast->quad->n points− 1, and i, j = 0, . . . , DIM OF WORLD− 1;

the INIT D2 PHI flag must be set in qfast->init flag;

result is optional and provides storage for the result if non-NULL. See Compatibil-
ity Note 4.3.1.

242 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

uh [d|dow] at qp(result, qfast, uh loc) The function returns a pointer ptr to a
vector of length qfast->n points of DIM OF WORLD vectors storing the values of uh at all
quadrature points of qfast->quad, i.e.

ptr[l][k] = uhk(qfast->quad->lambda[l])

where l = 0, . . . , qfast->quad->n points− 1, and k = 0, . . . , DIM OF WORLD− 1;

the INIT PHI flag must be set in qfast->init flag;

result is optional and provides storage for the result if non-NULL. See Compatibil-
ity Note 4.3.1.

grd uh [d|dow] at qp(result, qfast, Lambda, uh loc)

div uh [d|dow] at qp(result, qfast, Lambda, uh loc)

D2 uh [d|dow] at qp(result, qfast, Lambda[], uh loc) The function returns a
pointer ptr to a vector of length qfast->n points of (DIM OF WORLD × DIM OF WORLD ×
DIM OF WORLD) tensors storing D2uh at all quadrature points qfast->quad, i.e.

ptr[l][k][i][j] = uhk,xixj(qfast->quad->lambda[l])

where l = 0, . . . , qfast->quad->n points− 1, and k, i, j = 0, . . . , DIM OF WORLD− 1;

the INIT D2 PHI flag must be set in qfast->init flag;

result is optional and provides storage for the result if non-NULL. See Compatibil-
ity Note 4.3.1.

param grd uh [d|dow] at qp(vec[], qfast, Lambda[], uh loc) The function re-
turns a pointer ptr to a vector of length qfast->n points of (DIM OF WORLD ×
DIM OF WORLD) matrices storing ∇uh at all quadrature points of qfast->quad, i.e.

ptr[l][k][i] = uhk,xi(qfast->quad->lambda[l])

where l = 0, . . . , qfast->quad->n points− 1, and k, i = 0, . . . , DIM OF WORLD− 1;

the INIT GRD PHI flag must be set in qfast->init flag;

vec is optional and provides storage for the result if non-NULL. See Compatibility Note 4.3.1.

param div uh [d|dow] at qp(result[], qfast, Lambda[], uh loc)

param D2 uh [d|dow] at qp(result, qfast, Lambda, DLambda, uh loc) Second
derivatives for parametric meshes. Note that one needs the second derivatives DLambda of
the barycentric co-ordinates with respect to the cartesian co-ordiantes for this function.
Also note that – in the case of non-zero co-dimension – the matrix (∇(∇u)i)j built from
the components of the second tangential derivatives is not symmetric in general.

vec is optional and provides storage for the result if non-NULL. See Compatibility Note 4.3.1.

REAL ∗ eva l ba r g rd uh (REAL B re su l t , const REAL B lambda ,
const EL REAL VEC ∗uh loc , const BAS FCTS ∗ b f c t s) ;

REAL B ∗ eva l ba r g rd uh d (REAL DB re su l t , const REAL B lambda ,
const EL REAL D VEC ∗uh loc , const BAS FCTS

∗ b f c t s) ;
REAL B ∗ eva l bar grd uh dow (REAL DB re su l t , const REAL B lambda ,

const EL REAL VEC D ∗uh loc ,
const BAS FCTS ∗ b f c t s) ;

4.4. CALCULATION OF NORMS FOR FINITE ELEMENT FUNCTIONS 243

REAL ∗ e v a l b a r g r d uh f a s t (REAL B re su l t , const EL REAL VEC ∗uh loc ,
const QUAD FAST ∗ q fas t , int i q) ;

REAL B ∗ e v a l b a r g r d uh d f a s t (REAL DB re su l t , const EL REAL D VEC ∗uh loc ,
const QUAD FAST ∗ q fas t , int i q) ;

REAL B ∗ eva l ba r g rd uh dow fa s t (REAL DB re su l t , const EL REAL VEC D ∗uh loc ,
const QUAD FAST ∗ q fas t , int i q) ;

REAL B ∗ bar grd uh at qp (REAL B ∗ r e su l t , const QUAD FAST ∗ q fas t ,
const EL REAL VEC ∗ uh loc) ;

REAL DB ∗ bar grd uh d at qp (REAL DB ∗ r e su l t , const QUAD FAST ∗ q fas t ,
const EL REAL D VEC ∗ uh loc) ;

REAL DB ∗bar grd uh dow at qp (REAL DB ∗ r e su l t , const QUAD FAST ∗ f a s t ,
const EL REAL VEC D ∗ uh loc) ;

REAL B ∗ eva l bar D2 uh (REAL BB re su l t , const REAL B lambda ,
const EL REAL VEC ∗uh loc , const BAS FCTS ∗ b f c t s) ;

REAL BB ∗ eva l bar D2 uh d (REAL DBB re su l t , const REAL B lambda ,
const EL REAL D VEC ∗uh loc , const BAS FCTS

∗ b f c t s) ;
REAL BB ∗ eval bar D2 uh dow (REAL DBB re su l t , const REAL B lambda ,

const EL REAL VEC D ∗uh loc ,
const BAS FCTS ∗ b f c t s) ;

REAL B ∗ eva l ba r D2 uh f a s t (REAL BB re su l t , const EL REAL VEC ∗uh loc ,
const QUAD FAST ∗ q fas t , int i q) ;

REAL BB ∗ eva l ba r D2 uh d f a s t (REAL DBB re su l t , const EL REAL D VEC ∗uh loc ,
const QUAD FAST ∗ q fas t , int iq , bool update)

REAL BB ∗ eva l bar D2 uh dow fas t (REAL DBB re su l t , const EL REAL VEC D
∗uh loc ,

const QUAD FAST ∗ q fas t , int i q) ;

REAL BB ∗bar D2 uh at qp (REAL BB ∗ r e su l t , const QUAD FAST ∗ q fas t ,
const EL REAL VEC ∗ uh loc) ;

REAL DBB ∗bar D2 uh d at qp (REAL DBB vec [] , const QUAD FAST ∗ q fas t ,
const EL REAL D VEC ∗ uh loc) ;

REAL DBB ∗bar D2 uh dow at qp (REAL DBB vec [] , const QUAD FAST ∗ q fas t ,
const EL REAL VEC D ∗ uh loc) ;

Description: These functions compute the respective derivatives with respect to barycen-
tric co-ordinates. Otherwise they are functionally equivalent to the functions without the
bar -prefix.

4.4 Calculation of norms for finite element functions

ALBERTA supplies functions for the calculation of the L2 norm and H1 semi–norm of a given
scalar or vector valued finite element function.

REAL H1 norm uh (const QUAD ∗ , const DOF REAL VEC ∗) ;
REAL L2 norm uh (const QUAD ∗ , const DOF REAL VEC ∗) ;
REAL H1 norm uh d (const QUAD ∗ , const DOF REAL D VEC ∗) ;
REAL L2 norm uh d (const QUAD ∗ , const DOF REAL D VEC ∗) ;
REAL H1 norm uh dow (const QUAD ∗ , const DOF REAL VEC D ∗) ;
REAL L2 norm uh dow (const QUAD ∗ , const DOF REAL VEC D ∗) ;

244 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

Descriptions

H1 norm uh(quad, uh) returns an approximation to the H1 semi norm (
∫

Ω |∇uh|
2)1/2 of

a finite element function; the coefficient vector of the vector is stored in uh; the domain is
given by uh->fe space->mesh; the element integrals are approximated by the numerical
quadrature quad, if quad is not NULL; otherwise a quadrature which is exact of degree
2*uh->fe space->bas fcts->degree-2 is used.

L2 norm uh(quad, uh) returns an approximation to the L2 norm (
∫

Ω |uh|
2)1/2 of a fi-

nite element function; the coefficient vector of the vector is stored in uh; the domain is
given by uh->fe space->mesh; the element integrals are approximated by the numerical
quadrature quad, if quad is not NULL; otherwise a quadrature which is exact of degree
2*uh->fe space->bas fcts->degree is used.

H1 norm uh [d|dow](quad, uh d) returns an approximation to the H1 semi norm of a
vector valued finite element function; the coefficient vector of the vector is stored in uh d;
the domain is given by uh d->fe space->mesh; the element integrals are approximated by
the numerical quadrature quad, if quad is not NULL; otherwise a quadrature which is exact
of degree 2*uh d->fe space->bas fcts->degree-2 is used.

L2 norm uh [d|dow](quad, uh d) returns an approximation to the L2 norm of a vector
valued finite element function; the coefficient vector of the vector is stored in uh d; the
domain is given by uh d->fe space->mesh; the element integrals are approximated by the
numerical quadrature quad, if quad is not NULL; otherwise a quadrature which is exact of
degree 2*uh d->fe space->bas fcts->degree is used.

4.5 Interface for application provided functions

Often the library function in the ALBERTA package require certain application provided
functions, e.g. for assembling the “right hand side”, for computations of the “true” error,
for inhomogeneous boundary conditions or for interpolation of (non-discrete) functions onto
finite element spaces. This section defines some basis calling conventions concerning these
application provided functions.

Most of these function must conform to one of the following proto-types:

typedef REAL (∗FCT AT X) (const REAL D x) ;
typedef const REAL ∗(∗GRD FCT AT X) (const REAL D x , REAL D r e s u l t) ;
typedef const REAL D ∗(∗D2 FCT AT X) (const REAL D x , REAL DD r e s u l t) ;

typedef const REAL ∗(∗FCT D AT X) (const REAL D x , REAL D r e s u l t) ;
typedef const REAL D ∗(∗GRD FCT D AT X) (const REAL D x , REAL DD r e s u l t) ;
typedef const REAL DD ∗(∗D2 FCT D AT X) (const REAL D x , REAL DDD r e s u l t) ;

typedef REAL (∗LOC FCT AT QP) (const EL INFO ∗ e l i n f o ,
const QUAD ∗quad , int iq ,
void ∗ud) ;

typedef const REAL ∗(∗LOC FCT D AT QP) (REAL D re su l t ,
const EL INFO ∗ e l i n f o ,
const QUAD ∗quad , int iq ,
void ∗ud) ;

typedef const REAL ∗(∗GRD LOC FCT AT QP) (REAL D res ,
const EL INFO ∗ e l i n f o ,
const REAL BD Lambda ,

4.5. INTERFACE FOR APPLICATION PROVIDED FUNCTIONS 245

const QUAD ∗quad , int iq ,
void ∗ud) ;

typedef const REAL D ∗(∗GRD LOC FCT D AT QP) (REAL DD res ,
const EL INFO ∗ e l i n f o ,
const REAL BD Lambda ,
const QUAD ∗quad , int iq ,
void ∗ud) ;

4.5.1 Datatype (FCT AT X).

Prototype

typedef REAL (∗FCT AT X) (const REAL D x) ;

Synopsis

FCT AT X fp t r ;

r e s u l t = f p t r (x) ;

Description

Evaluate at the point x and return a scalar value. This is the simplest function-type.

Parameters

x The point of evaluation.

Return Value

The function value.

4.5.2 Datatype (GRD FCT AT X).

Prototype

const REAL ∗GRD FCT AT X(const REAL D x , REAL\ D r e s u l t) ;

Synopsis

GRD FCT AT X fp t r ;

r e s u l t = f p t r (x , r e s u l t) ;
r e s u l t = f p t r (x , NULL) ;

Description

Evaluate the first derivative at the point x.

Parameters

x The point of evaluation, in Cartesian coordinates.

result Storage for the result, or NULL.

Return Value The address of result, if result != NULL, otherwise a pointer to a statically
allocated storage area, see Example 4.5.3 below.

246 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

4.5.3 Example.

const REAL ∗ grd g implementat ion (const REAL D x , REAL D r e s u l t) {
stat ic REAL D sto rage ; /∗ mind the ” s t a t i c ” key−word ! ! ! ∗/

i f (r e s u l t == NULL) {
r e s u l t = s to rage ;

}

. . . /∗ mighty compl ica ted computat ions f o r ” r e s u l t ” ∗/

return r e s u l t ;
}

const REAL D *D2 FCT AT X(const REAL D x, REAL DD result) Evaluate the second
derivative at the point x.

Parameters

x The point of evaluation, in Cartesian coordinates.

result Storage for the result, or NULL.

Return Value The address of result, if result != NULL, otherwise a pointer to a stat-
ically allocated storage area, see Example 4.5.4 below.

4.5.4 Example.

const REAL D ∗D2 g implementation (const REAL D x , REAL DD r e s u l t) {
stat ic REAL DD sto rage ; /∗ mind the ” s t a t i c ” key−word ! ! ! ∗/

i f (r e s u l t == NULL) {
r e s u l t = s to rage ;

}

. . . /∗ mighty compl ica ted computat ions f o r ” r e s u l t ” ∗/

return (const REAL D ∗) r e s u l t ;
}

const REAL *FCT D AT X(const REAL D x, REAL D result)

const REAL D *GRD FCT D AT X(const REAL D x, REAL DD result)

const REAL DD *D2 FCT D AT X(const REAL D x, REAL DDD result) Evaluate
a vector valued function at the point x. There is, of course, no difference between the
GRD FCT AT X and the FCT D AT X function pointers.

Parameters

x The point of evaluation, in Cartesian coordinates.

result Storage for the result, or NULL.

Return Value The address of result, if result != NULL, otherwise a pointer to a stat-
ically allocated storage area, see Example 4.5.5 below.

4.5. INTERFACE FOR APPLICATION PROVIDED FUNCTIONS 247

4.5.5 Example.

const REAL ∗ g implementat ion (const REAL D x , REAL D r e s u l t) {
stat ic REAL D sto rage ; /∗ mind the ” s t a t i c ” key−word ! ! ! ∗/

i f (r e s u l t == NULL) {
r e s u l t = s to rage ;

}

. . . /∗ mighty compl ica ted computat ions f o r ” r e s u l t ” ∗/

return r e s u l t ;
}

REAL LOC FCT AT QP(

const EL INFO *el info, const QUAD *quad, int iq, void *ud)

Evaluate the function at quad->lambda[iq]. This looks slightly more complicated than
the simple FCT AT X types, but passing the EL INFO descriptor along with quadrature rule
opens the door to implement even complicated functions in an efficient and simpler way
than is possible with the simple FCT AT X types. See also Example 4.7.5.

Parameters

el info The current EL INFO descriptor.

quad The quadrature rule storing the evaluation points.

iq The number of the evaluation point.

ud Application data pointer.

Return Value The function value.

const REAL *GRD LOC FCT AT QP(

REAL D res, const EL INFO *el info, const QUAD *quad, int iq, void *ud)

const REAL *LOC FCT D AT QP(

REAL D res, const EL INFO *el info, const QUAD *quad, int iq, void *ud)

const REAL D *GRD LOC FCT D AT QP(

REAL DD res, const EL INFO *el info, const QUAD *quad, int iq, void *ud)

More or less self-explanatory, the convention for the res argument are the same as for
the FCT AT X types: a NULL pointer must be accepted, and then a pointer to a statically
allocated storage area has to be returned, otherwise the result has to be stored in res,
and the return value must be res, too.

248 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

4.6 Calculation of errors of finite element approximations

For test purposes it is convenient to calculate the “exact error” between a finite element
approximation and the exact solution. ALBERTA supplies functions to calculate the error in
several norms. For test purposes, the integral error routines may be used as “error estimators”
in an adaptive method. The local element error

∫
S |∇(u−uh)|2 or

∫
S |u−uh|

2 can be used as an
error indicator and can be stored on the element leaf data, for example. ALBERTA provides
also functions for the computation of the mean value of a given function, respectively the
mean value difference of a given non-discrete function and a discrete function.

Not all variants of the functions listed below will be explained in detail further below. For
the calling conventions for the application supplied function pointer we refer the reader to
Section 4.5 on page 244.

REAL max err at qp (FCT AT X u , const DOF REAL VEC ∗uh , const QUAD ∗quad) ;
REAL max e r r a t qp l o c (LOC FCT AT QP u loc , void ∗ud , FLAGS f i l l f l a g ,

const DOF REAL VEC ∗uh ,
const QUAD ∗quad) ;

REAL max err dow at qp (FCT D AT X u ,
const DOF REAL VEC D ∗uh ,
const QUAD ∗quad) ;

REAL max err dow at qp loc (LOC FCT D AT QP u loc ,
void ∗ud , FLAGS f i l l f l a g ,
const DOF REAL VEC D ∗uh ,
const QUAD ∗quad) ;

REAL max e r r a t ve r t (FCT AT X u , const DOF REAL VEC ∗uh) ;
REAL max e r r a t v e r t l o c (LOC FCT AT QP u at qp ,

void ∗ud , FLAGS f i l l f l a g ,
const DOF REAL VEC ∗uh) ;

REAL max err dow at vert (FCT D AT X u , const DOF REAL VEC D ∗uh) ;
REAL max e r r dow at ve r t l o c (LOC FCT D AT QP u at qp ,

void ∗ud , FLAGS f i l l f l a g ,
const DOF REAL VEC D ∗uh) ;

REAL L2 er r (FCT AT X u , const DOF REAL VEC ∗uh ,
const QUAD ∗quad ,
bool r e l e r r , bool mean value adjust ,
REAL ∗(∗ rw e r r e l) (EL ∗ e l) , REAL ∗max l2 er r2) ;

REAL L2 e r r l o c (LOC FCT AT QP u loc , void ∗ud , FLAGS f i l l f l a g ,
const DOF REAL VEC ∗uh ,
const QUAD ∗quad ,
bool r e l e r r , bool mean value adjust ,
REAL ∗(∗ rw e r r e l) (EL ∗ e l) , REAL ∗max l2 er r2) ;

REAL L2 er r we ighted (FCT AT X weight , FCT AT X u , const DOF REAL VEC ∗uh ,
const QUAD ∗quad ,
bool r e l e r r , bool mean value adjust ,
REAL ∗(∗ rw e r r e l) (EL ∗ e l) , REAL ∗max l2 er r2) ;

REAL L2 err dow (FCT D AT X u ,
const DOF REAL VEC D ∗uh ,
const QUAD ∗quad ,
bool r e l e r r , bool mean value adjust ,
REAL ∗(∗ rw e r r e l) (EL ∗ e l) , REAL ∗max l2 er r2) ;

REAL L2 er r l o c dow (LOC FCT D AT QP u loc ,
void ∗ud , FLAGS f i l l f l a g ,
const DOF REAL VEC D ∗uh ,

4.6. CALCULATION OF ERRORS OF FINITE ELEMENT APPROXIMATIONS 249

const QUAD ∗quad ,
bool r e l e r r , bool mean value adjust ,
REAL ∗(∗ rw e r r e l) (EL ∗ e l) , REAL ∗max l2 er r2) ;

REAL L2 err dow weighted (FCT AT X weight , FCT D AT X u ,
const DOF REAL VEC D ∗uh ,
const QUAD ∗quad ,
bool r e l e r r , bool mean value adjust ,
REAL ∗(∗ rw e r r e l) (EL ∗ e l) , REAL ∗max l2 er r2) ;

REAL H1 err (GRD FCT AT X grd u , const DOF REAL VEC ∗uh ,
const QUAD ∗quad , bool r e l e r r , REAL ∗(∗ rw e r r e l) (EL ∗) ,
REAL ∗max e l e r r2) ;

REAL H1 e r r l o c (GRD LOC FCT AT QP grd u loc ,
void ∗ud , FLAGS f i l l f l a g ,
const DOF REAL VEC ∗uh ,
const QUAD ∗quad , bool r e l e r r , REAL ∗(∗ rw e r r e l) (EL ∗) ,
REAL ∗max e l e r r2) ;

REAL H1 err we ighted (FCT AT X weight , GRD FCT AT X grd u ,
const DOF REAL VEC ∗uh , const QUAD ∗quad ,
bool r e l e r r , REAL ∗(∗ rw e r r e l) (EL ∗) ,
REAL ∗max e l e r r2) ;

REAL H1 err dow (GRD FCT D AT X grd u , const DOF REAL VEC D ∗uh ,
const QUAD ∗quad ,
bool r e l e r r , REAL ∗(∗ rw e r r e l) (EL ∗) , REAL ∗max e l e r r2) ;

REAL H1 err loc dow (GRD LOC FCT D AT QP grd u loc , void ∗ud , FLAGS f i l l f l a g ,
const DOF REAL VEC D ∗uh , const QUAD ∗quad ,
bool r e l e r r ,
REAL ∗(∗ rw e r r e l) (EL ∗) , REAL ∗max e l e r r2) ;

REAL H1 err dow weighted (FCT AT X weight , GRD FCT D AT X grd u ,
const DOF REAL VEC D ∗uh ,
const QUAD ∗quad ,
bool r e l e r r , REAL ∗(∗ rw e r r e l) (EL ∗) ,
REAL ∗max e l e r r2) ;

REAL mean value (MESH ∗mesh , REAL (∗ f) (const REAL D) , const DOF REAL VEC ∗ fh ,
const QUAD ∗quad) ;

REAL mean va lue loc (MESH ∗mesh , LOC FCT AT QP f at qp ,
void ∗ud , FLAGS f i l l f l a g s ,
const DOF REAL VEC ∗ fh , const QUAD ∗quad) ;

const REAL ∗mean value dow (MESH ∗mesh , FCT D AT X f , const DOF REAL VEC D
∗ fh ,

const QUAD ∗quad , REAL D mean) ;
const REAL ∗mean value loc dow (REAL D mean , MESH ∗mesh ,

LOC FCT D AT QP f at qp ,
void ∗ud , FLAGS f i l l f l a g ,
const DOF REAL VEC D ∗ fh ,
const QUAD ∗quad) ;

Descriptions

max err at qp(u, uh, quad) the function returns the maximal error, max |u − uh|, be-
tween the true solution and the approximation at all quadrature nodes on all elements of
a mesh; u is a pointer to a function for the evaluation of the true solution, uh stores the
coefficients of the approximation, uh->fe space->mesh is the underlying mesh, and quad

is the quadrature which gives the quadrature nodes; if quad is NULL, a quadrature which

250 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

is exact of degree 2*uh->fe space->bas fcts->degree-2 is used.

H1 err(grd u, uh, quad, rel err, rw el err, max) the function returns an approx-
imation to the absolute error (

∫
Ω |∇(u − uh)|2)1/2 (rel err == 0) or relative error

(
∫

Ω |∇(u− uh)|2/
∫

Ω |∇u|
2)1/2 (rel err == 1) between the true solution and the approx-

imation in the H1 semi norm;

grd u is a pointer to a function for the evaluation of the gradient of the true solution
returning a DIM OF WORLD vector storing this gradient, uh stores the coefficients of the
approximation, uh->fe space->mesh is the underlying mesh, and quad is the quadrature
for the approximation of the element integrals; if quad is NULL, a quadrature which is exact
of degree 2*uh->fe space->bas fcts->degree-2 is used;

if rw el err is not NULL, the return value of (*rw el err)(el) provides for each mesh
element el an address where the local error is stored; if max is not NULL, *max is the
maximal local error on an element on output.

L2 err(u, uh, quad, rel err, rw el err, max) the function returns an approxima-
tion to the absolute error (

∫
Ω |u − uh|

2)1/2 (rel err == 0) or the relative error (
∫

Ω |u −
uh|2/

∫
Ω |u|

2)1/2 (rel err == 1) between the true solution and the approximation in the
L2 norm,

u is a pointer to a function for the evaluation of the true solution, uh stores the coeffi-
cients of the approximation, uh->fe space->mesh is the underlying mesh, and quad is the
quadrature for the approximation of the element integrals; if quad is NULL, a quadrature
which is exact of degree 2*uh->fe space->bas fcts->degree-2 is used;

if rw el err is not NULL, the return value of (*rw el err)(el) provides for each mesh
element el an address where the local error is stored; if max is not NULL, *max is the
maximal local error on an element on output.

max err at qp [d|dow](u d, uh d, quad) the function returns the maximal error be-
tween the true solution and the approximation at all quadrature nodes on all elements of
a mesh; u d is a pointer to a function for the evaluation of the true solution returning a
DIM OF WORLD vector storing the value of the function, uh d stores the coefficients of the
approximation, uh d->fe space->mesh is the underlying mesh, and quad is the quadrature
which gives the quadrature nodes; if quad is NULL, a quadrature which is exact of degree
2*uh d->fe space->bas fcts->degree-2 is used.

H1 err2 [d|dow](grd u d, uh d, quad, rel err, rw el err, max) the function re-
turns an approximation to the absolute error (rel err == 0) or relative error (rel err

== 1) between the true solution and the approximation in the H1 semi norm;

grd u d is a pointer to a function for the evaluation of the Jacobian of the true solu-
tion returning a DIM OF WORLD × DIM OF WORLD matrix storing this Jacobian, uh d stores
the coefficients of the approximation, uh d->fe space->mesh is the underlying mesh, and
quad is the quadrature for the approximation of the element integrals; if quad is NULL, a
quadrature which is exact of degree 2*uh d->fe space->bas fcts->degree-2 is used;

if rw el err is not NULL, the return value of (*rw el err)(el) provides for each mesh
element el an address where the local error is stored; if max is not NULL, *max is the
maximal local error on an element on output.

L2 err2 [d|dow](u d, uh d, quad, rel err, rw el err, max) the function returns
an approximation to the absolute error (rel err == 0) or relative error (rel err == 1)
between the true solution and the approximation in the L2 norm;

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 251

u d is a pointer to a function for the evaluation of the true solution returning a
DIM OF WORLD vector storing the value of the function, uh d stores the coefficients of the
approximation, uh d->fe space->mesh is the underlying mesh, and quad is the quadra-
ture for the approximation of the element integrals; if quad is NULL, a quadrature which is
exact of degree 2*uh d->fe space->bas fcts->degree-2 is used;

if rw el err is not NULL, the return value of (*rw el err)(el) provides for each mesh
element el an address where the local error is stored; if max is not NULL, *max is the
maximal local error on an element on output.

mean value(mesh, f, fh, quad)

mean value [d|dow](mesh, f, fh, quad, mean)

mean value loc(mesh, f at qp, ud, fill flags, fh, quad)

mean value loc [d|dow](mean, mesh, f at qp, ud, fill flags, fh, quad)

compute the mean value of either a finite element function or a non-discrete function. If
both are given return the difference of their mean values (f-fh).

4.7 Tools for the assemblage of linear systems

This section describes data structures and subroutines for matrix and vector assembly. Section
4.7.1 presents basic routines for the update of global matrices and vectors by adding contri-
butions from one single element. Data structures and routines for global matrix assembly
are described in Section 4.7.2. This includes library routines for the efficient implementation
of a general second order linear elliptic operator. Section 4.7.5 presents data structures and
routines for the handling of pre–computed integrals, which are used to speed up calculations
in the case of problems with constant coefficients. The assembly of (right hand side) vectors is
described in Section 4.7.6. The incorporation of Dirichlet boundary values into the right hand
side is presented in Section 4.7.7.1. Finally, routines for generation of interpolation coefficients
are described in Section 4.7.8.

4.7.1 Element matrices and vectors

The usual way to assemble the system matrix and the load vector is to loop over all (leaf)
elements, calculate the local element contributions and add these to the global system matrix
and the global load vector. The updating of the load vector is rather easy. The contribution of
a local degree of freedom is added to the value of the corresponding global degree of freedom.
Here we have to use the function jS defined on each element S in (1.4) on page 18. It combines
uniquely the local DOFs with the global ones. The basis functions provide in the BAS FCTS

structure the entry get dof indices() which is an implementation of jS , see Section 3.5.1.
The updating of the system matrix is not that easy. As mentioned in Section 1.4.8, the

system matrix is usually sparse and we use special data structures for storing these matrices,
compare Section 3.3.4. For sparse matrices we do not have for each DOF a matrix row storing
values for all other DOFs; only the values for pairs of DOFs are stored, where the correspond-
ing global basis functions have a common support. Usually, the exact number of entries in
one row of a sparse matrix is not know a priori and can change during grid modifications.

Thus, we use the following concept: A call of clear dof matrix() will not set all matrix
entries to zero, but will remove all matrix rows from the matrix, compare the description of
this function on page 129. During the updating of a matrix for the value corresponding to a

252 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

pair of local DOFs (i, j), we look in the jS(i)th row of the matrix for a column jS(j) (the col

member of matrix row); if such an entry exists, we add the current contribution; if this entry
does not yet exist we will create a new entry, set the current value and column number. This
creation may include an enlargement of the row, by linking a new matrix row to the list of
matrix rows, if no space for a new entry is left. After the assemblage we then have a sparse
matrix, storing all values for pairs of global basis functions with common support.

The functions which we describe now allows also to handle matrices where the DOFs
indexing the rows can differ from the DOFs indexing the columns; this makes the combination
of DOFs from different finite element spaces possible.

4.7.1 Compatibility Note. Previous versions of ALBERTA defined extra-types for vector-
valued problems, like DOF DOWB MATRIX, DOWB OPERATOR INFO etc. The “DOWB” (“DimOf-
WorldBlocks”) variants, however, already incorporated all the functionality of the ordinary
scalar-only versions. Therefore the scalar-ony versions of most data-structures have been
abandoned and were replaced by the “DOWB” variants, which in turn were renamed to use
the scalar-only names. For example, in the current implementation a DOF MATRIX is in fact
what older versions called a DOF DOWB MATRIX; and implements the scalar-only case as well
as the block-matrix case.

4.7.1.1 Element matrix and vector structures

Block-matrix types

typedef enum matent type {
MATENTNONE = −1,
MATENTREAL = 0 ,
MATENTREALD = 1 ,
MATENTREALDD = 2

} MATENTTYPE;

Description: This enumeration type defines symbolic types for block-matrix entries.
MATENT REAL means scalar blocks, MATENT REAL D stands for diagonal blocks, and
MATENT REAL DD is a code for full matrix blocks. In general, data-structures make use of
these types to store the matrix blocks in an efficient way.

Structure for element matrices

typedef struct e l mat r i x EL MATRIX;

struct e l mat r i x
{

MATENTTYPE type ;
int n row , n co l ;
int n row max , n col max ;
union {

REAL ∗const∗ r e a l ;
REAL D ∗const∗ r e a l d ;
REAL DD ∗const∗ r e a l dd ;

} data ;
DBL LIST NODE row chain ;
DBL LIST NODE co l c ha i n ;

} ;

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 253

Description: A data structure to store per-element contributions during the assembling of
discrete systems. There is some limited support for the operation of element-matrices on
element-vectors and global DOF-vectors, see Section 4.7.1.4.

type One out of MATENT REAL, MATENT REAL D or MATENT REAL DD. The entries stored in
EL MATRIX->data have to be interpreted accordingly. See MATENT TYPE on page 252.

n row is the number of rows of the element matrix

n col is the number of columns of the element matrix

n row max is the maximal number of rows. The number of rows can vary from element to
element if the underlying basis functions have a per-element initializer.

n col max is the maximal number of columns.

data, data.real, data.real d, data.real dd EL MATRIX->data is a union, its com-
ponents should be accessed according to the symmetry type indicated by EL MATRIX->type.

row chain, col chain If the underlying finite element spaces are a direct sum of function
spaces, then the resulting element matrices have a block-layout. The link to the other parts
of the resulting block-matrix is implemented using cyclic doubly linked lists, row chain

and col chain are the corresponding list-nodes. There is a separate section explaining
how to handle such chains of objects, see Section 3.7.

Structures for element vectors

typedef struct e l i n t v e c EL INT VEC ;
typedef struct e l d o f v e c EL DOF VEC;
typedef struct e l u cha r v e c EL UCHAR VEC;
typedef struct e l s c h a r v e c EL SCHAR VEC;
typedef struct e l bndry vec EL BNDRY VEC;
typedef struct e l p t r v e c EL PTR VEC;
typedef struct e l r e a l v e c EL REAL VEC;
typedef struct e l r e a l v e c d EL REAL VEC D;
typedef struct e l r e a l d v e c EL REAL D VEC;

The el * vec structures are declared similary, the only difference between them is the type
of the structure entry vec. Below, the EL REAL VEC structure is given:

Source Code Listing 4.38: data-type: EL REAL VEC

struct e l r e a l v e c
{

int n components ;
int n components max ;
DBL LIST NODE chain ;
int r e s e rved ;
REAL vec [1] ; /∗ d i f f e r e n t type in EL INT VEC, . . . ∗/
} ;

and the EL REAL VEC D structure is described in detail:

struct e l r e a l v e c d
{

int n components ;
int n components max ;
DBL LIST NODE chain ;

254 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

int s t r i d e ; /∗ e i t h e r 1 or DIM OFWORLD ∗/
REAL vec [1] ;
} ;

Description:

n components The actual number of components available in and following
EL XXX VEC->vec. Note that the actual number of components is – of course –
larger than 1 in general get el XXX vec(bas fcts) takes care of allocating enough space.

n components max Behing EL XXX VEC->vec[0] may actually be more space available than
the number of currently valid entries as indicated by EL XXX VEC->n components; this is
the maximum size to access without crossing the bounds of the data segment allocated for
this element vector.

chain If the underlying basis-function implementation is part of a chain of sets of basis
functions, then this structure is inherited also by the element vectors: they are chained
using a doubly linked list, chain is the corresponding list-node. There is a separate section
about such chained objects, see Section 3.7.

stride, reserved For element vectors other than an EL REAL VEC D this is a reserved
value and actually tied to the constant value 1 with the exception of a EL REAL D VEC

were reserved is fixed at DIM OF WORLD. For EL REAL VEC D this varies, based on the
dimension of the range of the underlying basis function implementation. For vector-valued
basis functions EL REAL VEC D->stride is again tied to 1, for scalar-valued basis functions
EL REAL VEC D->stride is fixed at DIM OF WORLD, in both cases it gives the number of
REAL’s belonging to a single DOF. See also DOF REAL VEC D on page 122.

vec[1] Start of the data-segment, EL XXX VEC->n components items contain valid data,
EL XXX VEC->n components max items are allocated. Note that for a EL REAL VEC D vector
the numbers have to be multiplied by EL REAL VEC D->stride to get the actual number
of REAL’s allocated.

4.7.1.2 Accumulating per-element contributions

The following functions can be used on elements for updating matrices and vectors.

void add element matr ix (DOFMATRIX ∗matrix , REAL fac to r ,
const EL MATRIX ∗ e l matr ix , MatrixTranspose

transpose ,
const EL DOF VEC ∗ row dof , const EL DOF VEC ∗ co l do f ,
const EL SCHAR VEC ∗bound) ;

void add e lement vec (DOF REAL VEC ∗drv , REAL fac to r , const EL REAL VEC
∗ e l v e c ,

const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;
void add e lement d vec (DOF REAL D VEC ∗drdv , REAL fac to r ,

const EL REAL D VEC ∗ e l v e c , const EL DOF VEC ∗dof ,
const EL SCHAR VEC ∗bound) ;

void add element vec dow (DOF REAL VEC D ∗drdv , REAL fac to r ,
const EL REAL VEC D ∗ e l v e c , const EL DOF VEC ∗dof ,
const EL SCHAR VEC ∗bound) ;

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 255

Descriptions

add element matrix(mat, factor, el mat, transpose, row dof, col dof, bound)

Updates the global DOF MATRIX mat by adding element contributions. If row dof

equals col dof, the diagonal element is always the first entry in a matrix row;
this makes the access to the diagonal element easy for a diagonal preconditioner,
for example. In general, add element matrix() does the following: for all i the val-
ues fac*el mat->data.{REAL,REAL D,REAL DD}[i][j] are added to the entries at the
position (row dof->vec[i],col dof->vec[j]) in the global matrix mat (0 ≤ i <
el mat->n row, 0 ≤ j < el mat->n col). If such an entry exists in the row number
row dof->vec[i] the global matrix mat the value is simply added. Otherwise a new entry
is created in the row, the value is set and the column number is set to col dof[j]. This
may imply an enlargement of the row by adding a new MATRIX ROW structure to the list of
matrix rows.

Note that the first element matrix added to mat after calling clear dof matrix() deter-
mines the block-type of the global matrix mat. It is possible to add element-matrices with
higher block-symmetry to global DOF MATRIXes with lower block-symmetry, for example
it is allowed to add el mat to mat if el mat->type == MATENT REAL and mat->type ==

MATENT REAL DD.

Parameters

mat the global DOF MATRIX.

factor is a multiplier for the element contributions; usually factor is 1 or -1;

el mat is a matrix of size n row× n col storing the element contributions;

transpose the original matrix is used if transpose == NoTranspose (= 0) and the
transposed matrix if transpose == Transpose (= 1);

row dof is a vector of length row dof->n components storing the global row indices;

col dof is a vector of length col dof->n components storing the global column
indices, col dof may be a NULL pointer if the DOFs indexing the columns are
the same as the DOFs indexing the rows; in this case col dof = row dof is used;

bound is either NULL or an EL SCHAR Vec stucture storing a vector of length
bound->n components. In this case bound->n components must match either
row dof->n components or col dof->n components, depending on the value of
transpose.
If bound->vec[i] >= DIRICHLET, then the following happens:

row dof == col dof In the global matrix the row row dof->vec[i] is cleared
to zero, with the exception of the diagonal entry, which is set to 1.0.

row dof != col dof In the global matrix the row row dof->vec[i] is cleared
to zero.

All other contributions of el mat are added to matrix as usual. This allows for
a convenient way to implement inhomogeneous Dirichlet boundary conditions,
without having to modify the right-hand-side of the discrete systems explicitly.

add element vec(drv, factor, el vec, dof, bound)

256 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

add element d vec(drv, factor, el vec, dof, bound)

add element vec d(drv, factor, el vec, dof, bound)

These do similar things as add element matrix(), but with element vectors. Sec-
tion 4.7.1.4 also lists other routines which might be helpful in this context.

4.7.1.3 Allocation and filling of element vectors

Prototypes

EL DOF VEC ∗ g e t d o f i n d i c e s (EL DOF VEC ∗dofs , const FE SPACE ∗ f e space ,
const EL ∗ e l) ;

EL BNDRY VEC ∗get bound (EL BNDRY VEC ∗bndry , const BAS FCTS ∗ ba s f c t s ,
const EL INFO ∗ e l i n f o) ;

void e l i n t e r p o l (EL REAL VEC ∗ c o e f f , const EL INFO ∗ e l i n f o , int wall ,
const EL INT VEC ∗ i nd i c e s , LOC FCT AT QP f , void ∗ud ,
const BAS FCTS ∗ b a s f c t s) ;

void e l i n t e r p o l d ow (EL REAL VEC D ∗ c o e f f , const EL INFO ∗ e l i n f o , int wall ,
const EL INT VEC ∗ i nd i c e s , LOC FCT D AT QP f ,
void ∗ f data , const BAS FCTS ∗ b a s f c t s) ;

void d i r i ch l e t map (EL SCHAR VEC ∗bound , const EL BNDRY VEC ∗ bndry bi t s ,
const BNDRY FLAGS mask) ;

const EL INT VEC ∗
f i l l e l i n t v e c (EL INT VEC ∗ e l v e c , EL ∗ e l , const DOF INT VEC ∗ do f vec) ;
const EL REAL VEC ∗
f i l l e l r e a l v e c (EL REAL VEC ∗ e l v e c , EL ∗ e l , const DOF REAL VEC ∗ do f vec) ;
const EL REAL D VEC ∗
f i l l e l r e a l d v e c (EL REAL D VEC ∗ e l v e c , EL ∗ e l , const DOF REAL D VEC

∗ do f vec) ;
const EL REAL VEC D ∗
f i l l e l r e a l v e c d (EL REAL VEC D ∗ e l v e c , EL ∗ e l , const DOF REAL VEC D

∗ do f vec) ;
const EL UCHAR VEC ∗
f i l l e l u c h a r v e c (EL UCHAR VEC ∗ e l v e c , EL ∗ e l , const DOF UCHARVEC

∗ do f vec) ;
const EL SCHAR VEC ∗
f i l l e l s c h a r v e c (EL SCHAR VEC ∗ e l v e c , EL ∗ e l , const DOF SCHAR VEC

∗ do f vec) ;

EL INT VEC ∗ g e t e l i n t v e c (const BAS FCTS ∗ b a s f c t s) ;
EL DOF VEC ∗ g e t e l d o f v e c (const BAS FCTS ∗ b a s f c t s) ;
EL UCHAR VEC ∗ g e t e l u c h a r v e c (const BAS FCTS ∗ b a s f c t s) ;
EL SCHAR VEC ∗ g e t e l s c h a r v e c (const BAS FCTS ∗ b a s f c t s) ;
EL BNDRY VEC ∗ g e t e l bnd ry v e c (const BAS FCTS ∗ b a s f c t s) ;
EL PTR VEC ∗ g e t e l p t r v e c (const BAS FCTS ∗ b a s f c t s) ;
EL REAL VEC ∗ g e t e l r e a l v e c (const BAS FCTS ∗ b a s f c t s) ;
EL REAL D VEC ∗ g e t e l r e a l d v e c (const BAS FCTS ∗ b a s f c t s) ;
EL REAL VEC D ∗ g e t e l r e a l v e c d (const BAS FCTS ∗ b a s f c t s) ;

void f r e e e l i n t v e c (EL INT VEC ∗ e l v e c) ;
void f r e e e l d o f v e c (EL DOF VEC ∗ e l v e c) ;
void f r e e e l u c h a r v e c (EL UCHAR VEC ∗ e l v e c) ;
void f r e e e l s c h a r v e c (EL SCHAR VEC ∗ e l v e c) ;
void f r e e e l b nd r y v e c (EL BNDRY VEC ∗ e l v e c) ;
void f r e e e l p t r v e c (EL PTR VEC ∗ e l v e c) ;
void f r e e e l r e a l v e c (EL REAL VEC ∗ e l v e c) ;

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 257

void f r e e e l r e a l d v e c (EL REAL D VEC ∗ e l v e c) ;
void f r e e e l r e a l v e c d (EL REAL VEC D ∗ e l v e c) ;

DEF EL VEC VAR(VECNAME, name , s i z e , s ize max , i n i t) ;
DEF EL VEC CONST(VECNAME, name , s i z e , s i z e max) ;
ALLOC EL VEC(VECNAME, s i z e , s i z e max) ;

Descriptions

get dof indices(dofs, fe space, el) Compute the mapping between the local DOF-
indices on el and the global DOF-indices according to fe space->admin.

Parameters

dofs Storage for the result or NULL. In the latter case the mapping is returned in
a statically allocated EL DOF VEC. Note: this storage area will be overwritten on
the next call to this function, even if the fe space argument differs.

fe space The finite element space to compute the mapping for.

el The current mesh element (not the current EL INFO pointer, use EL INFO->el).

return Either again the argument dofs or – if dofs == NULL – a pointer to a statically
allocated EL DOF VEC.

examples With pre-allocated EL DOF VEC:

EL DOF VEC ∗ do f s = g e t e l d o f v e c (f e space−>b a s f c t s) ;
TRAVERSE FIRST(mesh , −1, CALL LEAF EL) {

int i ;

g e t d o f i n d i c e s (dofs , f e space , e l i n f o −>e l) ;
for (i = 0 ; i < ba s f c t s−>n b a s f c t s ; i++) {

MSG(” do f s [%d] = %d\n” , dofs−>vec [i]) ;
}

} TRAVERSENEXT() ;
f r e e e l d o f v e c (do f s) ;

Without pre-allocated EL DOF VEC:

TRAVERSE FIRST(mesh , −1, CALL LEAF EL) {
int i ;
EL DOF VEC ∗ do f s = g e t d o f i n d i c e s (NULL, f e space , e l i n f o −>e l) ;

for (i = 0 ; i < ba s f c t s−>n b a s f c t s ; i++) {
MSG(” do f s [%d] = %d\n” , dofs−>vec [i]) ;

}
} TRAVERSENEXT() ;

get bound(bndry, bas fcts, el info) Extract the boundary types of the local DOFs
of bas fcts. The boundary types are returned in form of a bit-mask. If bit j in the bit-
mask bndry[i] is set, then the local DOF number i belongs to the boundary segment
which has been assigned the number j in the macro-triangulation. Boundary types range
from 1 to 255.

258 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

Parameters

EL BNDRY VEC *bndry Storage for the result or NULL. In the latter case the data is
returned in a statically allocated EL BNDRY VEC.

BAS FCTS *bas fcts The local basis functions.

const EL INFO *el info The current mesh element info structure. (not the cur-
rent EL INFO pointer.

return Either again the argument bndry or – if bndry == NULL – a pointer to a statically
allocated EL BNDRY VEC.

examples With pre-allocated EL BNDRY VEC:

EL BNDRY VEC ∗bndry = ge t e l bnd ry v e c (b a s f c t s) ;
TRAVERSE FIRST(mesh , −1, CALL LEAF EL |FILL BOUND) {

int i , j ;
get bound (bndry , b a s f c t s , e l i n f o) ;
for (i = 0 ; i < ba s f c t s−>n b a s f c t s ; i++) {

for (j = 1 ; j < N BNDRY TYPES; j++) {
i f (BNNDRY FLAGS IS INTERIOR(bndry−>vec [i])) {
MSG(”Local dof %d i s an i n t e r i o r DOF\n”) ;

} else i f (BNDRY FLAGS IS AT BNDRY(bndry−>vec [i] , j)) {
MSG(”Local dof %d be longs to boundary segment %d\n” , i , j) ;

}
}

}
} TRAVERSENEXT() ;
f r e e e l b nd r y v e c (bndry) ;

Without pre-allocated EL BNDRY VEC:

TRAVERSE FIRST(mesh , −1, CALL LEAF EL) {
int i , j ;
EL BNDRY VEC ∗bndry = get bound (NULL, ba s f c t s , e l i n f o) ;

for (i = 0 ; i < ba s f c t s−>n b a s f c t s ; i++) {
for (j = 1 ; j < N BNDRY TYPES; j++) {

i f (BNNDRY FLAGS IS INTERIOR(bndry−>vec [i])) {
MSG(”Local dof %d i s an i n t e r i o r DOF\n”) ;

} else i f (BNDRY FLAGS IS AT BNDRY(bndry−>vec [i] , j)) {
MSG(”Local dof %d be longs to boundary segment %d\n” , i , j) ;

}
}

}
} TRAVERSENEXT() ;

fill el int vec(el vec, el, dof vec)

fill el real vec(el vec, el, dof vec)

fill el real d vec(el vec, el, dof vec)

fill el real vec d(el vec, el, dof vec)

fill el uchar vec(el vec, el, dof vec)

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 259

fill el schar vec(el vec, el, dof vec)

Fill the respective element vector with data. The description below is for
fill el real vec(), the other versions work similar.

Parameters

EL REAL VEC *el vec Storage for the result or NULL. In the latter case the re-
turn value is DOF REAL VEC->vec loc; the data will be overwritten on the
next call to fill el real vec() with the same dof vec argument. Calling
fill el real vec() with other DOF-vectors will not invalidate the data.

EL *el The current mesh element (not the current EL INFO pointer, use
EL INFO->el).

DOF REAL VEC *dof vec The global DOF-vector to extract the data from.

return Either again a the pointer el vec or – if el vec == NULL a pointer to a
statically allocated result space which will be overwritten on the next call to
fill el real vec(). Warning: see “bugs” below.

get el int vec(bas fcts)

get el dof vec(bas fcts)

get el uchar vec(bas fcts)

get el schar vec(bas fcts)

get el bndry vec(bas fcts)

get el ptr vec(bas fcts)

get el real vec(bas fcts)

get el real d vec(bas fcts)

get el real vec d(bas fcts)

The get el * vec() routines automatically allocates enough memory for the element data
vector vec as indicated by bas fcts->n bas fcts.

Parameters const BAS FCTS *bas fcts

return A pointer to a dynamically allocated element vector of the respective type.

examples See the first example for the fill el real vec() function.

free el int vec(el vec)

free el dof vec(el vec)

free el uchar vec(el vec)

free el schar vec(el vec)

free el bndry vec(el vec)

free el ptr vec(el fcts)

free el real vec(bas fcts)

free el real d vec(bas fcts)

free el real vec d(bas fcts)

The free el XXX vec() routines free all previously allocated storage for el XXX vec data.

260 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

Parameters const BAS FCTS *bas fcts

return void

examples See the first example for the fill el real vec() function.

DEF EL VEC VAR(VECNAME, name, size, size max, init)

This is a macro which defines a (local) variable with id name, pointing to an EL VECNAME VEC

of size size, holding a maximal number of elements max size, which is initialised if init
is true. size and size max may be variables.

DEF EL VEC CONST(VECNAME, name, size, size max)

This is a macro which defines a (local) variable with id name, pointing to an EL VECNAME VEC

of size size, holding a maximal number of elements max size. size and size max must
be constant values.

ALLOC EL VEC(VECNAME, size, size max) This macro allocates a EL VECNAME VEC with
enough storage to hold size max elements; the n components component of the element
vector structure is set to size.

el interpol(coeff, el info, wall, indices, f, ud, bas fcts)

el interpol dow(coeff, el info, wall, indices, f, f data, ud, bas fcts)

dirichlet map(bound, bndry bits, mask)

4.7.1.4 BLAS-like Element-matrix and -vector operations

The source code listing below lists the proto-types, refer to Table 4.1 and Table 4.2 for a
description of the respective operations. The routines in Table 4.2 take an argument

const EL SCHAR VEC ∗bound .

In this case the operations will act only on the rows r which are not masked-out by
bound->vec[r] >= DIRICHLET. The bound argument maybe NULL.

EL REAL VEC ∗ e l b i ma t v e c (REAL a , const EL MATRIX ∗A,
REAL b , const EL MATRIX ∗B,
const EL REAL VEC ∗u h ,
REAL c , EL REAL VEC ∗ f h) ;

EL REAL D VEC ∗ e l b i ma t v e c d (REAL a , const EL MATRIX ∗A,
REAL b , const EL MATRIX ∗B,
const EL REAL D VEC ∗u h ,
REAL c , EL REAL D VEC ∗ f h) ;

EL REAL VEC D ∗ e l b i mat vec dow (REAL a , const EL MATRIX ∗A,
REAL b , const EL MATRIX ∗B,
const EL REAL VEC D ∗u h ,
REAL c , EL REAL VEC D ∗ f h) ;

EL REAL VEC ∗ e l b i ma t v e c r r d (REAL a , const EL MATRIX ∗A,
REAL b , const EL MATRIX ∗B,
const EL REAL D VEC ∗u h ,
REAL c , EL REAL VEC ∗ f h) ;

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 261

EL REAL VEC ∗ e l b i ma t v e c s c l d ow (REAL a , const EL MATRIX ∗A,
REAL b , const EL MATRIX ∗B,
const EL REAL VEC D ∗u h ,
REAL c , EL REAL VEC ∗ f h) ;

EL REAL D VEC ∗ e l b i ma t v e c r d r (REAL a , const EL MATRIX ∗A,
REAL b , const EL MATRIX ∗B,
const EL REAL VEC ∗u h ,
REAL c , EL REAL D VEC ∗ f h) ;

EL REAL VEC D ∗ e l b i ma t v e c dow s c l (REAL a , const EL MATRIX ∗A,
REAL b , const EL MATRIX ∗B,
const EL REAL VEC ∗u h ,
REAL c , EL REAL VEC D ∗ f h) ;

EL REAL VEC ∗ e l gen mat vec (REAL a , const EL MATRIX ∗A,
const EL REAL VEC ∗u h ,
REAL b , EL REAL VEC ∗ f h) ;

EL REAL D VEC ∗ e l g en mat vec d (REAL a , const EL MATRIX ∗A,
const EL REAL D VEC ∗u h ,
REAL b , EL REAL D VEC ∗ f h) ;

EL REAL VEC D ∗ e l gen mat vec dow (REAL a , const EL MATRIX ∗A,
const EL REAL VEC D ∗u h ,
REAL b , EL REAL VEC D ∗ f h) ;

EL REAL VEC ∗ e l g en mat ve c r rd (REAL a , const EL MATRIX ∗A,
const EL REAL D VEC ∗u h ,
REAL b , EL REAL VEC ∗ f h) ;

EL REAL VEC ∗ e l g en mat vec s c l dow (REAL a , const EL MATRIX ∗A,
const EL REAL VEC D ∗u h ,
REAL b , EL REAL VEC ∗ f h) ;

EL REAL D VEC ∗ e l g en mat ve c rd r (REAL a , const EL MATRIX ∗A,
const EL REAL VEC ∗u h ,
REAL b , EL REAL D VEC ∗ f h) ;

EL REAL VEC D ∗ e l g en mat vec dow sc l (REAL a , const EL MATRIX ∗A,
const EL REAL VEC ∗u h ,
REAL b , EL REAL VEC D ∗ f h) ;

EL REAL VEC ∗ e l mat vec (REAL a , const EL MATRIX ∗A,
const EL REAL VEC ∗u h , EL REAL VEC ∗ f h) ;

EL REAL D VEC ∗ e l mat vec d (REAL a , const EL MATRIX ∗A,
const EL REAL D VEC ∗u h , EL REAL D VEC ∗ f h) ;

EL REAL VEC D ∗ e l mat vec dow (REAL a , const EL MATRIX ∗A,
const EL REAL VEC D ∗u h , EL REAL VEC D ∗ f h) ;

EL REAL VEC ∗ e l ma t ve c r rd (REAL a , const EL MATRIX ∗A,
const EL REAL D VEC ∗u h , EL REAL VEC ∗ f h) ;

EL REAL VEC ∗ e l mat vec s c l dow (REAL a , const EL MATRIX ∗A,
const EL REAL VEC D ∗u h , EL REAL VEC ∗ f h) ;

EL REAL D VEC ∗ e l ma t ve c rd r (REAL a , const EL MATRIX ∗A,
const EL REAL VEC ∗u h , EL REAL D VEC ∗ f h) ;

EL REAL VEC D ∗ e l mat vec dow sc l (REAL a , const EL MATRIX ∗A,
const EL REAL VEC ∗u h , EL REAL VEC D

∗ f h) ;

void b i ma t e l v e c (REAL a , const EL MATRIX ∗A,
REAL b , const EL MATRIX ∗B,
const EL REAL VEC ∗u h , REAL c , DOF REAL VEC ∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;

void b i ma t e l v e c d (REAL a , const EL MATRIX ∗A,
REAL b , const EL MATRIX ∗B,

262 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

const EL REAL D VEC ∗u h , REAL c , DOF REAL D VEC ∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;

void b i mat e l vec dow (REAL a , const EL MATRIX ∗A,
REAL b , const EL MATRIX ∗B,
const EL REAL VEC D ∗u h , REAL c , DOF REAL VEC D ∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;

void b i ma t e l v e c r r d (REAL a , const EL MATRIX ∗A,
REAL b , const EL MATRIX ∗B,
const EL REAL D VEC ∗u h , REAL c , DOF REAL VEC ∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;

void b i ma t e l v e c s c l d ow (REAL a , const EL MATRIX ∗A,
REAL b , const EL MATRIX ∗B,
const EL REAL VEC D ∗u h , REAL c , DOF REAL VEC

∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;

void b i ma t e l v e c r d r (REAL a , const EL MATRIX ∗A,
REAL b , const EL MATRIX ∗B,
const EL REAL VEC ∗u h , REAL c , DOF REAL D VEC ∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;

void b i ma t e l v e c dow s c l (REAL a , const EL MATRIX ∗A,
REAL b , const EL MATRIX ∗B,
const EL REAL VEC ∗u h , REAL c , DOF REAL VEC D

∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;

void gen mat e l vec (REAL a , const EL MATRIX ∗A,
const EL REAL VEC ∗u h , REAL b , DOF REAL VEC ∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;

void gen mat e l vec d (REAL a , const EL MATRIX ∗A,
const EL REAL D VEC ∗u h , REAL b , DOF REAL D VEC ∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;

void gen mat e l vec dow (REAL a , const EL MATRIX ∗A,
const EL REAL VEC D ∗u h , REAL b , DOF REAL VEC D

∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;

void gen mat e l v e c r rd (REAL a , const EL MATRIX ∗A,
const EL REAL D VEC ∗u h , REAL b , DOF REAL VEC ∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;

void gen mat e l v e c s c l dow (REAL a , const EL MATRIX ∗A,
const EL REAL VEC D ∗u h , REAL b , DOF REAL VEC

∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC

∗bound) ;
void gen mat e l v e c rd r (REAL a , const EL MATRIX ∗A,

const EL REAL VEC ∗u h , REAL b , DOF REAL D VEC ∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;

void gen mat e l v e c dow sc l (REAL a , const EL MATRIX ∗A,
const EL REAL VEC ∗u h , REAL b , DOF REAL VEC D

∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC

∗bound) ;

void mat e l vec (REAL a , const EL MATRIX ∗A,
const EL REAL VEC ∗u h , DOF REAL VEC ∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;

void mat e l vec d (REAL a , const EL MATRIX ∗A,
const EL REAL D VEC ∗u h , DOF REAL D VEC ∗ f h ,

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 263

const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;
void mat el vec dow (REAL a , const EL MATRIX ∗A,

const EL REAL VEC D ∗u h , DOF REAL VEC D ∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;

void mat e l v e c r rd (REAL a , const EL MATRIX ∗A,
const EL REAL D VEC ∗u h , DOF REAL VEC ∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;

void mat e l v e c s c l dow (REAL a , const EL MATRIX ∗A,
const EL REAL VEC D ∗u h , DOF REAL VEC ∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;

void mat e l v e c rd r (REAL a , const EL MATRIX ∗A,
const EL REAL VEC ∗u h , DOF REAL D VEC ∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;

void mat e l v e c dow sc l (REAL a , const EL MATRIX ∗A,
const EL REAL VEC ∗u h , DOF REAL VEC D ∗ f h ,
const EL DOF VEC ∗dof , const EL SCHAR VEC ∗bound) ;

EL MATRIX ∗ e l ma t s e t (REAL a , EL MATRIX ∗ r e s u l t) ;
EL MATRIX ∗ e l mat axey (REAL a , const EL MATRIX ∗A, EL MATRIX ∗ r e s u l t) ;
EL MATRIX ∗ e l mat axpy (REAL a , const EL MATRIX ∗A, EL MATRIX ∗ r e s u l t) ;
EL MATRIX ∗ el mat axpby (REAL a , const EL MATRIX ∗A,

REAL b , const EL MATRIX ∗B, EL MATRIX ∗ r e s u l t) ;

4.7.2 Data structures and functions for matrix assemblage

The following structure holds full information for the assembling of scalar element matrices.
This structure is used by the function update matrix() described below.

typedef struct e l ma t r i x i n f o EL MATRIX INFO;

struct e l ma t r i x i n f o
{

const FE SPACE ∗ r ow f e spac e ;
const FE SPACE ∗ c o l f e s p a c e ;

MATENTTYPE krn b lk type ;

BNDRY FLAGS d i r i c h l e t bnd r y ;
REAL f a c t o r ;

EL MATRIX FCT e l ma t r i x f c t ;
void ∗ f i l l i n f o ;

const EL MATRIX FCT ∗ n e i g h e l ma t f c t s ;
void ∗ n e i g h f i l l i n f o ;

FLAGS f i l l f l a g ;
} ;

Description:

row fe space pointer to a finite element space connected to the row DOFs of the resulting
matrix.

col fe space pointer to a finite element space connected to the columns DOFs of the
resulting matrix.

264 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

f = el_mat_vec(a, A, u, f) fi ← (aAu)i

f = el_mat_vec_d(a, A, u, f)

f = el_mat_vec_dow(a, A, u, f)

f = el_mat_vec_rrd(a, A, u, f)

f = el_mat_vec_scl_dow(a, A, u, f)

f = el_mat_vec_rdr(a, A, u, f)

f = el_mat_vec_dow_scl(a, A, u, f)

f = el_gen_mat_vec(a, A, u, b, f) fi ← (aAu+ b f)i

f = el_gen_mat_vec_d(a, A, u, b, f)

f = el_gen_mat_vec_dow(a, A, u, b, f)

f = el_gen_mat_vec_rrd(a, A, u, b, f)

f = el_gen_mat_vec_scl_dow(a, A, u, b, f)

f = el_gen_mat_vec_rdr(a, A, u, b, f)

f = el_gen_mat_vec_dow_scl(a, A, u, b, f)

f = el_bi_mat_vec(a, A, b, B, u, c, f) fi ← ((aA+ bB)u+ c f)i

f = el_bi_mat_vec_d(a, A, b, B, u, c, f)

f = el_bi_mat_vec_dow(a, A, b, B, u, c, f)

f = el_bi_mat_vec_rrd(a, A, b, B, u, c, f)

f = el_bi_mat_vec_scl_dow(a, A, b, B, u, c, f)

f = el_bi_mat_vec_rdr(a, A, b, B, u, c, f)

f = el_bi_mat_vec_dow_scl(a, A, b, B, u, c, f)

A = el_mat_set(a, A) Aij ← a

B = el_mat_axey(a, A, B) Bij ← aAij

B = el_mat_axpy(a, A, B) Bij ← aAij +Bij

C = el_mat_axpby(a, A, b, B, C) Cij ← aAij + bBij

Table 4.1: BLAS-operations for element-vectors and -matrices. A and B denote element ma-
trices, u and f element vectors, a, b, c are numbers.

krn blk type defines the block-matrix type of matrix entries

dirichlet boundary bndry-type bit-mask for Dirichlet-boundary conditions built into the
matrix

factor is a multiplier for the element contributions; usually factor is 1 or -1.

el matrix fct is a pointer to a function for the computation of the element matrix;
el matrix fct(el info, fill info) returns a pointer to a matrix of size n row× n col

storing the element matrix on element el info->el; fill info is a pointer to data needed
by el matrix fct(); the function has to provide memory for storing the element matrix,
which can be overwritten on the next call.

fill info pointer to data needed by el matrix fct(); will be given as second argument
to this function.

neigh el mat fcts If the BNDRY OPERATOR INFO (code-listing 4.51) structure passed to
fill matrix info() was flagged as discontinuous, then this is the base-address of
an array storing N NEIGH(mesh->dim) many element-matrix functions which pair the

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 265

f = mat_el_vec(a, A, u, f, dof, mask) f [dof [i]]← (aAu)i

mat_el_vec_d(a, A, u, f, dof, mask) if mask[i] != DIRICHLET

mat_el_vec_dow(a, A, u, f, dof, mask) or mask == NULL

mat_el_vec_rrd(a, A, u, f, dof, mask)

mat_el_vec_scl_dow(a, A, u, f, dof, mask)

mat_el_vec_rdr(a, A, u, f, dof, mask)

mat_el_vec_dow_scl(a, A, u, f, dof, mask)

gen_mat_el_vec(a, A, u, b, f, dof, mask) f [dof [i]]← (aAu)i + b f [dof [i]]

gen_mat_el_vec_d(a, A, u, b, f, dof, mask) if mask[i] != DIRICHLET

gen_mat_el_vec_dow(a, A, u, b, f, dof, mask) or mask == NULL

gen_mat_el_vec_rrd(a, A, u, b, f, dof, mask)

gen_mat_el_vec_scl_dow(a, A, u, b, f, dof, mask)

gen_mat_el_vec_rdr(a, A, u, b, f, dof, mask)

gen_mat_el_vec_dow_scl(a, A, u, b, f, dof, mask)

bi_mat_el_vec(a, A, b, B, u, c, f, dof, mask) f [dof [i]]

bi_mat_el_vec_d(a, A, b, B, u, c, f, dof, mask) ← ((aA+ bB)u)i + c f [dof [i]]

bi_mat_el_vec_dow(a, A, b, B, u, c, f, dof, mask) if mask[i] != DIRICHLET

bi_mat_el_vec_rrd(a, A, b, B, u, c, f, dof, mask) or mask == NULL

bi_mat_el_vec_scl_dow(a, A, b, B, u, c, f, dof, mask)

bi_mat_el_vec_rdr(a, A, b, B, u, c, f, dof, mask)

bi_mat_el_vec_dow_scl(a, A, b, B, u, c, f, dof, mask)

Table 4.2: BLAS-operations for element-vectors and -matrices. A and B denote element ma-
trices, u an element vector. f is a global DOF-vector. mask is an EL SCHAR VEC masking out
certain local DOFs. mask may be NULL. dof is EL DOF VEC mapping local to global DOFs. a, b,
c are numbers.

local basis-function set with the local basis function set on the neighbor. Inten-
tionally, this is meant to support assembling linear systems in the context of DG-
methods. The idea is that EL MATRIX INFO.neigh el mat fcts[neigh nr](el info,

EL MATRIX INFO.neigh fill info) assembles a jump-term where the local basis func-
tions on the element described by el info are used as test-functions (corresponding to
the rows of the element matrix) and the local basis function set on the neighbour element
defines the local space of ansatz-functions (column-space).

neigh fill info Data pointer passed to the element-matrix functions stored in
neigh el mat fcts.

fill flag the flag for the mesh traversal for assembling the matrix.

The following function updates a matrix by assembling element contributions during mesh
traversal; information for computing the element matrices is provided in an EL MATRIX INFO

structure:

void update matr ix (DOFMATRIX ∗dof matr ix , const EL MATRIX INFO ∗minfo ,
MatrixTranspose t ranspose) ; ;

Description:

266 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

update matrix(matrix, info, transpose) updates the matrix matrix by traversing
the underlying mesh and assembling the element contributions into the matrix; information
about the computation of element matrices and connection of local and global DOFs is
stored in info.

The flags for the mesh traversal of the mesh matrix->fe space->mesh are stored at
info->fill flag which specifies the elements to be visited and information that should
be present on the elements for the calculation of the element matrices and boundary in-
formation (if info->get bound is not NULL).

On the elements, information about the row DOFs is accessed by info->get row dof

using info->row admin; this vector is also used for the column DOFs if info->n col is
less or equal to zero, or info->get col admin or info->get col dof is a NULL pointer;
when row and column DOFs are the same, the boundary type of the DOFs is ac-
cessed by info->get bound if info->get bound is not a NULL pointer; then the element
matrix is computed by info->el matrix fct(el info, info->fill info); these con-
tributions, multiplied by info->factor, are eventually added to matrix by a call of
add element matrix() with all information about row and column DOFs, the element
matrix, and boundary types, if available.

update matrix() acts additive, the element-contributions are added to the data already
present in dof matrix. This makes several calls for the assemblage of one matrix possible.
clear dof matrix() can be used to erase the contents of dof matrix prior to calling
update matrix().

Parameters

dof matrix The global DOF MATRIX to add data to.

minfo The element-matrix handle, as returned by fill matrix info() or

transpose

4.7.3 Matrix assemblage for second order problems

Now we want to describe some tools which enable an easy assemblage of the system matrix in
the case of scalar elliptic problems. For this we have to provide a function for the calculation
of the element matrix. For a general scalar problem the element matrix LS = (LijS)i,j=1,...,m

is given by (recall (1.21) on page 29)

LijS =

∫
Ŝ
∇λϕ̄i(λ(x̂)) · Ā(λ(x̂))∇λϕ̄j(λ(x̂)) dx̂+

∫
Ŝ
ϕ̄i(λ(x̂)) b̄(λ(x̂)) · ∇λϕ̄j(λ(x̂)) dx̂

+

∫
Ŝ
c̄(λ(x̂)) ϕ̄i(λ(x̂)) ϕ̄j(λ(x̂)) dx̂,

where Ā, b̄, and c̄ are functions depending on given data and on the actual element, namely

Ā(λ) := (ākl(λ))k,l=0,...,d := |detDFS(x̂(λ))|Λ(x(λ))A(x(λ)) Λt(x(λ)),

b̄(λ) :=
(
b̄l(λ)

)
l=0,...,d

:= | detDFS(x̂(λ))|Λ(x(λ)) b(x(λ)), and

c̄(λ) := | detDFS(x̂(λ))| c(x(λ)).

Having access to functions for the evaluation of Ā, b̄, and c̄ at given quadrature nodes, the
above integrals can be computed by some general routine for any set of local basis functions

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 267

using quadrature. Additionally, if a coefficient is piecewise constant on the mesh, only an
integration of basis functions has to be done (compare (1.22) on page 30) for this term.
Here we can use pre–computed integrals of the basis functions on the standard element and
transform th-em to the actual element. Such a computation is usually much faster than using
quadrature on each single element. Data structures for storing such pre–computed values are
described in Section 4.7.5.

For the assemblage routines which we will describe now, we use the following slight gener-
alization: In the discretization of the first order term, sometimes integration by parts is used
too. For a divergence free vector field b and purely Dirichlet boundary values this leads for
instance to∫

Ω
ϕ(x) b(x) · ∇u(x) dx =

1

2

(∫
Ω
ϕ(x) b(x) · ∇u(x) dx−

∫
Ω
∇ϕ(x) · b(x)u(x) dx

)
yielding a modified first order term for the element matrix∫

Ŝ
ϕ̄i(λ(x̂))

1

2
b̄(λ(x̂)) · ∇λϕ̄j(λ(x̂)) dx̂−

∫
Ŝ
∇λϕ̄i(λ(x̂)) · 1

2
b̄(λ(x̂)) ϕ̄j(λ(x̂)) dx̂.

Secondly, we allow that we have two finite element spaces with local basis functions {ψ̄i}i=1,...,n

and {ϕ̄i}i=1,...,m.

In general the following contributions of the element matrix LS = (LijS) i=1,...,n
j=1,...,m

have to be

computed: ∫
Ŝ
∇λψ̄i(λ(x̂)) · Ā(λ(x̂))∇λϕ̄j(λ(x̂)) dx̂ second order term,∫
Ŝ
ψ̄i(λ(x̂)) b̄0(λ(x̂)) · ∇λϕ̄j(λ(x̂)) dx̂∫

Ŝ
∇λψ̄i(λ(x̂)) · b̄1(λ(x̂)) ϕ̄j(λ(x̂)) dx̂

first order terms,

∫
Ŝ
c̄(λ(x̂)) ψ̄i(λ(x̂)) ϕ̄j(λ(x̂)) dx̂ zero order term,

where for instance b̄0 = b̄ and b̄1 = 0, or using integration by parts b̄0 = 1
2 b̄ and b̄1 = −1

2 b̄.
In order to store information about the finite element spaces, the problem dependent

functions Ā, b̄0, b̄1, c̄ and the quadrature that should be used for the numerical integration of
the element matrix, we define the following data structure:

typedef struct op e r a t o r i n f o OPERATOR INFO;

struct op e r a t o r i n f o
{

const FE SPACE ∗ r ow f e spac e ; /∗ range fe−space ∗/
const FE SPACE ∗ c o l f e s p a c e ; /∗ domain fe−space ∗/

const QUAD ∗quad [3] ;

bool (∗ i n i t e l emen t) (const EL INFO ∗ e l i n f o ,
const QUAD ∗quad [3] , void ∗apd) ;

union {

268 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

const REAL B ∗(∗ r e a l) (const EL INFO ∗ e l i n f o ,
const QUAD ∗quad , int iq , void ∗apd) ;

const REAL BD ∗(∗ r e a l d) (const EL INFO ∗ e l i n f o ,
const QUAD ∗quad , int iq , void ∗apd) ;

const REAL BDD ∗(∗ r e a l dd) (const EL INFO ∗ e l i n f o ,
const QUAD ∗quad , int iq , void ∗apd) ;

} LALt ;
MATENTTYPE LALt type ; /∗ MATENTREAL, REAL D or REAL DD ∗/
bool LALt pw const ;
bool LALt symmetric ;
int LALt degree ;

union {
const REAL ∗(∗ r e a l) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad , int iq , void ∗apd) ;
const REAL D ∗(∗ r e a l d) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad , int iq , void ∗apd) ;
const REAL DD ∗(∗ r e a l dd) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad , int iq , void ∗apd) ;
} Lb0 ;
bool Lb0 pw const ;
union {

const REAL ∗(∗ r e a l) (const EL INFO ∗ e l i n f o ,
const QUAD ∗quad , int iq , void ∗apd) ;

const REAL D ∗(∗ r e a l d) (const EL INFO ∗ e l i n f o ,
const QUAD ∗quad , int iq , void ∗apd) ;

const REAL DD ∗(∗ r e a l dd) (const EL INFO ∗ e l i n f o ,
const QUAD ∗quad , int iq , void ∗apd) ;

} Lb1 ;
bool Lb1 pw const ;
MATENTTYPE Lb type ; /∗ MATENTREAL, REAL D or REAL DD ∗/
bool Lb0 Lb1 anti symmetr ic ;
int Lb degree ;

union {
REAL (∗ r e a l) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad , int iq , void ∗apd) ;
const REAL ∗(∗ r e a l d) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad , int iq , void ∗apd) ;
const REAL D ∗(∗ r e a l dd) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad , int iq , void ∗apd) ;
} c ;
bool c pw const ;
MATENTTYPE c type ; /∗ MATENTREAL, REAL D or REAL DD ∗/
int c deg r e e ;

BNDRY FLAGS d i r i c h l e t bnd r y ; /∗ bndry−t ype b i t−mask f o r
∗ Di r i c h l e t−boundary cond i t i on s
∗ b u i l t i n t o the matrix
∗/

FLAGS f i l l f l a g ;
void ∗ use r data ; /∗ app l i c a t i o n data , passed to i n i t e l emen t ∗/

} ;

4.7.2 Compatibility Note. Former versions of the ALBERTA toolkit had special
“DOWB OPERATOR INFO” and DOF DOWB MATRIX” definitions to model block-matrix structures

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 269

with DIM OF WORLD × DIM OF WORLD blocks, 1 × DIM OF WORLD and DIM OF WORLD × 1 blocks
and 1× 1 blocks (i.e. not-blocked). Because those structures included the scalar case as well,
the ordinary scalar-only OPERATOR INFO and DOF MATRIX structures have been abandoned al-
together, and the ... DOWB ... versions were renamed, dropping the bizarre DOWB component
of their names.

Description of the OPERATOR INFO structure:

row fe space pointer to a finite element space connected to the row DOFs of the resulting
matrix.

col fe space pointer to a finite element space connected to the column DOFs of the
resulting matrix.

quad vector with pointers to quadratures; quad[0] is used for the integration of the zero
order term, quad[1] for the first order term(s), and quad[2] for the second order term.

init element pointer to a function for doing an initialization step on each element;
init element may be a NULL pointer;

if init element is not NULL, init element(el info, quad, user data) is the first state-
ment executed on each element el info->el and may initialize data which is used by the
functions LALt(), Lb0(), Lb1(), and/or c() (calculate the Jacobian of the barycentric
coordinates in the 1st and 2nd order terms or the element volume for all order terms,
e.g.); quad is a pointer to a vector of quadratures which is actually used for the integra-
tion of the various order terms and user data may hold a pointer to user data, filled by
init element(), e.g.; the return value is of interest in the case of parametric meshes and
should be true if the element is a curved element and false otherwise.

LALt, LALt.real, LALt.real d, LALt.real dd is a pointer to a function for the eval-
uation of Ā at quadrature nodes on the element; LALt may be a NULL pointer, if no second
order term has to be integrated.

if LALt is not NULL, LALt(el info, quad, iq, user data) returns a pointer to a matrix
of size N LAMBDA × N LAMBDA storing the value of Ā at quad->lambda[iq]; quad is the
quadrature for the second order term and user data is a pointer to user data and EL INFO

the current element descriptor.

The element-type of the returned matrix is determined by LALt type, i.e. the actual return
type is either REAL BB for MATENT REAL, REAL BBD for MATENT REAL D or REAL BBDD for
MATENT REAL DD. Note that one of the B’s is missing in the structure definition above
because the LALt is supposed to return the address of the first element of the matrix.

LALt type codes the block-matrix type, see MATENT TYPE on page 252.

LALt pw const should be true if Ā is piecewise constant on the mesh (constant matrix A
on a non–parametric mesh, e.g.); thus integration of the second order term can use pre–
computed integrals of the basis functions on the standard element; otherwise integration
is done by using quadrature on each element; this entry also influences the assembly on
parametric meshes with strategy>0, see Section 3.8.1: ALBERTA will assume a constant
value of Ā for non–curved elements on a parametric mesh and optimize by only calling
LALt once with iq==0;

LALt symmetric should be true if Ā is a symmetric matrix; if the finite element spaces
for rows and columns are the same, only the diagonal and the upper part of the element
matrix for the second order term have to be computed; elements of the lower part can then
be set using the symmetry; otherwise the complete element matrix has to be calculated;

270 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

LALt degree If LALt pw const == false, the LALt degree gives a hint about which
quadrature rule should be used to integrate the second order term. This has only an
effect if quad[2] == NULL. In that case, ALBERTA takes LALt degree and the row- and
column finite element spaces into account to select a suitable quadrature formula.

Lb0, Lb0.real, Lb0.real d, Lb0.real dd is a pointer to a function for the evaluation
of b̄0, at quadrature nodes on the element; Lb0 may be a NULL pointer, if this first order
term has not to be integrated;

if Lb0 is not NULL, Lb0(el info, quad, iq, user data) returns a pointer to a vector of
length N LAMBDA storing the value of b̄0 at quad->lambda[iq]; quad is the quadrature for
the first order term and user data is a pointer to user data;

Lb0 pw const should be true if b̄0 is piecewise constant on the mesh (constant vector b
on a non–parametric mesh, e.g.); thus integration of the first order term can use pre–
computed integrals of the basis functions on the standard element; otherwise integration
is done by using quadrature on each element; for parametric meshes the same remarks as
for LALt symmetric above hold;

Lb1, Lb1.real, Lb1.real d, Lb1.real dd is a pointer to a function for the evaluation
of b̄1, at quadrature nodes on the element; Lb1 may be a NULL pointer, if this first order
term has not to be integrated;

if Lb1 is not NULL, Lb1(el info, quad, iq, user data) returns a pointer to a vector of
length N LAMBDA storing the value of b̄1 at quad->lambda[iq]; quad is the quadrature for
the first order term and user data is a pointer to user data;

Lb1 pw const should be true if b̄1 is piecewise constant on the mesh (constant vector b on
a non–parametric mesh, e.g.); thus integration of the first order term can use pre–computed
integrals of the basis functions on the standard element; otherwise integration is done by
using quadrature on each element;

Lb type see LALt type.

Lb0 Lb1 anti symmetric should be true if the contributions of the complete first order
term to the local element matrix are anti symmetric (only possible if both Lb0 and Lb1

are not NULL, b̄0 = −b̄1, e.g.); if the finite element spaces for rows and columns are the
same then only the upper part of the element matrix for the first order term has to be
computed; elements of the lower part can then be set using the anti symmetry; otherwise
the complete element matrix has to be calculated;

S ee the explanations for LALt degree above.

c, c.real, c.real d, c.real dd is a pointer to a function for the evaluation of c̄ at
quadrature nodes on the element; c may be a NULL pointer, if no zero order term has to
be integrated;

if c is not NULL, c(el info, quad, iq, user data) returns the value of the function c̄
at quad->lambda[iq]; quad is the quadrature for the zero order term and user data is a
pointer to user data;

c type see LALt type.

c pw const should be true if the zero order term c̄ is piecewise constant on the mesh
(constant function c on a non–parametric mesh, e.g.); thus integration of the zero order
term can use pre–computed integrals of the basis functions on the standard element; oth-
erwise integration is done by using quadrature on each element; the same remarks about
parametric meshes as for the other * pw const entries hold;

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 271

S ee the explanations for LALt degree above.

dirichlet bndry A bit mask flagging those components of the boundary of the triangu-
lation which are subject to Dirichlet boundary conditions. See Section 3.2.4.

user data optional pointer to memory segment for “user data” used by init element(),
LALt(), Lb0(), Lb1(), and/or c() and is the last argument to these functions. A better
name would maybe “application data”, at any rate this is the channel were an applica-
tion program can communicate data – like the determinant of the transformation to the
reference element – from init element() to the operator kernels LALt & friends, without
using global variables. The data behind this pointer must be persistent for the entire life
time of the application program. Especially, user data must not point to the stack area of
some sub-routine call.

fill flag the flag for the mesh traversal routine indicating which elements should be vis-
ited and which information should be present in the EL INFO structure for init element(),
LALt(), Lb0(), Lb1(), and/or c() on the visited elements.

Sometimes it is necessary to add contributions of boundary integrals to the system ma-
trix. One example are “Robin” boundary conditions (see Section 4.7.7.3), other important
examples include capillary boundary conditions in the context of free boundary problems, or
penalty terms to penalize tangential stresses. Another context which requires integration over
the boundaries of all mesh elements is the implementation of discontinuous Galerkin (DG)
methods. To aid these tasks there is a BNDRY OPERATOR INFO structure, which resembles in
its layout the (bulk-) OPERATOR INFO structure; it is defined as follows:

typedef struct bndry ope ra to r i n f o BNDRYOPERATOR INFO;

struct bndry ope ra to r i n f o
{

const FE SPACE ∗ r ow f e spac e ;
const FE SPACE ∗ c o l f e s p a c e ;

const WALLQUAD ∗quad [3] ;

bool (∗ i n i t e l emen t) (const EL INFO ∗ e l i n f o , int wall ,
const WALLQUAD ∗quad [3] , void ∗ud) ;

union {
const REAL B ∗(∗ r e a l) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad , int iq , void ∗apd) ;
const REAL BD ∗(∗ r e a l d) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad , int iq , void ∗apd) ;
const REAL BDD ∗(∗ r e a l dd) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad , int iq , void ∗apd) ;
} LALt ;
MATENTTYPE LALt type ; /∗ MATENTREAL, REAL D or REAL DD ∗/
bool LALt pw const ;
bool LALt symmetric ;
int LALt degree ;

union {
const REAL ∗(∗ r e a l) (const EL INFO ∗ e l i n f o ,

272 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

const QUAD ∗quad , int iq , void ∗apd) ;
const REAL D ∗(∗ r e a l d) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad , int iq , void ∗apd) ;
const REAL DD ∗(∗ r e a l dd) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad , int iq , void ∗apd) ;
} Lb0 ;
bool Lb0 pw const ;
union {

const REAL ∗(∗ r e a l) (const EL INFO ∗ e l i n f o ,
const QUAD ∗quad , int iq , void ∗apd) ;

const REAL D ∗(∗ r e a l d) (const EL INFO ∗ e l i n f o ,
const QUAD ∗quad , int iq , void ∗apd) ;

const REAL DD ∗(∗ r e a l dd) (const EL INFO ∗ e l i n f o ,
const QUAD ∗quad , int iq , void ∗apd) ;

} Lb1 ;
bool Lb1 pw const ;
MATENTTYPE Lb type ; /∗ MATENTREAL, REAL D or REAL DD ∗/
bool Lb0 Lb1 anti symmetr ic ;
int Lb degree ;

union {
REAL (∗ r e a l) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad , int iq , void ∗apd) ;
const REAL ∗(∗ r e a l d) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad , int iq , void ∗apd) ;
const REAL D ∗(∗ r e a l dd) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad , int iq , void ∗apd) ;
} c ;
bool c pw const ;
MATENTTYPE c type ; /∗ MATENTREAL, REAL D or REAL DD ∗/
int c deg r e e ;

/∗ boundary segment (s) we be long to ; i f
∗ BNDRY FLAGS IS INTERIOR(bndry type) , then the opera tor i s invoked
∗ on a l l i n t e r i o r faces , e . g . to implement a DG−method .
∗/

BNDRY FLAGS bndry type ;

bool d i s cont inuous ; /∗ assemble jumps w. r . t . the neighbour ∗/
bool t ang en t i a l ; /∗ use t a n g e n t i a l g r ad i en t s ∗/

FLAGS f i l l f l a g ;
void ∗ use r data ;

} ;

Description: Because the general layout is the same as for the bulk-OPERATOR INFO struc-
ture explained above we document only the differences here. There are three additional com-
ponents in the structure:

bndry type This is bit-mask and determines on which part of the boundary the operator
should be invoked. See also Section 3.2.4. If BNDRY FLAGS IS INTERIOR(bndry type) eval-
uates to true (i.e. if bit 0 is set in bndry type, then the operator is invoked on all walls
of the triangulation, for instance to implement a DG-method.

discontinuous This is a boolean flag. If set to true, then the operator is treated as a
DG-operator. This means, that it is invoked once for each wall of each element with the

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 273

set of local basis functions on the neighbor element being used to define the column space
(i.e. as ansatz-functions) and the set of local basis function on the current element defining
the row-space (i.e. the test-functions).

One instance of BNDRY OPERATOR INFO can only be used to either implement a jump term
or a term living on a single element. To have both, two instances have to be defined.
To this aim fill matrix info ext() accepts multiple BNDRY OPERATOR INFO structures.
The program-code src/Common/ellipt-dg.c in the alberta-demo-package implements a
very simplistic DG-method as example: jumps over element boundaries are penalized by
zero-order term.

tangential This is a boolean flag. If set to true, then only the tangential component of
the gradients of the basis functions is used.

Information stored in OPERATOR INFO and BNDRY OPERATOR INFO structures is used by
the following functions which return a pointer to a filled EL MATRIX INFO structure; this
structure can be used as an argument to the update matrix() function which will then
assemble the discrete matrix corresponding to the operators defined by the OPERATOR INFO

and BNDRY OPERATOR INFO structures:

const EL MATRIX INFO ∗
f i l l m a t r i x i n f o (const OPERATOR INFO ∗ ope r a t o r i n f o ,

EL MATRIX INFO ∗mat r i x i n f o) ;
const EL MATRIX INFO ∗
f i l l m a t r i x i n f o e x t (EL MATRIX INFO ∗matr ix in fo ,

const OPERATOR INFO ∗ ope r a t o r i n f o ,
const BNDRYOPERATOR INFO ∗ bop in fo ,
. . . /∗ more bndry−ops ∗/) ;

Description:

fill matrix info(op info, mat info)

fill matrix info ext(op info, mat info, bop info, ...)

Return a pointer to a filled EL MATRIX INFO structure for the assemblage of the system
matrix for the operator defined in op info and bop info. The difference between the
two functions is that the ... ext()-variant (“extended”) allows for additional arguments
describing components of the differential operator which have to be assembled by boundary
integrals. Multiple such boundary-operators can be passed to fill matrix info ext(),
the final boundary operator must be followed by a NULL pointer. So

f i l l m a t r i x i n f o e x t (mat info , op e r a t o r i n f o , NULL) ;

is equivalent to

f i l l m a t r i x i n f o (ope r a t o r i n f o , mat in fo) ;

There is the artificial restriction that at most 255 different BNDRY OPERATOR INFO structures
may be passed.

If the argument mat info is a NULL pointer, a new structure mat info is allocated and
filled; otherwise the structure mat info is filled; all members are newly assigned.

274 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

If the underlying finite element spaces form a direct sum, then this is taken care of au-
tomatically, and the return EL MATRIX INFO structure will assemble block-matrices, where
each block corresponds to the pairing of one component of the direct sum forming the
ansatz-space and one component of the direct sum forming the space of test functions. See
also Section 3.7 and Section 3.5.3

The remaining part of this section is rather a description what happens “back-stage”, when
calling the fill matrix info[ext]() functions. The components of EL MATRIX INFO are
initialized like follows:

row fe space, col fe space op info->row fe space and op info->col fe space

are pointers to the finite element spaces (and by this to the basis functions and
DOFs) connected to the row DOFs and the column DOFs of the matrix to be as-
sembled; if both pointers are NULL pointers, an error message is given, and the program
stops; if one of these pointers is NULL, rows and column DOFs are connected with the
same finite element space (i.e. op info->row fe space = op info->col fe space, or
op info->col fe space = op info->row fe space is used).

krn blk type Based on the matrix block-type of the zero, first and second order ker-
nels oinfo->c type, oinfo->Lb type and oinfo->LALt type and on the dimension of
the range of the row- and column finite element spaces krn blk type is set to either
MATENT REAL, MATENT REAL D or MATENT REAL DD to reflect the block-matrix structure
of the element matrix.

dirichlet bndry is just a copy of oinfo->dirichlet bndry, see also section
S:boundary.

factor is initialized to 1.0. Note that the structure returned carries the const qualifier;
the clean way to obtain EL MATRIX INFO structures with a modifiable factor component
is to pass storage to fill matrix info[ext]() via the matrix info parameter.

el matrix fct The most important member in the structure, namely
mat info->el matrix fct, is adjusted to some general routine for the integra-
tion of the element matrix for any set of local basis functions; fill matrix info()

tries to use the fastest available function for the element integration for the operator
defined in op info, depending on op info->LALt pw const and similar hints;

Denote by row degree and col degree the degree of the basis functions connected to
the rows and columns. Internally, a three-element vector “quad” of quadratures rules is
used for the element integration, if not specified by op info->quad. The quadratures
are chosen according to the following rules: pre-computed integrals of basis functions
should be evaluated exactly, and all terms calculated by quadrature on the elements
should use the same quadrature formula (this is more efficient than to use different
quadratures). To be more specific:

• If the 2nd order term has to be integrated and op info->quad[2] is not NULL,
quad[2] = op info->quad[2] is used, otherwise quad[2] is a quadrature which is
exact of degree row degree+col degree-2+oinfo->LALt degree. If the 2nd order
term is not integrated then quad[2] is set to NULL.

• If the 1st order term has to be integrated and op info->quad[1]

is not NULL, quad[1] = op info->quad[1] is used; otherwise: if
op info->Lb pw const is zero and quad[2] is not NULL, quad[1] = quad[2]

is used, otherwise quad[1] is a quadrature which is exact of degree

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 275

row degree+col degree-1+oinfo->Lb degree. If the 1st order term is not
integrated then quad[1] is set to NULL.

• If the zero order term has to be integrated and op info->quad[0] is not
NULL, quad[0] = op info->quad[0] is used; otherwise: if op info->c pw const

is zero and quad[2] is not NULL, quad[0] = quad[2] is used, if quad[2]

is NULL and quad[1] is not NULL, quad[0] = quad[1] is used, or if both
quadratures are NULL, quad[0] is a quadrature which is exact of degree
row degree+col degree+oinfo->c degree. If the zero order term is not integrated
then quad[0] is set to NULL.

el matrix fct() roughly works as follows:

• If op info->init element is not NULL then a call of
op info->init element(el info, quad, op info->user data) is the first
statement of mat info->el matrix fct() on each element; el info is a pointer
to the EL INFO structure of the actual element, quad is the quadrature vector
described above (now giving information about the actually used quadratures), and
the last argument is a pointer to the application-data pointer oinfo->user data.

• If op info->LALt is not NULL, the 2nd order term is integrated using the quadra-
ture quad[2]; if op info->LALt pw const is not zero, the integrals of the prod-
uct of gradients of the basis functions on the standard simplex are initialized
(using the quadrature quad[2] for the integration) and used for the compu-
tation on the elements; op info->LALt() is only called once with arguments
op info->LALt(el info, quad[2], 0, op info->user data), i.e. the matrix of
the 2nd order term is evaluated only at the first quadrature node; otherwise the
integrals are approximated by quadrature and op info->LALt() is called for each
quadrature node of quad[2]; if op info->LALt symmetric is not zero, the symme-
try of the element matrix is used, if the finite element spaces are the same and this
term is not integrated by the same quadrature as the first order term.

• If op info->Lb0 is not NULL, this 1st order term is integrated using the quadra-
ture quad[1]; if op info->Lb0 pw const is not zero, the integrals of the prod-
uct of basis functions with gradients of basis functions on the standard simplex
are initialized (using the quadrature quad[1] for the integration) and used for
the computation on the elements; op info->Lb0() is only called once with argu-
ments op info->Lb0(el info, quad[1], 0, op info->user data), i.e. the vec-
tor of this 1st order term is evaluated only at the first quadrature node; otherwise
the integrals are approximated by quadrature and op info->Lb0() is called for
each quadrature node of quad[1];

• If op info->Lb1 is not NULL, this 1st order term is integrated also using the quadra-
ture quad[1]; if op info->Lb1 pw const is not zero, the integrals of the prod-
uct of gradients of basis functions with basis functions on the standard simplex
are initialized (using the quadrature quad[1] for the integration) and used for
the computation on the elements; op info->Lb1() is only called once with argu-
ments op info->Lb1(el info, quad[1], 0, op info->user data), i.e. the vec-
tor of this 1st order term is evaluated only at the first quadrature node; otherwise
the integrals are approximated by quadrature and op info->Lb1() is called for
each quadrature node of quad[1].

276 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

• If both function pointers op info->Lb0 and op info->Lb1 are not NULL, the finite
element spaces for rows and columns are the same and Lb0 Lb1 anti symmetric

is non–zero, then the contributions of the 1st order term are computed using this
anti symmetry property.

• If op info->c is not NULL, the zero order term is integrated using the quadra-
ture quad[0]; if op info->c pw const is not zero, the integrals of the prod-
uct of basis functions on the standard simplex are initialized (using the quadra-
ture quad[0] for the integration) and used for the computation on the elements;
op info->c() is only called once with arguments op info->c(el info, quad[0],

0, op info->user data), i.e. the zero order term is evaluated only at the first
quadrature node; otherwise the integrals are approximated by quadrature and
op info->c() is called for each quadrature node of quad[0].

• The functions LALt(), Lb0(), Lb1(), and c(), can be called in an arbitrary order
on the elements, if not NULL (this depends on the type of integration, using pre–
computed values, using same/different quadrature for the second, first, and/or zero
order term, e.g.) but commonly used data for these functions is always initialized
first by op info->init element(), if this function pointer is not NULL.

• Using all information about the operator and quadrature, an “optimal” routine
for the assemblage is chosen. Information for this routine is stored at mat info

which includes the pointer to user data op info->user data (the last argument to
init element(), LALt(), Lb0(), Lb1(), and/or c()).

neigh el mat fcts[] See the documentation of the discontinuous component of the
BNDRY OPERATOR INFO structure.

fill flag Finally, the flag for the mesh traversal used by the function update matrix()

is set in mat info->fill flag to op info->fill flag; it indicates which elements
should be visited and which information should be present in the EL INFO structure for
init element(), LALt(), Lb0/1(), and/or c() on the visited elements.

If the boundary bit-mask op info->dirichlet bndry has bits set (see also Sec-
tion 3.2.4), then the FILL BOUND flag is added to mat info->fill flag.

4.7.3 Example (Implementation of the differential operator −∆). The following source
fragment gives an example of the implementation for the operator −∆ and the access to a
MATRIX INFO structure for the automatic assemblage of the system matrix for this problem
for any set of used basis functions.

The source fragment shown here is part of the implementation for a Poisson equation,
which is the first model problem described in detail in Section 2.2. However, we will generalize
the code given in Section 2.2 to include the case of parametric meshes. The assemblage of
the discrete system including the load vector and Dirichlet boundary values is spelled out in
Section 2.2.7.

For the Poisson equation we only have to implement a constant second order term. For
passing information about the gradient of the barycentric coordinates (at all quadrature
points) from init element() to the function LALt we define the following structure

struct app data
{

REAL BD ∗Lambda ;
REAL ∗det ;
} ;

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 277

The function init element() calculates the Jacobians Λ and determinants det of the
barycentric coordinates and stores these in the above defined structure. In the case of a
parametric mesh we fill Lambda with the Jacobians and det with the determinants at all
quadrature points of quad[2]. For a non–parametric mesh we only fill the zeroth entry of
Lambda and det. If init element() returns false, then LALt() is only called once for the
current simplex with iq==0, otherwise it is called for each quadrature point in quad[2]. Note
that we need a higher order quadrature than usual to calculate the integral exactly for a
curved parametric element.

stat ic bool i n i t e l emen t (const EL INFO ∗ e l i n f o , const QUAD ∗quad [3] , void
∗ud)

{
struct app data ∗data = (struct app data ∗)ud ;
PARAMETRIC ∗parametr ic = e l i n f o −>mesh−>parametr ic ;

i f (parametr ic && parametric−>i n i t e l emen t (e l i n f o , parametr ic)) {
parametric−>grd lambda (e l i n f o , quad [2] , 0 , NULL,

data−>Lambda , NULL, data−>det) ;
return t rue ;

} else {
data−>det [0] = e l grd lambda (e l i n f o , data−>Lambda [0]) ;
return f a l s e ;

}
}

The function LALt now has to calculate the scaled matrix product |detDFS |ΛΛt.
Note that LALt() is invoked only for the first quadrature point (iq == 0), if the
OPERATOR INFO-structure claims that the second-order kernel is piece-wise constant and
parametric->init element() returns false, so using the index iq into the fields det and
Lambda does not access invalid data, and the assembling linear systems remains relatively
efficient, even in the context of iso-parametric boundary approximation.

const REAL B ∗LALt(const EL INFO ∗ e l i n f o , const QUAD ∗quad ,
int iq , void ∗ud)

{
struct app data ∗data = (struct app data ∗)ud ;
int i , j ;
stat ic REAL BB LALt ; /∗ mind the ” s t a t i c ” keyword ! ∗/

for (i = 0 ; i < N VERTICES(MESH DIM) ; i++) {
LALt [i] [i] = SCPDOW(data−>Lambda [i q] [i] , data−>Lambda [i q] [i]) ;
LALt [i] [i] ∗= data−>det [i q] ;
for (j = i +1; j < N VERTICES(MESH DIM) ; j++) {

LALt [i] [j] = SCPDOW(data−>Lambda [i q] [i] , data−>Lambda [i q] [j]) ;
LALt [i] [j] ∗= data−>det [i q] ;
LALt [j] [i] = LALt [i] [j] ;

}
}

return (const REAL B ∗)LALt ;
}

Before assembling the system matrix for the operator −∆, we first have to initialize an
EL MATRIX INFO structure. A pointer to this EL MATRIX INFO structure is the second argument

278 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

to the function update matrix(), which finally assembles the system matrix (compare Sec-
tion 4.7.2).

For the initialization we have to fill an OPERATOR INFO structure collecting all infor-
mation about the differential operator. For −∆ we only need pointers to the functions
init element() and LALt() described above. The differential operator is constant and sym-
metric, and information about vertex coordinates is needed for computing the Jacobian of the
barycentric coordinates. Information about Dirichlet boundary values should be assembled
into the system matrix, hence the entry operator info->use get bound is set true.

The functions init element() and LALt() do not depend on the finite element space
which is used. This functions can be used for any conforming finite element discretization
for the Poisson equation; all information needed about the actually used finite elements is
a pointer to this finite element space; we assume that this pointer is stored in the variable
fe space.

const EL MATRIX INFO ∗mat r i x i n f o = NULL;
stat ic struct app data app data ; /∗ Must be s t a t i c ! ∗/
OPERATOR INFO o i n f o = { NULL, } ;

i f (mesh−>parametr ic)
quad = get quadrature (2 , 2∗ f e space−>ba s f c t s−>degree + 2) ;

else
quad = get quadrature (2 , 2∗ f e space−>ba s f c t s−>degree −2) ;

app data . Lambda = MEMALLOC(quad−>n points , REAL BD) ;
app data . det = MEMALLOC(quad−>n points , REAL) ;

o i n f o . quad [2] = quad ;
o i n f o . r ow f e spac e = o i n f o . c o l f e s p a c e = f e s p a c e ;
o i n f o . i n i t e l emen t = in i t e l emen t ;
o i n f o . LALt . r e a l = LALt ;
o i n f o . LALt pw const = true ; /∗ pw cons t . assemblage i s f a s t e r ∗/
o i n f o . LALt symmetric = true ; /∗ symmetric assemblage i s f a s t e r ∗/
o i n f o . u s e r data = &app data ; /∗ app l i c a t i o n data ∗/

/∗ Use , e . g . , D i r i c h l e t boundary cond i t i on s . ∗/
BNDRY FLAGS CPY(o i n f o . d i r i c h l e t bnd ry , d i r i c h l e t ma sk) ;

o i n f o . f i l l f l a g = CALL LEAF EL |FILL COORDS;

mat r i x i n f o = f i l l m a t r i x i n f o (&o in f o , NULL) ;

Full information about the operator is now available via the matrix info structure and the
system matrix matrix can then easily be assembled for the selected finite element space by

c l e a r d o f ma t r i x (matrix) ;
update matr ix (matrix , mat r ix in fo , NoTranspose) ;

4.7.4 Matrix assemblage for coupled second order problems

The corresponding mechanism for coupled vector valued problems is very similar, except for
the additional indices necessary to describe coupling. We start by stating the form of the
element matrix with the generalized first order term and different finite element spaces (see
also 1.4.5):

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 279

LijS,µν :=

∫
Ŝ
∇λψ̄i(λ(x̂)) · Āµν(λ(x̂))∇λϕ̄j(λ(x̂)) dx̂

+

∫
Ŝ
ψ̄i(λ(x̂)) b̄0,µν(λ(x̂)) · ∇λϕ̄j(λ(x̂)) dx̂

+

∫
Ŝ
∇λψ̄i(λ(x̂)) · b̄1,µν(λ(x̂)) ϕ̄j(λ(x̂)) dx̂

+

∫
Ŝ
c̄µν(λ(x̂)) ψ̄i(λ(x̂)) ϕ̄j(λ(x̂)) dx̂,

with

Āµν(λ) :=
(
āµνkl (λ)

)
k,l=0,...,d

:= |detDFS(x̂(λ))|Λ(x(λ))Aµν(x(λ)) Λt(x(λ)),

b̄0,µν(λ) :=
(
b̄0,µνl (λ)

)
l=0,...,d

:= |detDFS(x̂(λ))|Λ(x(λ)) b0,µν(x(λ)),

b̄1,µν(λ) :=
(
b̄1,µνl (λ)

)
l=0,...,d

:= |detDFS(x̂(λ))|Λ(x(λ)) b1,µν(x(λ)), and

c̄µν(λ) := |detDFS(x̂(λ))| cµν(x(λ))

for µ, ν = 1, . . . , n, n = DIM OF WORLD.
To store information about the coupled operator and finite element spaces, we use the

same OPERATOR_INFO (see page 267) structure as for the scalar problems, we only have to
adjust the respective MATENT_TYPE structure components to the correct block-matrix type.
Also, the same fill_matrix_info() and add_element_matrix() routines are used for scalar
and vector valued problems.

4.7.5 Data structures for storing pre-computed integrals of basis functions

Assume a non–parametric triangulation and constant coefficient functions A, b, and c. Since
the Jacobian of the barycentric coordinates is constant on S, the functions ĀS , b̄0S , b̄1S , and c̄S
are constant on S also. Now, looking at the element matrix approximated by some quadrature
Q̂, we observe

Q̂
(d∑
k,l=0

(āS,klψ̄
i
,λk
ϕ̄j,λl)

)
=

d∑
k,l=0

āS,klQ̂
(
ψ̄i,λk ϕ̄

j
,λl

)
,

Q̂
(d∑
l=0

(b̄0S,l ψ̄
i ϕ̄j,λl)

)
=

d∑
l=0

b̄0S,l Q̂
(
ψ̄i ϕ̄j,λl

)
,

Q̂
(d∑
k=0

(b̄1S,k ψ̄
i
,λk
ϕ̄j)
)

=

d∑
k=0

b̄1S,k Q̂
(
ψ̄i,λk ϕ̄

j)
)
, and

Q̂
(

(c̄S ψ̄
i ϕ̄j)

)
= c̄S Q̂

(
ψ̄i ϕ̄j

)
.

(4.1)

The values of the quadrature applied to the basis functions only depend on the basis functions
and the standard element but not on the actual simplex S. All information about S is given
by ĀS , b̄0S , b̄1S , and c̄S . Thus, these quadratures have only to be calculated once, and can then
be used on each element during the assembling.

280 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

For this we have to store for the basis functions {ψ̄i}i=1,...,n and {ϕ̄j}j=1,...,m the values

Q̂11
ij,kl := Q̂

(
ψ̄i,λk ϕ̄

j
,λl

)
for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k, l ≤ d,

if A 6= 0,

Q̂01
ij,l := Q̂

(
ψ̄i ϕ̄j,λl

)
for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ l ≤ d,

if b0 6= 0,

Q̂10
ij,k := Q̂

(
ψ̄i,λk ϕ̄

j
)

for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ d

if b1 6= 0, and

Q̂00
ij := Q̂

(
ψ̄i ϕ̄j

)
for 1 ≤ i ≤ n, 1 ≤ j ≤ m,

if c 6= 0. Many of these values are zero, especially for the first and second order terms (if
ψ̄i and ϕ̄j are the linear nodal basis functions Q̂11

ij,kl = δijδkl). Thus, we use special data
structures for a sparse storage of the non zero values for these terms. These are described
now.

In order to “define” zero entries we use

stat ic const REAL TOO SMALL = 10.0 ∗ REAL EPSILON;

and all computed values val with |val| ≤ TOO SMALL are treated as zeros. As we are consider-
ing here integrals over the standard simplex, non-zero integrals are usually of order one, such
that the above constant is of the order of roundoff errors for double precision.

The following data structure is used for storing values Q̂11 for two sets of basis functions
integrated with a given quadrature. Note that in the context of “chained” basis-functions (see
Section 3.5.3 the cache-structure nevertheless hold data for only a single component of such
a multi-component chain.

typedef struct q11 p s i ph i Q11 PSI PHI ;

struct q11 p s i ph i
{

const BAS FCTS ∗ p s i ;
const BAS FCTS ∗phi ;
const QUAD ∗quad ;

const Q11 PSI PHI CACHE ∗ cache ;

INIT ELEMENT DECL;
} ;

typedef struct q11 p s i ph i c a ch e
{

int n p s i ;
int n phi ;

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 281

const int ∗const∗ n e n t r i e s ;
const REAL ∗const∗const∗ va lue s ;
const int ∗const∗const∗k ;
const int ∗const∗const∗ l ;

} Q11 PSI PHI CACHE ;

Description:

struct q11 psi phi :

psi Pointer to the first set of basis functions.

phi Pointer to the second set of basis functions.

quad Pointer to the quadrature which is used for the integration.

cache Pointer to the actual data in the cache.

INIT ELEMENT DECL Optional per-element initializer. This entry is initialized when call-
ing get q11 psi phi() if either the underlying basis functions or the underlying quadra-
ture rule has per-element initializers. See Section 3.11.

struct q11 psi phi cache :

n psi Dimension of the local space of test-functions (row space), equals
Q11 PSI PHI.psi->n bas fcts.

n phi Dimension of the local space of ansatz-functions (column space), equals
Q11 PSI PHI.phi->n bas fcts.

n entries matrix of size n psi× n phi storing the count of non zero integrals;

n entries[i][j] is the count of non zero values of Q̂11
ij,kl (0 ≤ k,l ≤ d) for the pair

(psi[i], phi[j]), 0 ≤ i < n psi, 0 ≤ j < n phi.

values tensor storing the non zero integrals;

values[i][j] is a vector of length n entries[i][j] storing the non zero values for
the pair (psi[i], phi[j]).

k, l tensor storing the indices k, l of the non zero integrals;

k[i][j] and l[i][j] are vectors of length n entries[i][j] storing at k[i][j][r]

and l[i][j][r] the indices k and l of the value stored at values[i][j][r], i.e.

The following formulas summarize the relationship between the cache data-structure and the
formulas (4.1) at the beginning of this section:

values[i][j][r] = Q̂11
ij,k[i][j][r],l[i][j][r] = Q̂

(
ψ̄i
,λk[i][j][r]

ϕ̄
j
,λl[i][j][r]

)
,

for 0 ≤ r < n entries[i][j]. Using these pre–computed values we have for all elements S

d∑
k,l=0

āS,klQ̂
(
ψ̄i,λk ϕ̄

j
,λl

)
=

n entries[i][j]-1∑
r=0

āS,k[i][j][r],l[i][j][r] *values[i][j][r].

The following function initializes a Q11 PSI PHI structure:

const Q11 PSI PHI ∗ g e t q 1 1 p s i p h i (const BAS FCTS ∗ps i , const BAS FCTS ∗phi ,
const QUAD ∗quad) ;

Description:

282 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

get q11 psi phi(psi, phi, quad) returns a pointer to a filled Q11 PSI PHI structure.

psi is a pointer to the first set of basis functions, phi is a pointer to the second set of
basis functions; if both are NULL pointers, nothing is done and the return value is NULL; if
one of the pointers is a NULL pointer, the structure is initialized using the same set of basis
functions for the first and second set, i.e. phi = psi or psi = phi is used.

quad is a pointer to a quadrature for the approximation of the integrals; if quad is NULL,
then a quadrature which is exact of degree psi->degree+phi->degree-2 is used.

All used Q11 PSI PHI structures are stored in a linked list and are identified uniquely
by the members psi, phi, and quad, and for such a combination only one Q11 PSI PHI

structure is created during runtime;

First, get q11 psi phi() looks for a matching structure in the linked list; if such a struc-
ture is found a pointer to this structure is returned; the values are not computed a second
time. Otherwise a new structure is generated, linked to the list, and the values are com-
puted using the quadrature quad; all values val with |val| ≤ TOO SMALL are treated as
zeros.

4.7.4 Example. The following example shows how to use these pre–computed values for the
integration of the 2nd order term∫

Ŝ
∇λψ̄i(λ(x̂)) · Ā(λ(x̂))∇λϕ̄j(λ(x̂)) dx̂

for all i, j. We only show the body of a function for the integration and assume that LALt fct

returns a matrix storing Ā (compare the member LALt in the OPERATOR INFO structure):

stat ic Q11 PSI PHI CACHE ∗ q11 p s i ph i ;

i f (! q 11 p s i ph i) {
q11 p s i ph i = g e t q 1 1 p s i p h i (ps i , phi , quad [2])−>cache ;

}

LALt = LALt fct (e l i n f o , quad , 0 , u s e r data) ;
n e n t r i e s = q11 ps i ph i−>n e n t r i e s ;

for (i = 0 ; i < q11 ps i ph i−>n p s i ; i++)
{

for (j = 0 ; j < q11 ps i ph i−>n phi ; j++)
{

k = q11 ps i ph i−>k [i] [j] ;
l = q11 ps i ph i−>l [i] [j] ;
va lue s = q11 ps i ph i−>va lue s [i] [j] ;
for (va l = m = 0 ; m < n e n t r i e s [i] [j] ; m++)

va l += va lue s [m]∗LALt [k [m]] [l [m]] ;
mat [i] [j] += va l ;

}
}

The values Q̂01 for the set of basis functions psi and phi are stored in

typedef struct q01 p s i ph i Q01 PSI PHI ;

typedef struct q01 p s i ph i c a ch e

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 283

{
int n p s i ;
int n phi ;

const int ∗const∗ n e n t r i e s ;
const REAL ∗const∗const∗ va lue s ;
const int ∗const∗const∗ l ;

} Q01 PSI PHI CACHE ;

struct q01 p s i ph i
{

const BAS FCTS ∗ p s i ;
const BAS FCTS ∗phi ;
const QUAD ∗quad ;

const Q01 PSI PHI CACHE ∗ cache ;

INIT ELEMENT DECL;
} ;

Description:

struct q01 psi phi :

psi pointer to the first set of basis functions.

phi pointer to the second set of basis functions.

quad pointer to the quadrature which is used for the integration.

cache Pointer to the actual data in the cache.

INIT ELEMENT DECL Optional per-element initializer. This entry is initialized when call-
ing get q11 psi phi() if either the underlying basis functions or the underlying quadra-
ture rule has per-element initializers. See Section 3.11.

struct q01 psi phi cache :

n psi Dimension of the local space of test-functions (row space), equals
Q11 PSI PHI.psi->n bas fcts.

n phi Dimension of the local space of ansatz-functions (column space), equals
Q11 PSI PHI.phi->n bas fcts.

n entries matrix of size psi->n bas fcts×phi->n bas fcts storing the count of non
zero integrals;

n entries[i][j] is the count of non zero values of Q̂01
ij,l (0 ≤ l ≤ d) for the pair

(psi[i], phi[j]), 0 ≤ i < n psi, 0 ≤ j < n phi.

values tensor storing the non zero integrals;

values[i][j] is a vector of length n entries[i][j] storing the non zero values for
the pair (psi[i], phi[j]).

l tensor storing the indices l of the non zero integrals;

l[i][j] is a vector of length n entries[i][j] storing at l[i][j][r] the index l of
the value stored at values[i][j][r], i.e.

284 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

The following formulas summarize the relationship between the cache data-structure and the
formulas (4.1) at the beginning of this section:

values[i][j][r] = Q̂01
ij,l[i][j][r] = Q̂

(
ψ̄i ϕ̄

j
,λl[i][j][r]

)
,

for 0 ≤ r < n entries[i][j]. Using these pre–computed values we have for all elements S

d∑
l=0

b̄0S,lQ̂
(
ψ̄i ϕ̄j,λl

)
=

n entries[i][j]-1∑
r=0

b̄0S,l[i][j][r] *values[i][j][r].

The following function initializes a Q01 PSI PHI structure:

const Q01 PSI PHI ∗ g e t q 0 1 p s i p h i (const BAS FCTS ∗ps i , const BAS FCTS ∗phi ,
const QUAD ∗quad) ;

Description:

get q01 psi phi(psi, phi, quad) returns a pointer to a filled Q01 PSI PHI structure.

psi is a pointer to the first set of basis functions phi is a pointer to the second set of basis
functions; if both are NULL pointers, nothing is done and the return value is NULL; if one
of the pointers is a NULL pointer, the structure is initialized using the same set of basis
functions for the first and second set, i.e. phi = psi or psi = phi is used.

quad is a pointer to a quadrature for the approximation of the integrals; is quad is NULL,
a quadrature which is exact of degree psi->degree+phi->degree-1 is used.

All used Q01 PSI PHI structures are stored in a linked list and are identified uniquely
by the members psi, phi, and quad, and for such a combination only one Q01 PSI PHI

structure is created during runtime;

First, get q01 psi phi() looks for a matching structure in the linked list; if such a struc-
ture is found a pointer to this structure is returned; the values are not computed a second
time. Otherwise a new structure is generated, linked to the list, and the values are com-
puted using the quadrature quad; all values val with |val| ≤ TOO SMALL are treated as
zeros.

The values Q̂10 for the set of basis functions psi and phi are stored in

typedef struct q10 p s i ph i Q10 PSI PHI ;

typedef struct q10 p s i ph i c a ch e
{

int n p s i ;
int n phi ;

const int ∗const∗ n e n t r i e s ;
const REAL ∗const∗const∗ va lue s ;
const int ∗const∗const∗k ;

} Q10 PSI PHI CACHE ;

struct q10 p s i ph i
{

const BAS FCTS ∗ p s i ;
const BAS FCTS ∗phi ;
const QUAD ∗quad ;

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 285

const Q10 PSI PHI CACHE ∗ cache ;

INIT ELEMENT DECL;
} ;

Description:

struct q10 psi phi :

psi pointer to the first set of basis functions.

phi pointer to the second set of basis functions.

quad pointer to the quadrature which is used for the integration.

cache Pointer to the actual data in the cache.

INIT ELEMENT DECL Optional per-element initializer. This entry is initialized when call-
ing get q11 psi phi() if either the underlying basis functions or the underlying quadra-
ture rule has per-element initializers. See Section 3.11.

struct q10 psi phi cache :

n psi Dimension of the local space of test-functions (row space), equals
Q11 PSI PHI.psi->n bas fcts.

n phi Dimension of the local space of ansatz-functions (column space), equals
Q11 PSI PHI.phi->n bas fcts.

n entries matrix of size psi->n bas fcts×phi->n bas fcts storing the count of non
zero integrals;

n entries[i][j] is the count of non zero values of Q̂10
ij,k (0 ≤ k ≤ d) for the pair

(psi[i], phi[j]), 0 ≤ i < n psi, 0 ≤ j < n phi.

values tensor storing the non zero integrals;

values[i][j] is a vector of length n entries[i][j] storing the non zero values for
the pair (psi[i], phi[j]).

k tensor storing the indices k of the non zero integrals;

k[i][j] is a vector of length n entries[i][j] storing at k[i][j][r] the index k of
the value stored at values[i][j][r], i.e.

The following formulas summarize the relationship between the cache data-structure and the
formulas (4.1) at the beginning of this section:

values[i][j][r] = Q̂10
ij,k[i][j][r] = Q̂

(
ψ̄i
,λk[i][j][r]

ϕ̄j
)
,

for 0 ≤ r < n entries[i][j]. Using these pre–computed values we have for all elements S

d∑
k=0

b̄1S,kQ̂
(
ψ̄i,λk ϕ̄

j
)

=

n entries[i][j]-1∑
r=0

b̄1S,k[i][j][r] *values[i][j][r].

The following function initializes a Q10 PSI PHI structure:

const Q10 PSI PHI ∗ g e t q 1 0 p s i p h i (const BAS FCTS ∗ps i , const BAS FCTS ∗phi ,
const QUAD ∗quad) ;

Description:

286 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

get q10 psi phi(psi, phi, quad) returns a pointer to a filled Q10 PSI PHI structure.

psi is a pointer to the first set of basis functions phi is a pointer to the second set of basis
functions; if both are NULL pointers, nothing is done and the return value is NULL; if one
of the pointers is a NULL pointer, the structure is initialized using the same set of basis
functions for the first and second set, i.e. phi = psi or psi = phi is used.

quad is a pointer to a quadrature for the approximation of the integrals; is quad is NULL,
a quadrature which is exact of degree psi->degree+phi->degree-1 is used.

All used Q10 PSI PHI structures are stored in a linked list and are identified uniquely
by the members psi, phi, and quad, and for such a combination only one Q10 PSI PHI

structure is created during runtime;

First, get q10 psi phi() looks for a matching structure in the linked list; if such a struc-
ture is found a pointer to this structure is returned; the values are not computed a second
time. Otherwise a new structure is generated, linked to the list, and the values are com-
puted using the quadrature quad; all values val with |val| ≤ TOO SMALL are treated as
zeros.

Finally, the values Q̂00 for the set of basis functions psi and phi are stored in

typedef struct q00 p s i ph i Q00 PSI PHI ;

typedef struct q00 p s i ph i c a ch e
{

int n p s i ;
int n phi ;

const REAL ∗const∗ va lue s ;
} Q00 PSI PHI CACHE ;

struct q00 p s i ph i
{

const BAS FCTS ∗ p s i ;
const BAS FCTS ∗phi ;
const QUAD ∗quad ;

const Q00 PSI PHI CACHE ∗ cache ;

INIT ELEMENT DECL;
} ;

Description:

struct q00 psi phi :

psi pointer to the first set of basis functions.

phi pointer to the second set of basis functions.

quad pointer to the quadrature which is used for the integration.

cache Pointer to the actual data in the cache.

INIT ELEMENT DECL Optional per-element initializer. This entry is initialized when call-
ing get q11 psi phi() if either the underlying basis functions or the underlying quadra-
ture rule has per-element initializers. See Section 3.11.

struct q00 psi phi cache :

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 287

n psi Dimension of the local space of test-functions (row space), equals
Q11 PSI PHI.psi->n bas fcts.

n phi Dimension of the local space of ansatz-functions (column space), equals
Q11 PSI PHI.phi->n bas fcts.

values matrix storing the integrals.

The following formulas summarize the relationship between the cache data-structure and the
formulas (4.1) at the beginning of this section:

values[i][j] = Q̂00
ij = Q̂

(
ψ̄i ϕ̄j

)
,

for the pair (psi[i], phi[j]), 0 ≤ i < psi->n bas fcts, 0 ≤ j < phi->n bas fcts. The
following function initializes a Q00 PSI PHI structure:

const Q00 PSI PHI ∗ g e t q 0 0 p s i p h i (const BAS FCTS ∗ps i , const BAS FCTS ∗phi ,
const QUAD ∗quad) ;

Description:

get q00 psi phi(psi, phi, quad) returns a pointer to a filled Q00 PSI PHI structure.

psi is a pointer to the first set of basis functions phi is a pointer to the second set of basis
functions; if both are NULL pointers, nothing is done and the return value is NULL; if one
of the pointers is a NULL pointer, the structure is initialized using the same set of basis
functions for the first and second set, i.e. phi = psi or psi = phi is used.

quad is a pointer to a quadrature for the approximation of the integrals; is quad is NULL,
a quadrature which is exact of degree psi->degree+phi->degree is used.

All used Q00 PSI PHI structures are stored in a linked list and are identified uniquely
by the members psi, phi, and quad, and for such a combination only one Q00 PSI PHI

structure is created during runtime;

First, get q00 psi phi() looks for a matching structure in the linked list; if such a struc-
ture is found a pointer to this structure is returned; the values are not computed a second
time. Otherwise a new structure is generated, linked to the list, and the values are com-
puted using the quadrature quad.

4.7.6 Data structures and functions for updating coefficient vectors

Besides the general routines update real vec(), update real d vec() and
update real vec dow(), this section presents also easy to use routines for calculation
of L2 scalar products between a given function and all basis functions of a finite element
space, taken either over the interior of the mesh or over boundary segments.

The following structures hold full information for the assembling of element vectors. They
are used by the functions update real vec() and update real d vec() described below.

typedef struct e l v e c i n f o EL VEC INFO ;
typedef struct e l v e c d i n f o EL VEC D INFO ;
typedef struct e l v e c i n f o d EL VEC INFO D ;

typedef const EL REAL VEC ∗
(∗EL VEC FCT) (const EL INFO ∗ e l i n f o , void ∗ f i l l i n f o) ;

288 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

typedef struct e l v e c i n f o EL VEC INFO ;
struct e l v e c i n f o
{

const FE SPACE ∗ f e s p a c e ;

BNDRY FLAGS d i r i c h l e t bnd r y ;
REAL f a c t o r ;

EL VEC FCT e l v e c f c t ;
void ∗ f i l l i n f o ;

FLAGS f i l l f l a g ;
} ;

typedef const EL REAL D VEC ∗
(∗EL VEC D FCT) (const EL INFO ∗ e l i n f o , void ∗ f i l l i n f o) ;

typedef struct e l v e c d i n f o EL VEC D INFO ;
struct e l v e c d i n f o
{

const FE SPACE ∗ f e s p a c e ;

BNDRY FLAGS d i r i c h l e t bnd r y ;
REAL f a c t o r ;

EL VEC D FCT e l v e c f c t ;
void ∗ f i l l i n f o ;

FLAGS f i l l f l a g ;
} ;

typedef const EL REAL VEC D ∗
(∗EL VEC FCT D) (const EL INFO ∗ e l i n f o , void ∗ f i l l i n f o) ;

typedef struct e l v e c i n f o d EL VEC INFO D ;
struct e l v e c i n f o d
{

const FE SPACE ∗ f e s p a c e ;

BNDRY FLAGS d i r i c h l e t bnd r y ;
REAL f a c t o r ;

EL VEC FCT D e l v e c f c t ;
void ∗ f i l l i n f o ;

FLAGS f i l l f l a g ;
} ;

Description:

fe space the underlying finite element space

dirichlet bndry a bit mask marking the boundary segments which are subject to Dirich-
let boundary conditions, see also Section 3.2.4.

factor is a multiplier for the element contributions; usually factor is 1 or -1.

el vec fct is a pointer to a function for the computation of the element vector;
el vec fct(el info, fill info) returns a pointer to an element vector of the respective

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 289

data type, see e.g. EL_REAL_VEC on page 253. This vector stores the computed values for the
element described by el info. fill info is a pointer to data needed by el vec fct(); the
function has to provide memory for storing the element vector, which can be overwritten
on the next call.

fill info pointer to data needed by el vec fct(); is the second argument of this func-
tion.

fill flag the flag for the mesh traversal for assembling the vector.

The following function does the update of vectors by assembling element contributions during
mesh traversal; information for computing the element vectors is held in a EL VEC[D] INFO

structure:

void upda t e r e a l v e c (DOF REAL VEC ∗dv , const EL VEC INFO ∗ v e c i n f o) ;
void upda t e r e a l d ve c (DOF REAL D VEC ∗dv , const EL VEC D INFO ∗ v e c i n f o) ;
void update rea l vec dow (DOF REAL VEC D ∗dv , const EL VEC INFO D ∗ v e c i n f o)

update real[d] vec[dow](dv, info) updates the vector dr by traversing the under-
lying mesh and assembling the element contributions into the vector; information about
the computation of element vectors and connection of local and global DOFs is stored in
info.

The flags for the mesh traversal of the mesh dv->fe space->mesh are stored at
info->fill flags which specifies the elements to be visited and information that should
be present on the elements for the calculation of the element vectors and boundary infor-
mation (if info->get bound is not NULL).

On the elements, information about the global DOFs is accessed by info->get dof

using info->admin; the boundary type of the DOFs is accessed by info->get bound

if info->get bound is not a NULL pointer; then the element vector is computed by
info->el vec fct(el info, info->fill info); these contributions are finally added to
dv multiplied by info->factor by a call of add element[d] vec[dow]() with all infor-
mation about global DOFs, the element vector, and boundary types, if available;

update real[d] vec[dow]() only adds element contributions; this makes several calls
for the assemblage of one vector possible; before the first call, the vector should be set to
zero by a call of dof set[d| dow](0.0, dv).

L2- and H1-scalar- products over the bulk phase In many applications, the load vector
is just the L2- or H1-scalar-product of a given function with all basis functions of the finite
element space or this scalar product is a part of the right hand side. Such a scalar product
can be directly assembled by the following functions.

Prototypes

void L2s cp f c t ba s (FCT AT X f , const QUAD ∗quad , DOF REAL VEC ∗ fh) ;
void L2s cp f c t ba s d (FCT D AT X f , const QUAD ∗ , DOF REAL D VEC ∗ fh) ;
void L2scp fc t bas dow (FCT D AT X f , const QUAD ∗quad , DOF REAL VEC D ∗ fh) ;

void L2 s c p f c t b a s l o c (DOF REAL VEC ∗ fh ,
LOC FCT AT QP f , void ∗ f data , FLAGS f i l l f l a g ,
const QUAD ∗quad) ;

void L2 s c p f c t b a s l o c d (DOF REAL D VEC ∗ fh ,

290 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

LOC FCT D AT QP f , void ∗ fd , FLAGS f i l l f l a g ,
const QUAD ∗quad) ;

void L2s cp f c t ba s l o c dow (DOF REAL VEC D ∗ fh ,
LOC FCT D AT QP f , void ∗ fd , FLAGS f i l l f l a g ,
const QUAD ∗quad) ;

void H1scp f c t bas (GRD FCT AT X grd f ,
const QUAD ∗quad , DOF REAL VEC ∗ fh) ;

void H1scp f c t ba s d (GRD FCT D AT X grd f ,
const QUAD ∗quad , DOF REAL D VEC ∗ fh) ;

void H1scp fct bas dow (GRD FCT D AT X grd f ,
const QUAD ∗quad , DOF REAL VEC D ∗ fh) ;

void H1s cp f c t b a s l o c (DOF REAL VEC ∗ fh ,
GRD LOC FCT AT QP grd f , void ∗ fd ,
FLAGS f i l l f l a g , const QUAD ∗quad) ;

void H1s cp f c t b a s l o c d (DOF REAL VEC D ∗ fh ,
GRD LOC FCT D AT QP grd f , void ∗ fd ,
FLAGS f i l l f l a g , const QUAD ∗quad) ;

void H1scp f c t bas l o c dow (DOF REAL VEC D ∗ fh ,
GRD LOC FCT D AT QP grd f , void ∗ fd ,
FLAGS f i l l f l a g , const QUAD ∗quad) ;

Descriptions

L2scp fct bas(f, quad, fh)

L2scp fct bas d(f, quad, fh)

L2scp fct bas dow(f, quad, fh) Approximate the L2 scalar products of a given func-
tion with all basis functions by numerical quadrature and add the corresponding values to
a DOF vector

f is a pointer for the evaluation of the given function in world coordinates x and returns
the value of that function at x; if f is a NULL pointer, nothing is done;

fh is the DOF vector where at the i–th entry the approximation of the L2 scalar product
of the given function with the i–th global basis function of fh->fe space is added;

quad is the quadrature for the approximation of the integral on each leaf element of
fh->fe space->mesh; if quad is a NULL pointer, a default quadrature which is exact of
degree 2*fh->fe space->bas fcts->degree-2 is used.

The integrals are approximated by looping over all leaf elements, computing the ap-
proximations to the element contributions and adding these values to the vector fh by
add element vec().

The vector fh is not initialized with 0.0; only the new contributions are added.

L2scp fct bas d(fd, quad, fhd) approximates the L2 scalar products of a given vector
valued function with all scalar valued basis functions by numerical quadrature and adds
the corresponding values to a vector valued DOF vector;

fd is a pointer for the evaluation of the given function in world coordinates x; fd(x, fx)

returns a pointer to a vector storing the value at x; if fx is not NULL, the value is stored
at fx otherwise the function has to provide memory for storing this vector, which can be
overwritten on the next call; if fd is a NULL pointer, nothing is done;

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 291

fhd is the DOF vector where at the i–th entry (a REAL D vector) the approximation of the
L2 scalar product of the given vector valued function with the i–th global (scalar valued)
basis function of fhd->fe space is added;

quad is the quadrature for the approximation of the integral on each leaf element of
fhd->fe space->mesh; if quad is a NULL pointer, a default quadrature which is exact
of degree 2*fhd->fe space->bas fcts->degree-2 is used.

The integrals are approximated by looping over all leaf elements, computing the ap-
proximations to the element contributions and adding these values to the vector fhd by
add element d vec().

The vector fhd is not initialized with (0.0, . . . , 0.0); only the new contributions are added.

L2scp fct bas dow(fd, quad, fhd)

L2scp fct bas loc(fh, f at qp, fct data, fill flag, quad)

L2scp fct bas loc dow(fh, f at qp, ud, fill flag, quad)

H1scp fct bas(grd f, quad, fh)

H1scp fct bas dow(grd fd, quad, fhd)

4.7.7 Boundary conditions

The following six functions act as a front-end to the functions explained further below, there-
fore we refer the reader to Section 4.7.7.1, 4.7.7.2 and 4.7.7.3 for a deeper discussion of the
implementation of Dirichlet, Neumann and Robin boundary conditions within ALBERTA.

bool boundary cond i t ions (DOFMATRIX ∗matrix , DOF REAL VEC ∗ fh ,
DOF REAL VEC ∗uh , DOF SCHAR VEC ∗bound ,
const BNDRY FLAGS d i r i ch l e t s e gment ,
REAL (∗ g) (const REAL D x) ,
REAL (∗ gn) (const REAL D x , const REAL D normal) ,
REAL alpha r , const WALLQUAD ∗wal l quad) ;

bool boundary cond i t i on s l o c (DOFMATRIX ∗matrix , DOF REAL VEC ∗ fh ,
DOF REAL VEC ∗uh , DOF SCHAR VEC ∗bound ,
const BNDRY FLAGS d i r i ch l e t s e gment ,
LOC FCT AT QP g at qp , LOC FCT AT QP gn at qp ,
void ∗app data , FLAGS f i l l f l a g s ,
REAL alpha r , const WALLQUAD ∗wal l quad) ;

bool boundary cond i t ions d (DOFMATRIX ∗matrix , DOF REAL D VEC ∗ fh ,
DOF REAL D VEC ∗uh , DOF SCHAR VEC ∗bound ,
const BNDRY FLAGS d i r i ch l e t s e gment ,
const REAL ∗(∗ g) (const REAL D x , REAL D re s) ,
const REAL ∗(∗ gn) (const REAL D x ,

const REAL D normal ,
REAL D re s) ,

REAL alpha r , const WALLQUAD ∗wal l quad) ;
bool boundary cond i t i on s l o c d (DOFMATRIX ∗matrix , DOF REAL D VEC ∗ fh ,

DOF REAL D VEC ∗uh , DOF SCHAR VEC ∗bound ,
const BNDRY FLAGS d i r i ch l e t s e gment ,
LOC FCT D AT QP g at qp ,
LOC FCT D AT QP gn at qp ,
void ∗app data , FLAGS f i l l f l a g s ,
REAL alpha r , const WALLQUAD ∗wal l quad) ;

bool boundary condit ions dow (DOFMATRIX ∗matrix , DOF REAL VEC D ∗ fh ,
DOF REAL VEC D ∗uh , DOF SCHAR VEC ∗bound ,

292 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

const BNDRY FLAGS d i r i ch l e t s e gment ,
const REAL ∗(∗ g) (const REAL D x , REAL D re s) ,
const REAL ∗(∗ gn) (const REAL D x ,

const REAL D normal ,
REAL D re s) ,

REAL alpha r , const WALLQUAD ∗wal l quad) ;
bool boundary cond i t i ons loc dow (DOFMATRIX ∗matrix , DOF REAL VEC D ∗ fh ,

DOF REAL VEC D ∗uh , DOF SCHAR VEC ∗bound ,
const BNDRY FLAGS d i r i ch l e t s e gment ,
LOC FCT D AT QP g at qp ,
LOC FCT D AT QP gn at qp ,
void ∗app data , FLAGS f i l l f l a g s ,
REAL alpha r , const WALLQUAD ∗wal l quad) ;

Description: These “compound” functions implement Dirichlet, Neumann or Robin bound-
ary conditions, and optionally perform a mean-value correction of the “right hand side” in
the context of pure Neumann boundary conditions if alpha r < 0 (in order to satisfy the
conditions for the “right hand side” which may be violated in the discrete context because of
quadrature errors).

For the differences between the code. . . loc() and non-... loc() versions the reader is
referred to the section dealing with dirichlet bound loc() (see Section 4.7.7.1). A brief
discussion of the calling convention for the various functions pointers passed to the library
functions can also be found in Section 4.5.

Parameters

matrix As explained in Section 4.7.7.3, passed on to robin bound().

fh As explained in Section 4.7.7.1, Section 4.7.7.2 and Section 4.7.7.3. Passed on to
dirichlet bound() and bndry L2scp fct bas().

uh As explained in Section 4.7.7.1. Passed on to dirichlet bound().

bound As explained in Section 4.7.7.1. Passed on to dirichlet bound().

dirichlet segment As explained in Section 4.7.7.1. Passed on to
dirichlet bound(). The respective bit-masks passed to bndry L2scp fct bas()

and robin bound() are computed as bit-wise complement of dirichlet segment.
See also Section 3.2.4.

g As explained in Section 4.7.7.1. Passed on to dirichlet bound().

gn As explained in Section 4.7.7.2, Section 4.7.7.3. Passed on to
bndry L2scp fct bas().

app data ... loc()-variants only. As explained in Section 4.7.7.1, Section 4.5.
Passed on as application-data pointer to the application provided function hooks.

fill flags ... loc()-variants only. Additional fill-flags needed by g() or gn.

alpha r As explained in Section 4.7.7.3. Passed on to robin bound(). alpha r is also
abused to request an automatic mean-value correction of the load-vector: if alpha r is
negative, and Neumann boundary conditions were imposed on all boundary segments,
then boundary conditions() will attempt such a mean-value correction in order to
keep fulfill the compatibility condition for the load-vector in the discrete setting. Of
course, if the differential operator has lower order parts, then the load-vector need
not have mean-value 0.

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 293

Robin boundary conditions will only be assembled if alpha r is strictly larger than
0.

wall quad As explained in Section 4.7.7.3 and Section 4.7.7.2. Passed on to
robin bound() and bndry L2scp fct bas().

Return Value

true if any part of the boundary was subject to Dirichlet boundary conditions.

4.7.7.1 Dirichlet boundary conditions

For the solution of the discrete system (1.13) on page 25 derived in Section 1.4.5, we have to set
the Dirichlet boundary values for all Dirichlet DOFs. Usually, we take for the approximation
gh of g the interpolant of g, i.e. gh = Ihg and we have to copy the coefficients of gh at
the Dirichlet DOFs to the start value for an iterative solver. This way the first matrix-vector
operation performed by an iterative solver will have the effect to transform an inhomogeneous
Dirichlet boundary problem to a homogeneous one by applying the differential operator to
the boundary values and subtracting the result from the “right hand side”. Whether or not
it is also necessary to copy these coefficients to the load vector depends on how the matrices
act on the coefficients:

• If the matrix-rows corresponding to Dirichlet-nodes k1, . . . , kM have been replaced by
unit-vectors ekl (1 ≤ l ≤M), then it is also necessary to copy the Dirichlet nodes to the
load vector (compare (1.12) on page 25). Copying the coefficients of gh at the Dirichlet
DOFs to the initial guess will result in an initial residual (and then for all subsequent
residuals) which is zero at all Dirichlet DOFs.

This is the case when Dirichlet bit-masks have been copied to
OPERATOR INFO.dirichlet bndry (compare Section 3.2.4 and 4.50); the resulting
DOF MATRIX will then be assembled (Section 4.7.2) in this way, replacing any row
corresponding to a Dirichlet-node by the corresponding unit-vector.

• If the matrix-rows corresponding to Dirichlet-nodes have not been replaced by unit-
vectors, then it is still possible to solve a Dirichlet-problem by passing a DOF SCHAR VEC

to the matrix-vector routines (compare Section 4.10, describing the linear solvers avail-
able in ALBERTA). However, in this case the matrix-vector subroutines will clear all
Dirichlet-nodes to zero, see Section 3.3.7. Therefore, in this case it is necessary to clear
the coefficients of the “right hand side” which correspond to Dirichlet-nodes. See the
Example 4.7.6 for simple examples how to perform this task.

Note that the matrices generated this way – either by clearing Dirichlet-rows or by masking
out Dirichlet rows – are not symmetric (compare also (1.11) on page 24) even if the underlying
differential operator is symmetric. However, the restriction of the matrix to the space spanned
by the non-Dirichlet DOFs is symmetric, so any iterative solver for symmetric matrices will
work, provided one either sets the Dirichlet-values also in the load-vector (if the matrix acts
as identity on the Dirichlet DOFs) or clears the Dirichlet-nodes in the load-vector (if the matrix
acts as zero-operator on the Dirichlet DOFs).

The following functions will set Dirichlet boundary values for all DOFs on the Dirichlet
boundary, using an interpolation of the boundary values g:

294 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

bool d i r i c h l e t bound (DOF REAL VEC ∗ fh , DOF REAL VEC ∗uh ,
DOF SCHAR VEC ∗bound ,
const BNDRY FLAGS d i r i c h l e t s e gmen t s ,
REAL (∗ g) (const REAL D)) ;

bool d i r i c h l e t bound d (DOF REAL VEC D ∗ fh , DOF REAL VEC D ∗uh ,
DOF SCHAR VEC ∗bound ,
const BNDRY FLAGS d i r i c h l e t s e gmen t s ,
const REAL ∗(∗ g) (const REAL D, REAL D)) ;

bool d i r i ch l e t bound dow (DOF REAL VEC D ∗ fh , DOF REAL VEC D ∗uh ,
DOF SCHAR VEC ∗bound ,
const BNDRY FLAGS d i r i c h l e t s e gmen t s ,
const REAL ∗(∗ g) (const REAL D, REAL D)) ;

bool d i r i c h l e t b o und l o c (DOF REAL VEC ∗ fh , DOF REAL VEC ∗uh ,
DOF SCHAR VEC ∗bound ,
const BNDRY FLAGS d i r i c h l e t s e gmen t s ,
LOC FCT AT QP g , void ∗ud , FLAGS f i l l f l a g s) ;

bool d i r i c h l e t b ound l o c d (DOF REAL VEC D ∗ fh , DOF REAL VEC D ∗uh ,
DOF SCHAR VEC ∗bound ,
const BNDRY FLAGS d i r i c h l e t s e gmen t s ,
LOC FCT D AT QP g , void ∗ud ,
FLAGS f i l l f l a g s) ;

bool d i r i ch l e t bound l o c dow (DOF REAL VEC D ∗ fh , DOF REAL VEC D ∗uh ,
DOF SCHAR VEC ∗bound ,
const BNDRY FLAGS d i r i c h l e t s e gmen t s ,
LOC FCT D AT QP g , void ∗ud ,
FLAGS f i l l f l a g s) ;

Descriptions

dirichlet bound(fh, uh, bound, dirichlet segments, g) sets Dirichlet boundary
values for all DOFs on all leaf elements of fh->fe space->mesh or uh->fe space->mesh;
values at DOFs not belonging to the Dirichlet boundary are not changed by this function.

Boundary values are set element-wise on the leaf elements. The boundary type of the
walls of an element is accessed through the function wall bound(el info, wall). If the
corresponding bit is set in dirichlet segments, then the local interpolation operator of
the basis functions underlying fh/uh->fe space is invoked to compute the coefficients of
the DOFs located on that wall.

This variant of the dirichlet bound...() is rather simplistic; the
dirichlet bound loc..() pass more information to the function implementing the
boundary values and also allow for manipulating the amount of information available
while looping over the mesh.

Parameters

fh, uh are vectors where Dirichlet boundary values should be set (usually, fh stores
the load vector and uh an initial guess for an iterative solver); one of fh and uh

may be a NULL pointer; if both arguments are NULL pointers, nothing is done,
except of filling the bound argument, it that is non NULL; if both arguments are
not NULL, fh->fe space must equal uh->fe space.

bound is a vector for storing the boundary type for each used DOF; bound may be
NULL; if it is not NULL, the i-th entry of the vector is filled with the boundary type
of the i-th DOF. bound->fe space must be the same as fh’s or uh’s fe space.

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 295

dirichlet segments Bit-mask marking those parts of the boundary which are
subject to Dirichlet boundary conditions. If bit number k > 0 is set in
dirichlet segments then the part of the boundary with boundary classifica-
tion k is marked as Dirichlet boundary. Compare Section 3.2.4.

REAL (*g)(const REAL D arg) is a pointer to a function for the evaluation of the
boundary data; if g is a NULL pointer, all coefficients at Dirichlet DOFs are set to
0.0. arg are the Cartesian co-ordinates where the value of g should be computed.

Return Value true if any part of the boundary of the mesh is subject to Dirichlet
boundary conditions, as indicated by the argument dirichlet segments, false oth-
erwise.

dirichlet bound d(fh, uh, bound, dirichlet segments, g) does the same as
dirichlet bound(), but fh and uh are DOF REAL D VEC vectors.

The calling convention for const REAL (*g)(const REAL D arg, REAL D result) is
such that g must allow for result being a NULL-pointer. If so, a pointer to a statically
allocated storage area must be returned, otherwise result must be filled with the value
of g at the evaluation point arg, see Example 4.5.5 in Section 4.5. Otherwise everything
works as for dirichlet bound(), see above for the documentation.

dirichlet bound dow(fh, uh, bound, dirichlet segments, g) does the same as
dirichlet bound d(), but fh and uh are DOF REAL VEC D vectors, that is, uh and fh

may belong to a finite element space which is a direct sum, composed of several finite
element spaces (note the location of the D suffix in the data-type names DOF REAL VEC D

and DOF REAL D VEC!). The calling convention for const REAL (*g)(const REAL D arg,

REAL D result) is the same as explained above for dirichlet bound d().

dirichlet bound loc(fh, uh, bound, dirichlet segments, g, ud, fill flags)

This function differs from its counterpart without the loc-suffix only in the calling
convention for the function implementing the Dirichlet boundary conditions. We document
only the differing or additional arguments here and refer the reader to the documentation
of dirichlet bound() above:

REAL (*g)(const EL INFO *el info, const QUAD *quad, int iq, void *ud)

The function pointer to the function implementing the Dirichlet boundary values.
In contrast to the corresponding function-pointer passed to dirichlet bound() this
function is invoked with a co-dimension 1 quadrature rule (compare the interpol-
hooks in the BAS FCTS structure, 3.89, and the definition of the QUAD-structure, 4.2)
and a quadrature point, and first and not least with a filled EL INFO-structure.

This means that g has full-access to all the information available through the EL INFO

element descriptor. The amount of data filled-in during mesh-traversal can addition-
ally be controlled by setting specific fill-flags through the argument fill flags, which
is passed as last argument to dirichlet bound loc(). The last argument ud to g is
the same as the pointer ud passed as pre-last argument to dirichlet bound loc()

and may be used by an application to reduce the amount of global variables and
thus the potential of bugs implied by the use of global variables. The following sim-
ple example shows how to get hold of the Cartesian co-ordinates of the quadrature

296 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

point, and how to use, e.g., the boundary classification available through the EL INFO

structure:

4.7.5 Example.

struct g data
{

BNDRYTYPE sp e c i a l w a l l t y p e ; /∗ o ther s t u f f ∗/
} ;

REAL g impl (const EL INFO ∗ e l i n f o , const QUAD ∗quad , int iq ,
void ∗ud)

{
struct g data ∗data = (struct g data ∗)ud ;
BNDRYTYPE btype = wall bound (e l i n f o , quad−>sub sp lx) ;
REAL r e s u l t ;
const QUAD EL CACHE ∗ qe l c =

f i l l q u a d e l c a c h e (e l i n f o , quad , FILL EL QUAD WORLD) ;

i f (btype == data−>s p e c i a l w a l l t y p e) {
. . . /∗ do s p e c i a l t h i n g s ∗/
return s i n (qe lc−>world [i q] [0] ;

} else {
. . . /∗ do ”normal” t h i n g s ∗/
return s i n (qe lc−>world [i q] [1] ;

}
}

. . . /∗ 1.000 .000 l i n e s o f code l a t e r . . . ∗/
struct g data g da ta i n s t anc e = { 42 } ;
d i r i c h l e t b o und l o c (fh , uh , bound , d i r i c h l e t b i t s , g impl ,

&g data in s tance , FILL COORDS |FILL MACRO WALLS) ;

ud Application-data-pointer, forwarded as ud argument to the application supplied g

function-pointer.

fill flags Additional fill-flags for the loop over the mesh. The application must make
sure that fill flags contains all flags corresponding to information needed by the
function g().

dirichlet bound loc dow(

fh, uh, bound, dirichlet segments, g, ud, fill flags)

dirichlet bound loc(fh, uh, bound, dirichlet segments, g, ud, fill flags)

These two function differ from dirichlet bound loc() only in the calling convention for

const REAL ∗(∗ g) (REAL D re su l t , const EL INFO ∗ e l i n f o , const QUAD
∗quad , int iq , void ∗ud) .

As in the example 4.33 the implementation of g() must allow for result being NULL,
returning a pointer to a static storage area in this case.

4.7.6 Example. This example demonstrates how to clear the Dirichlet-nodes in the load-
vector if Dirichlet boundary conditions are implemented using a DOF SCHAR VEC to mask-out

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 297

Dirichlet nodes. Note that this example applies only if the DOF SCHAR VEC is also passed to
the linear solvers. Otherwise Dirichlet boundary conditions have to be incorporated into the
matrix

scalar problem

extern REAL g (const REAL D x) ; /∗ de f ined somewhere e l s e , e . g . ∗/
extern DOF REAL VEC ∗uh , ∗ fh ; /∗ de f ined somewhere e l s e , e . g . ∗/
DOF SCHAR VEC ∗bound =

ge t d o f s c h a r v e c (” d i r i c h l e t mask vec to r ” , fh−>f e s p a c e) ;
BNDRY FLAGS d i r i c h l e t b i t s ;
BNDRY FLAGS INIT(d i r i c h l e t b i t s) ;
BNDRY FLAGS SET(d i r i c h l e t b i t s , 3) ; /∗ e . g . ∗/

. . . /∗ o ther s t u f f ∗/

d i r i c h l e t bound (NULL, uh , bound , d i r i c h l e t b i t s , g) ;
FOR ALL DOFS(fh−>f e space−>admin ,

i f (bound−>vec [dof] >= DIRICHLET) {
fh−>vec [dof] = 0 . 0 ;

}) ;

. . . /∗ o ther s t u f f ∗/

oem so lve s (matrix , bound , fh , uh , . . . /∗ o ther parameters ∗/) ;

simple vector valued problem

extern const REAL ∗g (const REAL D x , REAL D r e s u l t) ; /∗ de f ined
somewhere e l s e , e . g . ∗/

extern DOF REAL D VEC ∗uh , ∗ fh ; /∗ de f ined somewhere e l s e , e . g . ∗/
extern DOF SCHAR VEC ∗bound ;
extern BNDRY FLAGS d i r i c h l e t b i t s ;

. . . /∗ o ther s t u f f ∗/

d i r i c h l e t bound d (NULL, uh , bound , d i r i c h l e t b i t s , g) ;
FOR ALL DOFS(fh−>f e space−>admin ,

i f (bound−>vec [dof] >= DIRICHLET) {
SETDOW(0 . 0 , fh−>vec [dof]) ;

}) ;

. . . /∗ o ther s t u f f ∗/

oem solve d (matrix , bound , fh , uh , . . . /∗ o ther parameters ∗/) ;

vector valued problem, using an FE-space which is a direct sum

Note the difference between a DOF REAL D VEC which contains DIM OF WORLD-sized
REAL D vectors and a DOF REAL VEC D which contains scalars of type REAL if the under-
lying basis function are themselves vector-valued, or REAL D-vectors if the underlying
basis functions are scalar-valued. The first code-block of the FOREACH DOF DOW-macro
is for the case where the basis functions are vector-valued (and hence the coefficients
are scalars) and the second code-block is for the case where the basis functions are

298 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

scalar-valued (and hence the coefficients are vectors). The FOREACH DOF DOW() macro is
further explained in Section 3.7.2.

extern const REAL ∗g (const REAL D x , REAL D r e s u l t) ; /∗ de f ined
somewhere e l s e , e . g . ∗/

extern DOF REAL VEC D ∗uh , ∗ fh ; /∗ de f ined somewhere e l s e , e . g . ∗/
extern DOF SCHAR VEC ∗bound ;
extern BNDRY FLAGS d i r i c h l e t b i t s ;

. . . /∗ o ther s t u f f ∗/

d i r i ch l e t bound dow (NULL, uh , bound , d i r i c h l e t b i t s , g) ;
FOREACHDOFDOW(fh−>f e space ,

i f (bound−>vec [dof] >= DIRICHLET) {
fh−>vec [dof] = 0 . 0 ;

} ,
i f (bound−>vec [dof] >= DIRICHLET) {
SETDOW(0 . 0 , ((DOF REAL D VEC ∗) fh)−>vec [dof]) ;

} ,
fh = CHAIN NEXT(fh , DOF REAL VEC D) ;
bound = CHAIN NEXT(bound , DOF SCHAR VEC)) ;

. . . /∗ o ther s t u f f ∗/

oem solve dow (matrix , bound , fh , uh , . . . /∗ o ther parameters ∗/) ;

4.7.7.2 Neumann boundary conditions

For the implementation of inhomogeneous Neumann boundary conditions it is necessary to
compute L2 scalar products between the inhomogeneity and the basis functions on the Neu-
mann boundary segments. The following functions compute the L2 scalar product over the
boundary of the domain. They return true if not all boundary segments of the mesh belong
to the segment specified by bndry seg. If bndry seg == NULL then the scalar product is com-
puted over the entire boundary (i.e. over all walls without neighbour). Besides computing the
L2-scalar product over boundary segments there are also functions to compute the L2-scalar-
product over trace meshes (or “sub-meshes”, see Section 3.9). For the calling conventions
for the application provided function pointers the reader is referred to Section 4.5, and the
relevant part of the discussion of dirichlet bound loc() in Section 4.7.7.1.

All function work additive, the contributions of the per-element integrals are added to any
data already present in fh.

Prototypes

bool bnd ry L2 s cp f c t ba s l o c (DOF REAL VEC ∗ fh ,
LOC FCT AT QP f at qp , void ∗ud , FLAGS

f i l l f l a g ,
const BNDRY FLAGS bndry seg ,
const WALLQUAD ∗quad) ;

bool bndry L2scp f c t bas l o c dow (DOF REAL VEC D ∗ fh , LOC FCT D AT QP f at qp ,
void ∗ud , FLAGS f i l l f l a g ,
const BNDRY FLAGS bndry seg ,
const WALLQUAD ∗quad) ;

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 299

bool bndry L2scp fct bas dow (DOF REAL VEC D ∗ fh ,
const REAL ∗(∗ f) (const REAL D x ,

const REAL D normal ,
REAL D r e s u l t) ,

const BNDRY FLAGS bndry seg ,
const WALLQUAD ∗quad) ;

bool bndry L2scp f c t bas (DOF REAL VEC ∗ fh ,
REAL (∗ f) (const REAL D x , const REAL D normal) ,
const BNDRY FLAGS bndry seg , const WALLQUAD ∗quad) ;

void t r a c e L2 s c p f c t b a s (DOF REAL VEC ∗ fh , FCT AT X f ,
MESH ∗ trace mesh , const QUAD ∗quad) ;

void t r a c e L 2 s c p f c t b a s l o c (DOF REAL VEC ∗ fh ,
LOC FCT AT QP f , void ∗ fd , FLAGS f i l l f l a g ,
MESH ∗ trace mesh ,
const QUAD ∗quad) ;

void t r a c e L2 s cp f c t ba s dow (DOF REAL VEC D ∗ fh , FCT D AT X f ,
MESH ∗ trace mesh ,
const QUAD ∗quad) ;

void t r a c e L2 s cp f c t ba s l o c dow (DOF REAL VEC D ∗ fh ,
LOC FCT D AT QP f , void ∗ fd , FLAGS

f i l l f l a g ,
MESH ∗ trace mesh ,
const QUAD ∗quad) ;

Descriptions

bndry L2scp fct bas()

Parameters

fh The load-vector to add the boundary integrals to.

f Application supplied “right hand side”.

ud Data pointer for f for the ... loc()-variants.

fill flags Additional fill-flags needed by f for the ... loc()-variants.

bndry seg A bit-mask specifying the part of the boundary which is the domain of inte-
gration. See Section 3.2.4.

quad Optional application supplied quadrature rule. Maybe NULL, in which case a default
quadrature rule is used. See Section 4.2.4 for how to obtain such a structure, function
get wall quad().

Return Value

true if part of the boundary did not belong to the domain of integration.

trace L2scp fct bas()

Parameters

fh The load-vector.

f The user-supplied inhomogeneity.

fd The application data pointer passed on to f for the ... loc()-variants.

fill flags Additional fill-flags for the ... loc()-variants.

300 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

trace mesh The domain of integration.

quad A user supplied quadrature rule. May be NULL in which case a default quadra-
ture rule will be used. The quadrature rule must have the dimension of trace mesh,
naturally.

Return Value

4.7.7.3 Robin boundary conditions

void robin bound (DOFMATRIX ∗matrix , const BNDRY FLAGS rob in seg ,
REAL alpha r , const WALLQUAD ∗wall quad ,
REAL exponent) ;

Description: Incorporate so-called “Robin boundary” conditions into the matrix, i.e. a bound-
ary condition of the form

∂u

∂ν
(x) + α(x)u(x) = g(x) on ∂Ω.

In the context of weak formulations for elliptic second-order PDEs, this results into two
boundary integrals, one has to be added to the linear form on the “right hand side”, and the
other one is a contribution to bilinear-form on the “left hand side”, namely∫

∂Ω
αuφdo and

∫
∂Ω
g φ do

The contribution to the right hand side can be assembled using one of the
bndry L2scp fct bas()-variants, the contribution the left hand side should be added to the
system matrix. robin bound() implements this for the case where α is actually just a constant
coefficient.

robin bound(matrix, robin seg, alpha r, wall quad, exponent)

Parameters

matrix The system matrix, the contributions from the Robin boundary condition
are added to matrix.

robin segment A boundary bit-mask, marking all boundary segments which
are subject to the Robin boundary condition. The position of the bits set in
robin segment correspond to the boundary numbers assigned to the mesh bound-
ary in the macro triangulation, compare Section 3.2.15 and Section 3.2.4.

alpha r The constant coefficient from the Robin boundary condition.

wall quad Optional. A collection of co-dimension 1 quadrature formulas for do-
ing the integration. If wall quad == NULL, then robin bound() chooses a de-
fault quadrature formula, based on the polynomial degree of the underlying basis-
functions.

exponent If exponent > 0.0, then the boundary integral will be weighted by the
factor h(T)−exponent, where h(T) denotes the local mesh-width.

4.7. TOOLS FOR THE ASSEMBLAGE OF LINEAR SYSTEMS 301

4.7.8 Interpolation into finite element spaces

In time dependent problems, usually the “solve” step in the adaptive method for the adapta-
tion of the initial grid is an interpolation of initial data to the finite element space, i.e. a DOF
vector is filled with the coefficient of the interpolant. The following functions are implemented
for this task:

void i n t e r p o l (FCT AT X f , DOF REAL VEC ∗ fh) ;
void i n t e r p o l d (const REAL ∗(∗ f) (const REAL D, REAL D) , DOF REAL D VEC ∗ fh) ;
void i n t e rpo l dow (FCT D AT X f , DOF REAL VEC D ∗ fh) ;
void i n t e r p o l l o c (DOF REAL VEC ∗ fh ,

LOC FCT AT QP f , void ∗ f data , FLAGS f i l l f l a g s) ;
void i n t e r p o l l o c d (DOF REAL D VEC ∗ fh ,

LOC FCT D AT QP f , void ∗ f data , FLAGS f i l l f l a g s) ;
void i n t e r po l l o c dow (DOF REAL VEC D ∗ fh ,

LOC FCT D AT QP f , void ∗ f data , FLAGS f i l l f l a g s) ;

Description:

interpol(f, fh) computes the coefficients of the interpolant of a function and stores
these in a DOF vector;

Interpolation is done element–wise on the leaf elements of fh->fe space->mesh; the el-
ement interpolation is done by the function fh->fe space->bas fcts->interpol(); the
fill flag of the mesh traversal is CALL LEAF EL|FILL COORDS and the function f must fit
to the needs of fh->fe space->bas fcts->interpol(); for Lagrange elements, (*f)() is
evaluated for all Lagrange nodes on the element and has to return the value at these nodes
(compare Section 3.5.1).

Parameters

f is a pointer to a function for the evaluation of the function to be interpolated; if
f is a NULL pointer, all coefficients are set to 0.0.

fh is a DOF vector for storing the coefficients; if fh is a NULL pointer, nothing is
done.

interpol d(fd, fhd) computes the coefficients of the interpolant of a vector valued func-
tion and stores these in a DOF vector. This version is for the case where the underly-
ing basis-functions are themselves scalars, consequently the coefficient vector fh has the
type DOF REAL D VEC. Otherwise this function differs from the scalar counter-part only in
the calling convention for the application supplied function f, which is the same as for
dirichlet bound d(), see also Example 4.5.5

interpol dow(fct, uh) same as interpol d(), but for the case where the underlying
basis function are either scalar- or DIM OF WORLD-valued and the finite-element space may
optionally be a direct sum of finite element spaces.

interpol loc(vec, fct at qp, app data, fill flags)

interpol loc d(vec, fct at qp, app data, fill flags)

interpol loc dow(vec, fct at qp, app data, fill flags) The ... loc...-
variants differ from the other interpol()-flavours only in the calling convention for the
application supplied function and the additional fill flags argument. This has already
be explained above, see also Example 4.7.5.

302 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

4.8 Data structures and procedures for adaptive methods

4.8.1 ALBERTA adaptive method for stationary problems

The basic data structure ADAPT STAT for stationary adaptive methods contains pointers to
problem dependent routines to build the linear or nonlinear system(s) of equations on an
adapted mesh, and to a routine which solves the discrete problem and computes the new
discrete solution(s). For flexibility and efficiency reasons, building and solution of the sys-
tem(s) may be split into several parts, which are called at various stages of the mesh adaption
process.

ADAPT STAT also holds parameters used for the adaptive procedure. Some of the parameters
are optional or used only when a special marking strategy is selected.

typedef struct adapt_stat ADAPT_STAT;

struct adapt_stat

{

const char *name;

REAL tolerance;

REAL p; /* power in estimator norm */

int max_iteration;

int info;

REAL (*estimate)(MESH *mesh, ADAPT_STAT *adapt);

REAL (*get_el_est)(EL *el); /* local error indicator */

REAL (*get_el_estc)(EL *el); /* local coarsening error */

U_CHAR (*marking)(MESH *mesh, ADAPT_STAT *adapt);

void *est_info; /* estimator parameters */

REAL err_sum, err_max; /* sum and max of el_est */

void (*build_before_refine)(MESH *mesh, U_CHAR flag);

void (*build_before_coarsen)(MESH *mesh, U_CHAR flag);

void (*build_after_coarsen)(MESH *mesh, U_CHAR flag);

void (*solve)(MESH *mesh);

int refine_bisections;

int coarsen_allowed; /* 0 : 1 */

int coarse_bisections;

int strategy; /* 1=GR, 2=MS, 3=ES, 4=GERS */

REAL MS_gamma, MS_gamma_c; /* maximum strategy */

REAL ES_theta, ES_theta_c; /* equidistribution strategy */

REAL GERS_theta_star, GERS_nu, GERS_theta_c; /* GERS strategy */

};

The entries yield following information:

name textual description of the adaptive method, or NULL.

tolerance given tolerance for the (absolute or relative) error.

p power p used in estimate (1.23), 1 ≤ p <∞.

max iteration maximal allowed number of iterations of the adaptive procedure; if
max iteration <= 0, no iteration bound is used.

4.8. DATA STRUCTURES AND PROCEDURES FOR ADAPTIVE METHODS 303

info level of information printed during the adaptive procedure; if info >= 2, the iteration
count and final error estimate are printed; if info >= 4, then information is printed after
each iteration of the adaptive procedure; if info >= 6, additional information about the
CPU time used for mesh adaption and building the linear systems is printed.

estimate pointer to a problem dependent function for computing the global error estimate
and the local error indicators; must not be NULL;

estimate(mesh, adapt) computes the error estimate and fills the entries adapt->err sum

and adapt->err max with

adapt->err sum =
(∑
S∈Sh

ηS(uh)p
)1/p

, adapt->err max = max
S∈Sh

ηS(uh)p.

The return value is the total error estimate adapt->err sum. User data, like additional
parameters for estimate(), can be passed via the est info entry of the ADAPT STAT struc-
ture to a (problem dependent) parameter structure. Usually, estimate() stores the local
error indicator(s) ηS(uh)p (and coarsening error indicator(s) ηc,S(uh)p) in LEAF DATA(el).

For sample implementations of error estimators for quasi-linear elliptic and parabolic prob-
lems, see Section 4.9.

get el est pointer to a problem dependent subroutine returning the value of the local
error indicator; must not be NULL if via the entry strategy adaptive refinement is selected
and the specialized marking routine marking is NULL;

get el est(el) returns the value ηS(uh)p, of the local error indicator on leaf element el;
usually, local error indicators are computed by estimate() and stored in LEAF DATA(el),
which is problem dependent and thus not directly accessible by general–purpose routines.
get el est() is needed by the ALBERTA marking strategies.

get el estc pointer to a function which returns the local coarsening error indicator;

get el estc(el) returns the value ηc,S(uh)p of the local coarsening error indicator on leaf
element el, usually computed by estimate() and stored in LEAF DATA(el); if not NULL,
get el estc() is called by the ALBERTA marking routines; this pointer may be NULL,
which means ηc,S(uh) = 0.

marking specialized marking strategy; if NULL, a standard ALBERTA marking routine is
selected via the entry strategy;

marking(mesh, adapt) selects and marks elements for refinement or coarsening; the re-
turn value is

0 no element is marked;

MESH REFINED elements are marked but only for refinement;

MESH COARSENED elements are marked but only for coarsening;

MESH REFINED|MESH COARSENED elements are marked for refinement and coarsening.

est info pointer to (problem dependent) parameters for the estimate() routine; via this
pointer the user can pass information to the estimate routine; this pointer may be NULL.

err sum variable to hold the sum of local error indicators (
∑

S∈S ηS(uh)p)1/p; the value for
this entry must be set by the function estimate().

err max variable to hold the maximal local error indicators maxS∈S ηS(uh)p; the value for
this entry must be set by the function estimate().

304 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

build before refine pointer to a subroutine that builds parts of the (non-)linear sys-
tem(s) before any mesh adaptation; if it is NULL, this assemblage stage omitted;

build before refine(mesh, flag) launches the assembling of the assembling of the dis-
crete system on mesh; flag gives information which part of the system has to be built; the
mesh will be refined if the MESH REFINED bit is set in flag and it will be coarsened if the
bit MESH COARSENED is set in flag.

build before coarsen pointer to a subroutine that builds parts of the (non-)linear sys-
tem(s) between the refinement and coarsening; if it is NULL, this assemblage stage omitted;

build before coarsen(mesh, flag) performs an intermediate assembling step on mesh

(compare Section 1.4.4 for an example when such a step is needed); flag gives information
which part of the system has to be built; the mesh was refined if the MESH REFINED bit is
set in flag and it will be coarsened if the bit MESH COARSENED is set in flag.

build after coarsen pointer to a subroutine that builds parts of the (non-)linear sys-
tem(s) after all mesh adaptation; if it is NULL, this assemblage stage omitted;

build before coarsen(mesh, flag) performs the final assembling step on mesh; flag
gives information which part of the system has to be built; the mesh was refined if the
MESH REFINED bit is set in flag and it was coarsened if the bit MESH COARSENED is set in
flag.

solve pointer to a subroutine for solving the discrete (non-)linear system(s); if it is NULL,
the solution step is omitted;

solve(mesh) computes the new discrete solution(s) on mesh.

refine bisections number of bisection steps for the refinement of an element marked
for refinement; used by the ALBERTA marking strategies; default value is d.

coarsen allowed flag used by the ALBERTA marking strategies to allow (true) or forbid
(false) mesh coarsening;

coarse bisections number of bisection steps for the coarsening of an element marked
for coarsening; used by the ALBERTA marking strategies; default value is d.

strategy parameter to select an ALBERTA marking routine; possible values are:

0 no mesh adaption,

1 global refinement (GR),

2 maximum strategy (MS),

3 equidistribution strategy (ES),

4 guaranteed error reduction strategy (GERS),

see Section 4.8.2.

MS gamma, MS gamma c parameters for the marking maximum strategy, see Sections 1.5.2
and 1.5.3.

ES theta, ES theta c parameters for the marking equidistribution strategy, see Sections
1.5.2 and 1.5.3.

GERS theta star, GERS nu, GERS theta c parameters for the marking guaranteed error
reduction strategy, see Sections 1.5.2 and 1.5.3.

The routine adapt method stat() implements the whole adaptive procedure for a sta-
tionary problem, using the parameters given in ADAPT STAT:

void adapt_method_stat(MESH *, ADAPT_STAT *);

4.8. DATA STRUCTURES AND PROCEDURES FOR ADAPTIVE METHODS 305

Description:

adapt method stat(mesh, adapt stat) solves adaptively a stationary problem on mesh

by the adaptive procedure described in Section 1.5.1; adapt stat is a pointer to a filled
ADAPT STAT data structure, holding all information about the problem to be solved and
parameters for the adaptive method.

The main loop of the adaptive method is given in the following source fragment:

void adapt_method_stat(MESH *mesh, ADAPT_STAT *adapt)

{

int iter;

REAL est;

...

/* get solution on initial mesh */

if (adapt->build_before_refine) adapt->build_before_refine(mesh, 0);

if (adapt->build_before_coarsen) adapt->build_before_coarsen(mesh, 0);

if (adapt->build_after_coarsen) adapt->build_after_coarsen(mesh, 0);

if (adapt->solve) adapt->solve(mesh);

est = adapt->estimate(mesh, adapt);

for (iter = 0;

(est > adapt->tolerance) &&

((adapt->max_iteration <= 0) || (iter < adapt->max_iteration));

iter++)

{

if (adapt_mesh(mesh, adapt))

{

if (adapt->solve) adapt->solve(mesh);

est = adapt->estimate(mesh, adapt);

}

...

}

}

The actual mesh adaption is done in a subroutine adapt mesh(), which combines marking,
refinement, coarsening and the linear system building routines:

static U_CHAR adapt_mesh(MESH *mesh, ADAPT_STAT *adapt)

{

U_CHAR flag = 0;

U_CHAR mark_flag;

...

if (adapt->marking)

mark_flag = adapt->marking(mesh, adapt);

else

mark_flag = marking(mesh, adapt); /* use standard marking() */

if (!adapt->coarsen_allowed)

mark_flag &= MESH_REFINED; /* use refine mark only */

306 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

if (adapt->build_before_refine) adapt->build_before_refine(mesh, mark_flag);

if (mark_flag & MESH_REFINED) flag = refine(mesh);

if (adapt->build_before_coarsen) adapt->build_before_coarsen(mesh, mark_flag);

if (mark_flag & MESH_COARSENED) flag |= coarsen(mesh);

if (adapt->build_after_coarsen) adapt->build_after_coarsen(mesh, flag);

...

return(flag);

}

4.8.1 Remark. As the same procedure is used for time dependent problems in single time
steps, different pointers to routines for building parts of the (non-)linear systems make it
possible, for example, to assemble the right hand side including a functional involving the
solution from the old time step before coarsening the mesh, and then using the DOF VEC

restriction during coarsening to compute exactly the projection to the coarsened finite element
space, without losing any information, compare Section 1.4.4.

4.8.2 Remark. For time dependent problems, the system matrices usually depend on the
current time step size. Thus, matrices may have to be rebuilt even if meshes are not changed,
but when the time step size was changed. Such changes can be detected in the set_time()

routine, for example.

4.8.2 Standard ALBERTA marking routine

When the marking procedure pointer in the ADAPT STAT structure is NULL, then the standard
ALBERTA marking routine is called. The strategy entry, allows the selection of one of five
different marking strategies (compare Sections 1.5.2 and 1.5.3). Elements are only marked
for coarsening and coarsening parameters are only used if the entry coarsen allowed is
true. The number of bisection steps for refinement and coarsening is selected by the entries
refine bisections and coarse bisections.

strategy=0: no refinement or coarsening is performed;

strategy=1: Global Refinement (GR):
the mesh is refined globally, no coarsening is performed;

strategy=2: Maximum Strategy (MS):
the entries MS gamma, MS gamma c are used as refinement and coarsening parameters;

strategy=3: Equidistribution strategy (ES):
the entries ES theta, ES theta c are used as refinement and coarsening parameters;

strategy=4: Guaranteed error reduction strategy (GERS):
the entries GERS theta star, GERS nu, and GERS theta c are used as refinement and
coarsening parameters.

4.8. DATA STRUCTURES AND PROCEDURES FOR ADAPTIVE METHODS 307

4.8.3 Remark. As get el est() and get el estc() return the p–th power of the local
estimates, all algorithms are implemented to use the values ηpS instead of ηS . This results
in a small change to the coarsening tolerances for the equidistribution strategy described in
Section 1.5.3. The implemented equidistribution strategy uses the inequality

ηpS + ηpc,S ≤ c
p tolp/Nk

instead of
ηS + ηc,S ≤ c tol/N

1/p
k .

4.8.3 ALBERTA adaptive method for time dependent problems

Similar to the data structure ADAPT STAT for collecting information about the adaptive solu-
tion for a stationary problem, the data structure ADAPT INSTAT is used for gather all informa-
tion needed for the time and space adaptive solution of instationary problems. Using a time
stepping scheme, in each time step a stationary problem is solved; the adaptive method for this
is based on the adapt method stat() routine described in Section 4.8.1, the ADAPT INSTAT

structure includes two ADAPT STAT parameter structures. Additional entries give information
about the time adaptive procedure.

typedef struct adapt_instat ADAPT_INSTAT;

struct adapt_instat

{

const char *name;

ADAPT_STAT adapt_initial[1];

ADAPT_STAT adapt_space[1];

REAL time;

REAL start_time, end_time;

REAL timestep;

void (*init_timestep)(MESH *, ADAPT_INSTAT *);

void (*set_time)(MESH *, ADAPT_INSTAT *);

void (*one_timestep)(MESH *, ADAPT_INSTAT *);

REAL (*get_time_est)(MESH *, ADAPT_INSTAT *);

void (*close_timestep)(MESH *, ADAPT_INSTAT *);

int strategy;

int max_iteration;

REAL tolerance;

REAL rel_initial_error;

REAL rel_space_error;

REAL rel_time_error;

REAL time_theta_1;

REAL time_theta_2;

REAL time_delta_1;

REAL time_delta_2;

int info;

};

308 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

The entries yield following information:

name textual description of the adaptive method, or NULL.

adapt initial mesh adaption parameters for the initial mesh, compare Section 4.8.1.

adapt space mesh adaption parameters during time steps, compare Section 4.8.1.

time actual time, end of time interval for current time step.

start time initial time for the adaptive simulation.

end time final time for the adaptive simulation.

timestep current time step size, will be changed by the time adaptive method.

init timestep pointer to a routine called at beginning of each time step; if NULL, initial-
ization of a new time step is omitted;

init timestep(mesh, adapt) initializes a new time step;

set time pointer to a routine called after changes of the time step size if not NULL;

set time(mesh, adapt) is called by the adaptive method each time when the actual time
adapt->time has changed, i. e. at a new time step and after a change of the time step
size adapt->timestep; information about actual time and time step size is available via
adapt.

one timestep pointer to a routine which implements one (adaptive) time step, if NULL, a
default routine is called;

one timestep(mesh, adapt) implements the (adaptive) solution of the problem in one
single time step; information about the stationary problem of the time step is available in
the adapt->adapt space data structure.

get time est pointer to a routine returning an estimate for the time error; if NULL, no
time step adaptation is done;

get time est(mesh, adapt) returns an estimate ητ for the current time error at time
adapt->time on mesh.

close timestep pointer to a routine called after finishing a time step, may be NULL.

close timestep(mesh, adapt) is called after accepting the solution(s) of the discrete
problem on mesh at time adapt->time by the time–space adaptive method; can be used
for visualization and export to file for post–processing of the mesh and discrete solution(s).

strategy parameter for the default ALBERTAone timestep routine; possible values are:

0 explicit strategy,

1 implicit strategy.

max iteration parameter for the default one timestep routine; maximal number of time
step size adaptation steps, only used by the implicit strategy.

tolerance given total error tolerance tol .

rel initial error portion Γ0 of tolerance allowed for initial error, compare Section 1.5.4;

rel space error portion Γh of tolerance allowed for error from spatial discretization in
each time step, compare Section 1.5.4.

rel time error portion Γτ of tolerance allowed for error from time discretization in each
time step, compare Section 1.5.4.

time theta 1 safety parameter θ1 for the time adaptive method in the default AL-
BERTAone timestep() routine; the tolerance for the time estimate ητ is θ1 Γτ tol , compare
Algorithm 1.5.8.

4.8. DATA STRUCTURES AND PROCEDURES FOR ADAPTIVE METHODS 309

time theta 2 safety parameter θ2 for the time adaptive method in the default AL-
BERTAone timestep() routine; enlargement of the time step size is only allowed for
ητ ≤ θ2 Γτ tol , compare Algorithm 1.5.8.

time delta 1 factor δ1 used for the reduction of the time step size in the default AL-
BERTAone timestep() routine, compare Algorithm 1.5.8.

time delta 2 factor δ2 used for the enlargement of the time step size in the default AL-
BERTAone timestep() routine, compare Algorithm 1.5.8.

info level of information produced by the time–space adaptive procedure.

Using information given in the ADAPT INSTAT data structure, the space and time adaptive
procedure is performed by:

void adapt_method_instat(MESH *, ADAPT_INSTAT *);

Description:

adapt method instat(mesh, adapt instat) solves an instationary problem on mesh by
the space–time adaptive procedure described in Section 1.5.4; adapt instat is a pointer
to a filled ADAPT INSTAT data structure, holding all information about the problem to be
solved and parameters for the adaptive method.

Implementation of the routine is very simple. All essential work is done by calling
adapt method stat() for the generation of the initial mesh, based on parameters given in
adapt->adapt initial with tolerance adapt->tolerance*adapt->rel space error, and in
one timestep() which solves the discrete problem and does mesh adaption and time step
adjustment for one single time step.

void adapt_method_instat(MESH *mesh, ADAPT_INSTAT *adapt)

{

/*--*/

/* adaptation of the initial grid: done by adapt_method_stat() */

/*--*/

adapt->time = adapt->start_time;

if (adapt->set_time) adapt->set_time(mesh, adapt);

adapt->adapt_initial->tolerance

= adapt->tolerance * adapt->rel_initial_error;

adapt->adapt_space->tolerance

= adapt->tolerance * adapt->rel_space_error;

adapt_method_stat(mesh, adapt->adapt_initial);

if (adapt->close_timestep)

adapt->close_timestep(mesh, adapt);

/*--*/

/* adaptation of timestepsize and mesh: done by one_timestep() */

/*--*/

while (adapt->time < adapt->end_time)

{

if (adapt->init_timestep)

310 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

adapt->init_timestep(mesh, adapt);

if (adapt->one_timestep)

adapt->one_timestep(mesh, adapt);

else

one_timestep(mesh, adapt);

if (adapt->close_timestep)

adapt->close_timestep(mesh, adapt);

}

}

4.8.3.1 The default ALBERTAone timestep() routine

The default one timestep() routine provided by ALBERTA implements both the explicit
strategy and the implicit time strategy A. The semi–implicit strategy described in Section
1.5.4 is only a special case of the implicit strategy with a limited number of iterations (exactly
one).

The routine uses the parameter adapt->strategy to select the strategy:

strategy 0: Explicit strategy, strategy 1: Implicit strategy.

Explicit strategy. The explicit strategy does one adaption of the mesh based on the error
estimate computed from the last time step’s discrete solution by using parameters given in
adapt->adapt space, with tolerance set to adapt->tolerance*adapt->rel space error.
Then the current time step’s discrete problem is solved, and the error estimators are computed.
No time step size adjustment is done.

Implicit strategy. The implicit strategy starts with the old mesh from last time step.
Using parameters given in adapt->adapt space, the discrete problem is solved on the current
mesh. Error estimates are computed, and time step size and mesh are adjusted, as shown in
Algorithm 1.5.9, with tolerances given by adapt->tolerance*adapt->rel time error and
adapt->tolerance*adapt->rel space error, respectively. This is iterated until the given
error bounds are reached, or until adapt->max iteration is reached.

With parameter adapt->max iteration==0, this is equivalent to the semi–implicit strat-
egy described in Section 1.5.4.

4.8.4 Initialization of data structures for adaptive methods

ALBERTA provides functions for the initialization of the data structures ADAPT STAT and
ADAPT INSTAT. Both functions do not fill any function pointer entry in the structures! These
function pointers have to be adjusted in the application.

ADAPT_STAT *get_adapt_stat(const int, const char *, const char *,

int, ADAPT_STAT *);

ADAPT_INSTAT *get_adapt_instat(const int, const char *, const char *,

int, ADAPT_INSTAT *);

Description:

4.8. DATA STRUCTURES AND PROCEDURES FOR ADAPTIVE METHODS 311

member default parameter key

tolerance 1.0 prefix->tolerance

p 2 prefix->p

max iteration 30 prefix->max iteration

info 2 prefix->info

refine bisections d prefix->refine bisections

coarsen allowed 0 prefix->coarsen allowed

coarse bisections d prefix->coarse bisections

strategy 1 prefix->strategy

MS gamma 0.5 prefix->MS gamma

MS gamma c 0.1 prefix->MS gamma c

ES theta 0.9 prefix->ES theta

ES theta c 0.2 prefix->ES theta c

GERS theta star 0.6 prefix->GERS theta star

GERS nu 0.1 prefix->GERS nu

GERS theta c 0.1 prefix->GERS theta c

Table 4.3: Initialized members of an ADAPT STAT structure, the default values and the key for
the initialization by GET PARAMETER().

get adapt stat(dim, name, prefix, info, adapt) returns a pointer to a partly ini-
tialized ADAPT STAT structure; if the argument adapt is NULL, a new structure is created,
the name name is duplicated at the name entry of the structure, if name is not NULL; if
name is NULL, and prefix is not NULL, this string is duplicated at the name entry; dim is
the mesh dimension d; for a newly created structure, all function pointers of the structure
are initialized with NULL; all other members are initialized with some default value; if the
argument adapt is not NULL, this initialization part is skipped, the name and function
pointers are not changed;

if prefix is not NULL, get adapt stat() tries then to initialize members by a call of
GET PARAMETER(), where the key for each member is value(prefix)->member name; the
argument info is the first argument of GET PARAMETER() giving the level of information
for the initialization;

only the parameters for the actually chosen strategy are initialized using the function
GET PARAMETER(): for strategy == 2 only MS gamma and MS gamma c, for strategy == 3

only ES theta and ES theta c, and for strategy == 4 only GERS theta star, GERS nu,
and GERS theta c;

since the parameter tools are used for the initialization, get adapt stat() should be called
after the initialization of all parameters; there may be no initializer in the parameter file(s)
for some member, if the default value should be used; if info is not zero and there is no
initializer for some member this will result in an error message by GET PARAMETER() which
can be ignored;

Table 4.3 shows the initialized members, the default values and the key used for the
initialization by GET PARAMETER();

get adapt instat(dim, name, prefix, info, adapt) returns a pointer to a partly
initialized ADAPT INSTAT structure; if the argument adapt is NULL, a new structure is
created, the name name is duplicated at the name entry of the structure, if name is not

312 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

member default parameter key

start time 0.0 prefix->start time

end time 1.0 prefix->end time

timestep 0.01 prefix->timestep

strategy 0 prefix->strategy

max iteration 0 prefix->max iteration

tolerance 1.0 prefix->tolerance

rel initial error 0.1 prefix->rel initial error

rel space error 0.4 prefix->rel space error

rel time error 0.4 prefix->rel time error

time theta 1 1.0 prefix->time theta 1

time theta 2 0.3 prefix->time theta 2

time delta 1 0.7071 prefix->time delta 1

time delta 2 1.4142 prefix->time delta 2

info 8 prefix->info

Table 4.4: Initialization of the main parameters in an ADAPT INSTAT structure for the time-
adaptive strategy; initialized members, the default values and keys used for the initialization
by GET PARAMETER().

NULL; if name is NULL, and prefix is not NULL, this string is duplicated at the name entry;
dim is the mesh dimension d; for a newly created structure, all function pointers of the
structure are initialized with NULL; all other members are initialized with some default
value; if the argument adapt is not NULL, this default initialization part is skipped;

if prefix is not NULL, get adapt instat() tries then to initialize members by a call of
GET PARAMETER(), where the key for each member is value(prefix)->member name; the
argument info is the first argument of GET PARAMETER() giving the level of information
for the initialization;

Tables 4.4–4.6 shows the initialized members, the default values and the key used for the
initialization by GET PARAMETER(). The tolerances in the sub-structures adapt initial

and adapt space are set to the values adapt->tolerance*adapt->rel initial error

and adapt->tolerance*adapt->rel space error, respectively. A special initialization is
done for the info parameters: when adapt initial->info or adapt space->info are
negative, then they are set to adapt->info-2.

4.9 Implementation of error estimators

4.9.1 Error estimator for elliptic problems

ALBERTA provides a residual type error estimator for non–linear elliptic problems of the type

−∇ ·A∇u(x) + f
(
x, u(x),∇u(x)

)
= 0 x ∈ Ω,

u(x) = gd x ∈ ΓD,

ν ·A∇u(x) = gn x ∈ ΓN ,

4.9. IMPLEMENTATION OF ERROR ESTIMATORS 313

member default parameter key

adapt initial->tolerance – –
adapt initial->p 2 prefix->initial->p

adapt initial->max iteration 30 prefix->initial->max iteration

adapt initial->info 2 prefix->initial->info

adapt initial->refine bisections d prefix->initial->refine bisections

adapt initial->coarsen allowed 0 prefix->initial->coarsen allowed

adapt initial->coarse bisections d prefix->initial->coarse bisections

adapt initial->strategy 1 prefix->initial->strategy

adapt initial->MS gamma 0.5 prefix->initial->MS gamma

adapt initial->MS gamma c 0.1 prefix->initial->MS gamma c

adapt initial->ES theta 0.9 prefix->initial->ES theta

adapt initial->ES theta c 0.2 prefix->initial->ES theta c

adapt initial->GERS theta star 0.6 prefix->initial->GERS theta star

adapt initial->GERS nu 0.1 prefix->initial->GERS nu

adapt initial->GERS theta c 0.1 prefix->initial->GERS theta c

Table 4.5: Initialization of the adapt initial sub-structure of an ADAPT INSTAT structure for
the adaptation of the initial grid; initialized members, the default values and keys used for
the initialization by GET PARAMETER().

member default parameter key

adapt space->tolerance – –
adapt space->p 2 prefix->space->p

adapt space->max iteration 30 prefix->space->max iteration

adapt space->info 2 prefix->space->info

adapt space->refine bisections d prefix->space->refine bisections

adapt space->coarsen allowed 1 prefix->space->coarsen allowed

adapt space->coarse bisections d prefix->space->coarse bisections

adapt space->strategy 1 prefix->space->strategy

adapt space->MS gamma 0.5 prefix->space->MS gamma

adapt space->MS gamma c 0.1 prefix->space->MS gamma c

adapt space->ES theta 0.9 prefix->space->ES theta

adapt space->ES theta c 0.2 prefix->space->ES theta c

adapt space->GERS theta star 0.6 prefix->space->GERS theta star

adapt space->GERS nu 0.1 prefix->space->GERS nu

adapt space->GERS theta c 0.1 prefix->space->GERS theta c

Table 4.6: Initialization of the adapt space sub-structure of an ADAPT INSTAT structure for
the adaptation of the grids during time-stepping; initialized members, the default values and
keys used for the initialization by GET PARAMETER().

where A ∈ Rn×n is a positive definite matrix and ∂Ω = ΓD ∪ ΓN . ALBERTA implements for
this kind of equations the L2 and H1 per-element estimators ηS,0 and ηS,1 (S ∈ S)

η2
S,0 := C2

0 h
4
S ‖ − ∇ ·A∇uh + f(., uh,∇uh)‖2L2(S)

+ C2
1

∑
Γ⊂∂S∩Ω

h3
S ‖ [[A∇uh]] ‖2L2(Γ) + C2

1

∑
Γ⊂∂S∩ΓN

h3
S ‖ν ·A∇uh − gn‖2L2(Γ),

η2
S,1 := C2

0 h
2
S ‖ − ∇ ·A∇uh + f(., uh,∇uh)‖2L2(S)

+ C2
1

∑
Γ⊂∂S∩Ω

hS ‖ [[A∇uh]] ‖2L2(Γ) + C2
1

∑
Γ⊂∂S∩ΓN

hS ‖ν ·A∇uh − gn‖2L2(Γ),

314 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

where [[.]] denotes the jump of the normal component across an interior co-dimension 1 sub-
simplex (vertex/edge/face) Γ ⊂ ∂S.

Verfürth proved for gd ≡ 0 and gn ≡ 0 in [27] – under suitable assumptions on f , u and
uh in the non-linear case – the estimate

‖u− uh‖2H1(Ω) ≤
∑
S∈S

η2
S,1,

and Bänsch and Siebert [2] proved a similar the L2-estimate for the semi–linear case f =
f(x, u) and gd ≡ 0 and ΓN = ∅:

‖u− uh‖2L2(Ω) ≤
∑
S∈S

η2
S,0.

The following functions implement above estimators for scalar and vector-valued functions;
the implementation works also for meshes with non-zero co-dimension as well as for periodic
meshes.

REAL ellipt_est(const DOF_REAL_VEC *uh, ADAPT_STAT *adapt,

REAL *(*rw_est)(EL *), REAL *(*rw_estc)(EL *),

int quad_deg,

NORM norm, REAL C[3], const REAL_DD A,

const BNDRY_FLAGS dirichlet_bndry,

REAL (*f)(const EL_INFO *el_info,

const QUAD *quad, int qp,

REAL uh_qp, const REAL_D grd_uh_gp),

FLAGS f_flags,

REAL (*gn)(const EL_INFO *el_info,

const QUAD *quad, int qp,

REAL uh_qp, const REAL_D normal),

FLAGS gn_flags);

REAL ellipt_est_dow(const DOF_REAL_VEC_D *uh, ADAPT_STAT *adapt,

REAL *(*rw_est)(EL *), REAL *(*rw_estc)(EL *),

int quad_deg,

NORM norm, REAL C[3],

const void *A, MATENT_TYPE A_type, MATENT_TYPE A_blocktype,

bool sym_grad,

const BNDRY_FLAGS dirichlet_bndry,

const REAL *(*f)(REAL_D result,

const EL_INFO *el_info,

const QUAD *quad, int qp,

const REAL_D uh_qp,

const REAL_DD grd_uh_gp),

FLAGS f_flags,

const REAL *(*gn)(REAL_D result,

const EL_INFO *el_info,

const QUAD *quad, int qp,

const REAL_D uh_qp,

const REAL_D normal),

FLAGS gn_flags);

REAL ellipt_est_d(const DOF_REAL_D_VEC *uh, ADAPT_STAT *adapt,

4.9. IMPLEMENTATION OF ERROR ESTIMATORS 315

REAL *(*rw_est)(EL *), REAL *(*rw_estc)(EL *),

int quad_deg,

NORM norm, REAL C[3],

const void *A, MATENT_TYPE A_type, MATENT_TYPE A_blocktype,

bool sym_grad,

const BNDRY_FLAGS dirichlet_bndry,

const REAL *(*f)(REAL_D result,

const EL_INFO *el_info,

const QUAD *quad, int qp,

const REAL_D uh_qp,

const REAL_DD grd_uh_gp),

FLAGS f_flags,

const REAL *(*gn)(REAL_D result,

const EL_INFO *el_info,

const QUAD *quad, int qp,

const REAL_D uh_qp,

const REAL_D normal),

FLAGS gn_flags);

Description:

ellipt est(uh, adapt, rw est, rw estc, quad deg, norm, C,

A, dirichlet bndry, f, f flags, gn, gn flags)

computes an error estimate of the above type for the H1 or L2 norm; the return value is
an approximation of the estimate ‖u− uh‖ by quadrature.

uh is a vector storing the coefficients of the discrete solution; if uh is a NULL pointer,
nothing is done, the return value is .0.

adapt is a pointer to an ADAPT STAT structure; if not NULL, the entries adapt->p=2,
err sum, and err max of adapt are set by ellipt est() (compare Section 4.8.1).

rw el est is a function for writing the local error indicator for a single element (usually
to some location inside leaf data, compare Section 3.2.10); if this function is NULL,
only the global estimate is computed, no local indicators are stored. rw el est(el)

returns for each leaf element el a pointer to a REAL for storing the square of the
element indicator, which can directly be used in the adaptive method, compare the
get el est() function pointer in the ADAPT STAT structure (compare Section 4.8.1).

rw el estc is a function for writing the local coarsening error indicator for a single ele-
ment (usually to some location inside leaf data, compare Section 3.2.10); if this func-
tion is NULL, no coarsening error indicators are computed and stored; rw el estc(el)

returns for each leaf element el a pointer to a REAL for storing the square of the element
coarsening error indicator.

quad deg is the degree of the quadrature that should be used for the approximation of
the norms on the elements and edges/faces; if degree is less than zero a quadrature
which is exact of degree 2*uh->fe space->bas fcts->degree is used.

norm can be either H1 NORM or L2 NORM (which are defined as symbolic constants in
alberta.h) to indicate that the H1 or L2 error estimate has to be calculated.

C[0], C[1], C[2] are the constants in front of the element residual, wall residual, and
coarsening term respectively. If C is NULL, then all constants are set to 1.0.

A is the constant matrix of the second order term.

316 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

dirichlet bndry A bit-mask marking those parts of the boundary which are subject
to Dirichlet boundary conditions, see Section 3.2.4.

f is a pointer to a function for the evaluation of the lower order terms at all quadrature
nodes, i.e. f(x(λ), u(λ),∇u(λ)) ; if f is a NULL pointer, f ≡ 0 is assumed;

f(el info, quad, qp, uh qp, grd uh qp) returns the value of the lower oder terms
on element el info->el at the quadrature node quad->lambda[qp], where uh qp is
the value and grd uh qp the gradient (with respect to the Cartesian coordinates) of the
discrete solution at that quadrature point. See also f flag below:

f flag specifies whether the function f() actually needs values of uh qp or grd uh qp,
f flag may be 0 or INIT UH or INIT GRD UH or their bitwise composition (|). The
arguments uh qp and grd uh qp of f() only hold valid information if the flags INIT UH

respectively INIT GRD UH are set.

gn(el info, quad, qp, uh qp, normal) is a pointer to a function for the evaluation
of non-homogeneous Neumann boundary data. gn may be NULL, in which case zero
Neumann boundary conditions are assumed. The argument normal always contains
the normal of the Neumann boundary facet. In the case of non-vanishing co-dimension
normal lies in the lower-dimensional space which is spanned by the mesh simplex defined
by el info. gn() is evaluated on those parts of the boundary which are not flagged as
Dirichlet-boundaries by the argument dirichlet bndry.

gn flag controls whether the argument uh qp of the function gn() actually contains the
value of uh at the quadrature point qp. Note that the argument normal always contains
valid data.

The estimate is computed by traversing all leaf elements of uh->fe space->mesh, using
the quadrature for the approximation of the residuals and storing the square of the element
indicators on the elements (if rw el est and rw el estc are not NULL).

ellipt est d(uh, adapt, rw est, rw estc, quad deg, norm, C,

A, A type, A blocktype, sym grad,

dirichlet bndry, f, f flags, gn, gn flags)

ellipt est dow(uh, adapt, rw est, rw estc, quad deg, norm, C,

A, A type, A blocktype, sym grad,

dirichlet bndry, f, f flags, gn, gn flags)

Similar function for a (coupled) vector valued elliptic problem. We document only the
arguments which are different from the arguments of ellipt est():

A now represents a tensor (Aµνij ∈ Rn×n,n×n, i, j, µ, ν = 0, . . . , n− 1. The indexing is

A[i][j][mu][nu] = Amu,nu
ij ,

with i,j,mu,nu==0,...,DIM OF WORLD-1, see Section 1.4.6. A describes the coefficients
of the principal part of a coupled system of elliptical equations:

−
n−1∑
ν,i,j=0

∂iA
µν
ij ∂ju

ν + lower order terms = fµ (µ = 0, . . . , n− 1).

The quasi-stokes.c demo-program contains an example.

4.9. IMPLEMENTATION OF ERROR ESTIMATORS 317

A blocktype must be one of MATENT REAL, MATENT REAL D or MATENT REAL DD. It spec-
ifies the symmetry type for coupling of the PDE system. Note that the storage layout
of A is determined by the argument A blocktype:

MATENT REAL: REAL A[DIM OF WORLD][DIM OF WORLD];

MATENT REAL D: REAL D A[DIM OF WORLD][DIM OF WORLD];

MATENT REAL DD: REAL DD A[DIM OF WORLD][DIM OF WORLD];

A blocktype == MATENT REAL or A blocktype == MATENT REAL D means that the sys-
tem is actually decoupled.

A type must be one of MATENT REAL, MATENT REAL D or MATENT REAL DD. It specifies the
symmetry type of A with respect to the first two indices. For a Laplacian, for example,
one would use DOWBM SCAL. Note that the value of A type does not change the storage
layout of the array A.

sym grad If set to true then it is assumed that the symmetric gradient has to be
used for the computation of the jump- and Neumann-residuals. The demo-program
quasi-stokes.c uses this feature to implement an error estimator for the Stokes equa-
tion with stress boundary conditions.

f If the first argument of the function pointer f(result,...) is not NULL then the result
must be stored in the argument result and f() must return the base address of the
array result. If result is NULL, then f() must store the result in a non-volatile storage
area and return the address of that area.

dirichlet bndry A bit-mask marking those parts of the boundary which are subject
to Dirichlet boundary conditions, see Section 3.2.4.

f is a pointer to a function for the evaluation of the lower order terms at all quadrature
nodes, i.e. f(x(λ), u(λ),∇u(λ)) ; if f is a NULL pointer, f ≡ 0 is assumed;

f(el info, quad, qp, uh qp, grd uh qp) returns the value of the lower oder terms
on element el info->el at the quadrature node quad->lambda[qp], where uh qp is
the value and grd uh qp the gradient (with respect to the Cartesian coordinates) of the
discrete solution at that quadrature point. See also f flag below:

f flag specifies whether the function f() actually needs values of uh qp or grd uh qp,
f flag may be 0 or INIT UH or INIT GRD UH or their bitwise composition (|). The
arguments uh qp and grd uh qp of f() only hold valid information if the flags INIT UH

respectively INIT GRD UH are set.

gn(el info, quad, qp, uh qp, normal) is a pointer to a function for the evaluation
of non-homogeneous Neumann boundary data. gn may be NULL, in which case zero
Neumann boundary conditions are assumed. The argument normal always contains
the normal of the Neumann boundary facet. In the case of non-vanishing co-dimension
normal lies in the lower-dimensional space which is spanned by the mesh simplex defined
by el info. gn() is evaluated on those parts of the boundary which are not flagged as
Dirichlet-boundaries by the argument dirichlet bndry.

gn flag controls whether the argument uh qp of the function gn() actually contains the
value of uh at the quadrature point qp. Note that the argument normal always contains
valid data.

318 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

4.9.1 Example (Linear problem). Consider the scalar linear model problem (1.7) with con-
stant coefficients A, b, and c:

−∇ ·A∇u+ b · ∇u+ c u = r in Ω,

u = 0 on ∂Ω.

Let A be a REAL DD matrix storing A, which is then the eighth argument of ellipt est().
Assume that const REAL *b(const REAL D) is a function returning a pointer to a vector
storing b, REAL c(REAL D) returns the value of c and REAL r(const REAL D) returns the
value of the right hand side r of (1.7) at some point in world coordinates. The implementation
of the function f is:

static REAL f(const EL_INFO *el_info, const QUAD *quad, int iq, REAL uh_iq,

const REAL_D grd_uh_iq)

{

FUNCNAME("f");

const REAL *bx, *x;

extern const REAL b(const REAL_D);

extern REAL c(const REAL_D), r(const REAL_D);

x = coord_to_world(el_info, quad->lambda[iq], nil);

bx = b(x);

return(SCP_DOW(bx, grd_uh_iq) + c(x)*uh_iq - r(x));

}

As both uh iq and grd uh iq are used, the estimator parameter f flag must be given as
INIT UH|INIT GRD UH.

4.9.2 Error estimator for parabolic problems

Similar to the stationary case, the ALBERTA library provides an error estimator for the non–
linear parabolic problem

∂tu−∇ ·A∇u(x) + f
(
x, t, u(x),∇u(x)

)
= 0 x ∈ Ω, t > 0,

u(x, t) = gd x ∈ ΓD, t > 0,

ν ·A∇u(x, t) = gn x ∈ ΓN , t > 0,

u(x, 0) = u0 x ∈ Ω,

where A ∈ Rd×d is a positive definite matrix and ∂Ω = ΓD ∪ ΓN . The estimator is split in
several parts, where the initial error

η0 = ‖u0 − U0‖L2(Ω)

can be approximated by the function L2 err(), e.g. (compare Section 4.6).

For the estimation of the spatial discretization error, the coarsening error, and the time

4.9. IMPLEMENTATION OF ERROR ESTIMATORS 319

discretization error, the ALBERTA estimator implements the following (local) indicators

η2
S = C2

0 h
4
S

∥∥∥∥Un+1 − In+1Un
τn+1

−∇ ·A∇Un+1 + f(., tn+1, Un+1,∇Un+1)

∥∥∥∥2

L2(S)

+ C2
1

∑
Γ⊂∂S∩Ω

h3
S ‖ [[A∇Un+1]] ‖2L2(Γ) + C2

1

∑
Γ⊂∂S∩ΓN

h3
S ‖ν ·A∇Un+1 − gn‖2L2(Γ),

η2
S,c = C2

2 h
3
S ‖ [[∇Un]] ‖2L2(Γc)

ητ = C3‖Un+1 − In+1Un‖L2(Ω).

The coarsening indicator is motivated by the fact that for piecewise linear Lagrange finite
element functions it holds ‖Un − In+1Un‖2L2(S) = η2

S,c with C2 = C2(d) and Γc the face that
would be removed during a coarsening operation. The implementation is done by the functions

REAL heat_est(const DOF_REAL_VEC *uh, ADAPT_INSTAT *adapt,

REAL *(*rw_est)(EL *), REAL *(*rw_estc)(EL *),

int quad_degree, REAL C[4], const DOF_REAL_VEC *uh_old,

const REAL_DD A, const BNDRY_FLAGS dirichlet_bndry,

REAL (*f)(const EL_INFO *el_info, const QUAD *quad, int qp,

REAL uh_qp, const REAL_D grd_uh_gp, REAL time),

FLAGS f_flags,

REAL (*gn)(const EL_INFO *el_info, const QUAD *quad, int qp,

REAL uh_qp, const REAL_D normal, REAL time),

FLAGS gn_flags);

REAL heat_est_dow(const DOF_REAL_D_VEC *uh, ADAPT_INSTAT *adapt,

REAL *(*rw_est)(EL *), REAL *(*rw_estc)(EL *),

int quad_degree, REAL C[4], const DOF_REAL_D_VEC *uh_old,

const void *A, MATENT_TYPE A_type, MATENT_TYPE A_blocktype,

bool sym_grad,

BNDRY_FLAGS dirichlet_bndry,

const REAL *(*f)(REAL_D result,

const EL_INFO *el_info,

const QUAD *quad, int qp,

const REAL_D uh_qp,

const REAL_DD grd_uh_gp,

REAL time),

FLAGS f_flags,

const REAL *(*gn)(REAL_D result,

const EL_INFO *el_info,

const QUAD *quad, int qp,

const REAL_D uh_qp,

const REAL_D normal,

REAL time),

FLAGS gn_flags);

REAL heat_est_d(const DOF_REAL_D_VEC *uh,

const DOF_REAL_D_VEC *uh_old,

ADAPT_INSTAT *adapt,

REAL *(*rw_est)(EL *),

REAL *(*rw_estc)(EL *),

int quad_degree,

320 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

REAL C[4],

const void *A,

MATENT_TYPE A_type,

MATENT_TYPE A_blocktype,

bool sym_grad,

const BNDRY_FLAGS dirichlet_bndry,

const REAL *(*f)(REAL_D result,

const EL_INFO *el_info,

const QUAD *quad,

int qp,

const REAL_D uh_qp,

const REAL_DD grd_uh_gp,

REAL time),

FLAGS f_flags,

const REAL *(*gn)(REAL_D result,

const EL_INFO *el_info,

const QUAD *quad,

int qp,

const REAL_D uh_qp,

const REAL_D normal,

REAL time),

FLAGS gn_flags);

Description:

heat est(uh, adapt, rw el est, rw el estc, degree, C, uh old,

A, dirichlet bndry, f, f flag, gn, gn flag)

computes an error estimate of the above type, the local and global space discretization
estimators are stored in adapt->adapt space and via the rw ... pointers; the return
value is the time discretization indicator ητ .

uh is a vector storing the coefficients of the discrete solution Un+1; if uh is a NULL pointer,
nothing is done, the return value is 0.0.

adapt is a pointer to an ADAPT INSTAT structure; if it is not NULL, then the entries
adapt space->p=2, adapt space->err sum and adapt space->err max of adapt are
set by heat est() (compare Section 4.8.1).

rw el est is a function for writing the local error indicator η2
S for a single element (usu-

ally to some location inside leaf data, compare Section 3.2.10); if this function is NULL,
only the global estimate is computed, no local indicators are stored. rw el est(el) re-
turns for each leaf element el a pointer to a REAL for storing the square of the element
indicator, which can directly be used in the adaptive method, compare the get el est()

function pointer in the ADAPT STAT structure (compare Section 4.8.1).

rw el estc is a function for writing the local coarsening error indicator η2
S,c for a

single element (usually to some location inside leaf data, compare Section 3.2.10);
if this function is NULL, no coarsening error indicators are computed and stored;
rw el estc(el) returns for each leaf element el a pointer to a REAL for storing the
square of the element coarsening error indicator. The coarsening indicator is not used
at the moment.

4.9. IMPLEMENTATION OF ERROR ESTIMATORS 321

degree is the degree of the quadrature that should be used for the approximation of the
norms on the elements and edges/faces; if degree is less than zero a quadrature which
is exact of degree 2*uh->fe space->bas fcts->degree is used.

C[0] , C[1], C[2], C[3] are the constants in front of the element residual, wall residual,
coarsening term, and time residual, respectively. If C is NULL, then all constants are set
to 1.0.

uh old is a vector storing the coefficients of the discrete solution Un from previous time
step; if uh old is a NULL pointer, nothing is done, the return value is 0.0.

A is the constant matrix of the second order term.

dirichlet bndry A bit mask marking those parts of the boundary which are subject
to Dirichlet boundary conditions. See Section 3.2.4.

f is a pointer to a function for the evaluation of the lower order terms at all quadrature
nodes, i.e. f(x(λ), t, u(λ),∇u(λ)) ; if f is a NULL pointer, f ≡ 0 is assumed;

f(el info, quad, iq, t, uh iq, grd uh iq) returns the value of the lower oder
terms on element el info->el at the quadrature node quad->lambda[iq], where uh iq

is the value and grd uh iq the gradient (with respect to the world coordinates) of the
discrete solution at that quadrature node.

f flag specifies whether the function f() actually needs values of uh iq or grd uh iq.
This flag may hold zero, the predefined values INIT UH or INIT GRD UH, or their com-
position INIT UH|INIT GRD UH; the arguments uh iq and grd uh iq of f() only hold
valid information, if the flags INIT UH respectively INIT GRD UH are set.

gn(el info, quad, qp, uh qp, normal) is a pointer to a function for the evaluation
of non-homogeneous Neumann boundary data. gn may be NULL, in which case zero
Neumann boundary conditions are assumed. The argument normal always contains
the normal of the Neumann boundary facet. In the case of non-vanishing co-dimension
normal lies in the lower-dimensional space which is spanned by the mesh simplex defined
by el info.

gn flag controls whether the argument uh qp of the function gn() actually contains the
value of uh at the quadrature point qp. Note that the argument normal always contains
valid data.

The estimate is computed by traversing all leaf elements of uh->fe space->mesh, using
the quadrature for the approximation of the residuals and storing the square of the element
indicators on the elements (if rw el est and rw el estc are not NULL).

heat est d(uh, adapt, rw, rwc, deg, C, uh old,

A, A type, A blocktype, sym grad,

dirichlet bndry, f, f flag)

heat est dow(uh, adapt, rw, rwc, deg, C, uh old,

A, A type, A blocktype, sym grad,

dirichlet bndry, f, f flag)

Coupled vector valued version. See ellipt est dow() above.

There are also some less high-level support functions which allow for custom contributions
to the per-element error estimates. We will not document this in detail, but rather refer the
reader to the stokes.c and quasi-stokes.c demo-programs.

322 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

const void ∗ e l l i p t e s t i n i t (const DOF REAL VEC ∗uh ,
ADAPT STAT ∗adapt ,
REAL ∗(∗ rw es t) (EL ∗) ,
REAL ∗(∗ rw es t c) (EL ∗) ,
const QUAD ∗quad ,
const WALLQUAD ∗wall quad ,
NORM norm ,
REAL C[3] ,
const REAL DD A,
const BNDRY FLAGS d i r i c h l e t bnd ry ,
REAL (∗ f) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad ,
int qp ,
REAL uh qp ,
const REAL D grd uh gp) ,

FLAGS f f l a g s ,
REAL (∗ gn) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad ,
int qp ,
REAL uh qp ,
const REAL D normal) ,

FLAGS gn f l a g s) ;
const void ∗ h e a t e s t i n i t (const DOF REAL VEC ∗uh ,

const DOF REAL VEC ∗uh old ,
ADAPT INSTAT ∗adapt ,
REAL ∗(∗ rw es t) (EL ∗) ,
REAL ∗(∗ rw es t c) (EL ∗) ,
const QUAD ∗quad ,
const WALLQUAD ∗wall quad ,
REAL C[4] ,
const REAL DD A,
const BNDRY FLAGS d i r i c h l e t bnd ry ,
REAL (∗ f) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad ,
int qp ,
REAL uh qp ,
const REAL D grd uh gp ,
REAL time) ,

FLAGS f f l a g s ,
REAL (∗ gn) (const EL INFO ∗ e l i n f o ,

const QUAD ∗quad ,
int qp ,
REAL uh qp ,
const REAL D normal ,
REAL time) ,

FLAGS gn f l a g s) ;

REAL e l ement e s t (const EL INFO ∗ e l i n f o , const void ∗ e s t hand l e) ;
void e l em en t e s t f i n i s h (const EL INFO ∗ e l i n f o ,

REAL e s t e l , const void ∗ e s t hand l e) ;
const REAL ∗ e l ement e s t uh (const void ∗ e s t hand l e) ;
const REAL D ∗ e l ement e s t g rd uh (const void ∗ e s t hand l e) ;
REAL e l l i p t e s t f i n i s h (ADAPT STAT ∗adapt , const void ∗ e s t hand l e) ;
REAL h e a t e s t f i n i s h (ADAPT INSTAT ∗adapt , const void ∗ e s t hand l e) ;

There are similar proto-types for the vector-valued case. Now, what are these functions good
for? The stokes.c program makes use of this framework to add a contribution concern-

4.9. IMPLEMENTATION OF ERROR ESTIMATORS 323

ing the divergence constraint. Of course, this is an ad-hoc error indicator, and only meant
to demonstrate the programming frame-work. The functions element est uh[dow]() and
element est grd uh[dow]() give the application access to the values of the discrete solution
at the quadrature points (respectively to its Jaocbians). Otherwise, the general layout is like
follows:

void ∗ e s t hand l e = e l l i p t e s t i n i t (. . .) ;
TRAVERSE FIRST(mesh , −1, <s u i t a b l e f i l l −f l a g s >) {

REAL e s t e l = e l ement e s t (e l i n f o , e s t hand l e) ;

. . . /∗ add whatever you l i k e to e s t e l ∗/

e l em en t e s t f i n i s h (e l i n f o , e s t e l , e s t hand l e) ;
} TRAVERSENEXT() ;
REAL e s t = e l l i p t e s t f i n i s h (adapt , e s t hand l e) ;

The relevant excerpt from stokes.c reads as follows:

e s t hand l e = e l l i p t e s t d ow i n i t (u h , adapt , rw e l e s t , NULL /∗ rw es t c ∗/ ,
quad , NULL /∗ wa l l quad ∗/ ,
H1 NORM, C,
A, MATENTREAL, MATENTREAL,
f a l s e /∗ ! sym grad ∗/ ,
d i r i ch l e t mask ,
r , INIT GRD UH,
NULL /∗ inhomog . Neumann res . ∗/ , 0) ;

f i l l f l a g s =
FILL NEIGH |FILL COORDS |FILL OPP COORDS |FILL BOUND |CALL LEAF EL ;

f i l l f l a g s |= u fe space−>ba s f c t s−> f i l l f l a g s ;
f i l l f l a g s |= p fe space−>ba s f c t s−> f i l l f l a g s ;
TRAVERSE FIRST(mesh , −1, f i l l f l a g s) {

const EL GEOMCACHE ∗ e l g c ;
const QUAD EL CACHE ∗ qe l c ;
REAL e s t e l ;

e s t e l = e lement est dow (e l i n f o , e s t hand l e) ;

i f (C [3]) {
REAL d iv uh e l , d iv uh qp ;
const REAL DD ∗ grd uh qp ;
int qp , i ;

grd uh qp = e l ement e s t g rd uh d (e s t hand l e) ;
d i v uh e l = 0 . 0 ;
i f (! (e l i n f o −> f i l l f l a g & FILL COORDS)) {

qe l c = f i l l q u a d e l c a c h e (e l i n f o , quad , FILL EL QUAD DET) ;

for (qp = 0 ; qp < quad−>n po in t s ; qp++) {
div uh qp = 0 ;
for (i = 0 ; i < DIMOFWORLD; i++) {

div uh qp += grd uh qp [qp] [i] [i] ;
}
d i v uh e l += qelc−>param . det [qp]∗ quad−>w[qp]∗SQR(div uh qp) ;

}
} else {

e l g c = f i l l e l g e om c a c h e (e l i n f o , FILL EL DET) ;

324 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

for (qp = 0 ; qp < quad−>n po in t s ; qp++) {
div uh qp = 0 ;
for (i = 0 ; i < DIMOFWORLD; i++) {

div uh qp += grd uh qp [qp] [i] [i] ;
}
d i v uh e l += quad−>w[qp]∗SQR(div uh qp) ;

}
d i v uh e l ∗= elgc−>det ;

}

e s t e l += C[3] ∗ d i v uh e l ;
}

e l emen t e s t dow f i n i s h (e l i n f o , e s t e l , e s t hand l e) ;
} TRAVERSENEXT() ;
e s t = e l l i p t e s t d ow f i n i s h (adapt , e s t hand l e) ;

4.10 Solver for linear and nonlinear systems

ALBERTA provides own solvers for general linear and nonlinear systems. The solvers use
dense REAL-vectors for storing coefficients. They are aware of ALBERTA’s DOF-vector and
-matrix data structures and work with an application provided subroutine for the matrix-
vector multiplication, and in case a preconditioner is used, a function for preconditioning.
The nonlinear solvers need subroutines for assemblage and solution of a linearized system.

In the subsequent sections we describe the basic data structures for the OEM (Orthogonal
Error Methods) module, a built-in ALBERTA interface for solving systems involving a
DOF MATRIX and DOF REAL[D] VEC[D] objects, and the access to functions for matrix-vector
multiplication and preconditioning for a direct use of the OEM solvers. Then we describe the
basic data structures for multigrid solvers and for the available solvers of nonlinear equations.
Most of the implemented methods (and more) are described for example in [17, 23].

4.10.1 Krylov-space solvers for general linear systems

Very efficient solvers for linear systems are Krylov-space solvers (or Orthogonal Error
Methods). The OEM library provides such solvers for the solution of general linear systems

Ax = b

with A ∈ RN×N and x, b ∈ RN . The library solvers work on dense flat vectors and do not need
to know the storage of the system matrix, or the matrix used for preconditioning. Matrix-
vector multiplication and preconditioning is done by application provided routines.

Most of the implemented OEM solvers are a C-translation from the solvers of the FOR-
TRAN OFM library (Orthogonale Fehler Methoden), by Dörfler [7]. SymmLQ is the algorithm
described in [20], and TfQMR is described in TO BE DETERMINED. All solvers allow for left
preconditioning and some also for right preconditioning.

The data structure (defined in alberta util.h) for passing information about matrix-
vector multiplication, preconditioning and tolerances, etc. to the solvers is

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 325

typedef int (∗OEMMVFCT) (void ∗data , int dim , const REAL ∗ rhs , REAL ∗u) ;

typedef struct oem data OEMDATA;
struct oem data
{

OEMMVFCT mat vec ;
void ∗mat vec data ;
OEMMVFCT mat vec T ;
void ∗mat vec T data ;
void (∗ l e f t p r e c o n) (void ∗ , int , REAL ∗) ;
void ∗ l e f t p r e c o n da t a ;
void (∗ r i gh t p r e con) (void ∗ , int , REAL ∗) ;
void ∗ r i gh t p r e con da ta ;

REAL (∗ scp) (void ∗ , int , const REAL ∗ , const REAL ∗) ;
void ∗ scp data ;

WORKSPACE ∗ws ;

REAL to l e r an c e ;
int r e s t a r t ;
int max iter ;
int i n f o ;

REAL i n i t i a l r e s i d u a l ;
REAL r e s i d u a l ;
} ;

Description:

mat vec pointer to a function for the matrix–vector multiplication with the system matrix;

mat vec(mat vec data, dim, u, b) applies the system matrix to the input vector u and
stores the product in b; dim is the dimension of the linear system, mat vec data a pointer
to application.

mat vec data pointer to application data for the matrix-vector multiplication, first argu-
ment to mat vec().

mat vec T pointer to a function for the matrix–vector multiplication with the transposed
system matrix;

mat vec T(mat vec data, dim, u, b) applies the transposed system matrix to the in-
put vector u and stores the product in b; dim is the dimension of the linear system,
mat vec T data a pointer to application data.

mat vec T data pointer to application data for the matrix-vector multiplication with the
transposed system matrix, first argument to mat vec T().

left precon pointer to function for left preconditioning; it may be a NULL pointer; in this
case no left preconditioning is done;

left precon(left precon data, dim, r) is the implementation of the left precondi-
tioner; r is input and output vector of length dim and left precon data a pointer to
application data.

left precon data pointer to application data for the left preconditioning, first argument
to left precon().

326 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

Method Matrix Operations Storage

BiCGstab symmetric 2 MV + 12 V 5N
CG symmetric positive definite 1 MV + 5 V 3N

GMRES regular k MV + ... (k + 2)N + k(k + 4)
ODir symmetric positive 1 MV + 11 V 5N
ORes symmetric 1 MV + 12 V 7N

SymmLQ symmetric 6N
TfQMR regular 11N

Table 4.7: OEM methods with applicable matrix types, numbers of operations per iteration
(MV matrix-vector products, V vector operations), and storage requirements (N number of
unknowns, k GMRES subspace dimension)

right precon pointer to function for right preconditioning; it may be a NULL pointer; in
this case no right preconditioning is done;

right precon(right precon data, dim, r) is the implementation of the right precon-
ditioner; r is input and output vector of length dim and right precon data a pointer to
application data.

right precon data pointer to application data for the right preconditioning, first argu-
ment to right precon().

scp pointer to a function for computing a problem dependent scalar product; it may be a
NULL pointer; in this case the Euclidian scalar product is used;

scp(scp data, dim, x, y) computes the problem dependent scalar product of the two
vectors x and y of length dim; scp data is a pointer to application data.

scp data pointer to application data for computing the scalar product, first argument to
scp().

ws a pointer to a WORKSPACE structure for storing additional vectors used by a solver; if the
space is not sufficient, the used solver will enlarge this workspace; if ws is NULL, then the
used solver allocates memory, which is freed before exit.

tolerance tolerance for the residual; if the norm of the residual is less than or equal to
tolerance, the solver returns the actual iterate as the solution of the system.

restart restart for the linear solver; used only by oem gmres() at the moment.

max iter maximal number of iterations to be performed although the tolerance may not
be reached.

info the level of information produced by the solver; 0 is the lowest level of information
(no information is printed) and 10 the highest level.

initial residual stores the norm of the initial residual on exit.

residual stores the norm of the final residual on exit.

The following linear solvers are currently implemented. Table 4.7 gives an overview over
the implemented solvers, the matrix types they apply to, and the cost of one iteration.

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 327

int oem bicgstab (OEMDATA ∗oem data , int dim , const REAL ∗ rhs , REAL ∗u0) ;
int oem cg (OEMDATA ∗oem data , int dim , const REAL ∗ rhs , REAL ∗u0) ;
int oem gmres (OEMDATA ∗oem data , int dim , const REAL ∗ rhs , REAL ∗u0) ;
int oem gmres k (OEMDATA ∗oem data , int dim , const REAL ∗ rhs , REAL ∗u0) ;
int oem odir (OEMDATA ∗oem data , int dim , const REAL ∗ rhs , REAL ∗u0) ;
int oem ores (OEMDATA ∗oem data , int dim , const REAL ∗ rhs , REAL ∗u0) ;
int oem tfqmr (OEMDATA ∗oem data , int dim , const REAL ∗ rhs , REAL ∗u0) ;
int oem symmlq (OEMDATA ∗oem data , int dim , const REAL ∗ rhs , REAL ∗u0) ;

Description:

oem bicgstab(oem data, dim, rhs, u0) solves a linear system by a stabilized BiCG
method and can be used for symmetric system matrices; oem data stores information about
matrix vector multiplication, preconditioning, tolerances, etc. dim is the dimension of the
linear system, rhs the right hand side vector, and u0 the initial guess on input and the
solution on output; oem bicgstab() needs a workspace for storing 5*dim additional REALs;
the return value is the number of iterations; oem bicgstab() only uses left preconditioning.

oem cg(oem data, dim, rhs, u0) solves a linear system by the conjugate gradient
method and can be used for symmetric positive definite system matrices; oem data stores
information about matrix vector multiplication, preconditioning, tolerances, etc. dim is the
dimension of the linear system, rhs the right hand side vector, and u0 the initial guess on
input and the solution on output; oem cg() needs a workspace for storing 3*dim additional
REALs; the return value is the number of iterations; oem cg() only uses left preconditioning.

oem gmres(oem data, dim, rhs, u0) solves a linear system by the GMRes method
with restart and can be used for regular system matrices; oem data stores information
about matrix vector multiplication, preconditioning, tolerances, etc. dim is the dimension
of the linear system, rhs the right hand side vector, and u0 the initial guess on input
and the solution on output; oem data->restart is the dimension of the Krylov–space
for the minimizing procedure; oem data->restart must be bigger than 0 and less or
equal dim, otherwise restart=10 will be used; oem gmres() needs a workspace for stor-
ing (oem data->restart+2)*dim + oem data->restart*(oem data->restart+4) addi-
tional REALs.

oem gmres k(oem data, dim, rhs, u0) performs just one restart step (minimization on
a k-dimensional Krylov subspace) of the GMRES method. This routine can be used as
subroutine in other solvers. For example, oem gmres() just iterates this until the tolerance
is met. Other applications are nonlinear GMRES solvers, where a new linearization is done
after each linear GMRES restart step.

oem odir(oem data, dim, rhs, u0) solves a linear system by the method of orthogonal
directions and can be used for symmetric, positive system matrices; oem data stores in-
formation about matrix vector multiplication, preconditioning, tolerances, etc. dim is the
dimension of the linear system, rhs the right hand side vector, and u0 the initial guess
on input and the solution on output; oem dir() needs a workspace for storing 5*dim ad-
ditional REALs; the return value is the number of iterations; oem odir() only uses left
preconditioning.

oem ores(oem data, dim, rhs, u0) solves a linear system by the method of orthogonal
residuals and can be used for symmetric system matrices; oem data stores information
about matrix vector multiplication, preconditioning, tolerances, etc. dim is the dimension
of the linear system, rhs the right hand side vector, and u0 the initial guess on input and

328 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

the solution on output; oem res() needs a workspace for storing 7*dim additional REALs;
the return value is the number of iterations; oem ores() only uses left preconditioning.

oem symmlq(oem data, dim, rhs, u0) solves a symmetric linear system. oem data

stores information about matrix vector multiplication, preconditioning, tolerances, etc.
dim is the dimension of the linear system, rhs the right hand side vector, and u0 the initial
guess on input and the solution on output; oem symmlq() needs a workspace for stor-
ing 6*dim additional REALs; the return value is the number of iterations. oem symmlq()

supports uses left preconditioning.

oem tfqmr(oem data, dim, rhs, u0) solves a linear system using a transpose-free QMR
method and can be used for regular system matrices; oem data stores information about
matrix vector multiplication, preconditioning, tolerances, etc. dim is the dimension of the
linear system, rhs the right hand side vector, and u0 the initial guess on input and the
solution on output; oem tfqmr() needs a workspace for storing 11*dim additional REALs;
the return value is the number of iterations.

4.10.2 Krylov-space solvers for DOF matrices and vectors

4.10.1 Compatibility Note. The support for additional preconditioners, as well as the
block-matrix structure induced by the support for direct sums of finite element spaces (see
Section 3.7) made it necessary to provide a more flexible and extendible interface to the im-
plemented preconditioners. Additionally, some of the preconditioners need further parameters.

Therefore, the selection of a particular preconditioner has been moved to separate functions
init oem precon(), vinit oem precon() and init precon from type(), the latter requir-
ing a special support structure PRECON TYPE to pass parameters on to the preconditioners.

Solver-functions, which previously accepted a mere integer to select a particular precondi-
tioner, now need a pointer to a PRECON-structure, see below Section 4.10.7.

We describe here the interface between ALBERTA’s DOF-vectors and -matrices and the
available general OEM-solvers described in the previous Section 4.10.1. At the highest level,
there are three function, namely oem solve s(), oem solve d() and oem solve dow(). The
calling conventions for the three functions are functionally identical, except for the data-type
of the DOF-vector arguments. The function oem solve s() is used for scalar valued problems,
i.e.

Ax = b

with A ∈ RN×N and x, b ∈ RN . Vector valued problems need a closer examination, there are
two cases:

1. DIM OF WORLD-valued finite element spaces based on scalar basis functions:

oem solve d() and oem solve dow() can both either be used for decoupled or coupled
DIM OF WORLD-valued problems. Decoupled problems are of the form

A 0 . . . 0

0 A
. . .

...
...

. . .
. . . 0

0 . . . 0 A

u1

u2
...
un

 =

f1

f2
...
fn

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 329

with A ∈ RN×N and ui, fi ∈ RN , i = 1, . . . , n, where n = DIM OF WORLD. The vectors
(u1, . . . , un) and (f1, . . . , fn) are stored in DOF REAL D VECs, whereas the matrix is stored
as a single scalar DOF MATRIX.

Coupled DIM OF WORLD-valued problems lead in this context to matrices of the formA
00 . . . A0n

...
. . .

...
An0 . . . Ann

u1

...
un

 =

f1
...
fn

with Aµν ∈ RN×N and uν , fµ ∈ RN , µ, ν = 1, . . . , n, where n = DIM OF WORLD. The vec-
tors (u1, . . . , un) and (f1, . . . , fn) are again stored in DOF REAL D VECs. One prominent
example is the discretisation of a Stokes-problem with prescribed stresses on the bound-
ary: in this case the weak formulation has to be based on the deformation tensor, which
leads to matrix of above type. The matrix is still stored as a DOF MATRIX structure, but
its entries are DIM OF WORLD × DIM OF WORLD blocks: the data is stored as an N × N
matrix of small d × d blocks in analogy to DOF REAL D VECs. See also 1.4.6. Compare
also Compatibility Note 4.7.1.

2. Finite element spaces based on DIM OF WORLD-valued basis functions:

In this case the DOF-vectors are scalar-valued, and the resulting DOF-matrix is just a
scalar matrix, compare also Section 1.4.6.

Note that the interface routines to the OEM-solvers are aware of direct sums of finite
element spaces, as described in Section 3.7, the resulting block-matrices generated by the
assemble-framework will be handled correctly, including the cases where a standard La-
grangian finite element space is augmented by vector-valued basis functions like face-bubbles.

An application selects a particular solver by passing one of the following enumeration
values to oem solve [s|d|dow]():

typedef enum {
NoSolver , BiCGStab , CG, GMRes, ODir , ORes , TfQMR, GMRes k , SymmLQ

} OEMSOLVER;

New identifiers may be added to this enumeration when new solvers are added to ALBERTA.
In more detail, the three high-level interface function are described below:

4.10.2 Function (oem solve [s|d|dow]()).

Prototypes

int oem so lve s (const DOFMATRIX ∗A, const DOF SCHAR VEC ∗bound ,
const DOF REAL VEC ∗ f , DOF REAL VEC ∗u ,
OEM SOLVER so lve r ,
REAL to l , const PRECON ∗precon ,
int r e s t a r t , int max iter , int i n f o) ;

int oem solve d (const DOFMATRIX ∗A, const DOF SCHAR VEC ∗bound ,
const DOF REAL D VEC ∗ f , DOF REAL D VEC ∗u ,
OEM SOLVER so lve r ,
REAL to l , const PRECON ∗precon ,
int r e s t a r t , int max iter , int i n f o) ;

330 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

int oem solve dow (const DOFMATRIX ∗A, const DOF SCHAR VEC ∗bound ,
const DOF REAL VEC D ∗ f , DOF REAL VEC D ∗u ,
OEM SOLVER so lve r ,
REAL to l , const PRECON ∗precon ,
int r e s t a r t , int max iter , int i n f o) ;

Synopsis

i t e r a t i o n s = oem so lve [s | d | dow] (A, mask , f , u ,
s o l ve r , to l , precon ,
r e s t a r t , max iter , i n f o) ;

Description

Attempt to solve the linear system defined by the matrix A, an optional restriction to
a sub-space by masking out DOFs via mask, a load-vector f and an initial guess and
storage u for the approximative solution.

Parameters

A Pointer to a DOF MATRIX storing the system matrix.

mask Pointer to a DOF SCHAR VEC masking out parts of the finite element space: if
mask->vec[d] >= DIRICHLET, then A will act as if the d-th row would be zero.
Compare also the discussion in the section about Dirichlet boundary condition, see
Section 4.7.7.1

f A pointer to a DOF REAL[D] VEC[D] storing the load-vector of the linear system.

u A pointer to a DOF REAL[D] VEC[D] storing the initial guess on input and the
approximative solution on output. In the context of interpolated Dirichlet boundary
conditions special provisions have to be taken for the “Dirichlet-nodes”. Compare
the discussion in Section 4.7.7.1.

solver Use the respective OEM-solver; see above for the available keywords.

tol Tolerance for the residual; if the norm of the residual is less or equal tol,
oem solve [s|d|dow]() returns the actual iterate as the approximative solution
of the system.

precon A pointer to a structure describing the preconditioner to use, see further
below in Section 4.10.7.

4.10.3 Compatibility Note. Previous versions used a simple number here, but
as the preconditioner frame-work has become much more complicated, because of the
support for direct sums of finite element spaces, the code for the selection of the
preconditioner has been separated from the entry-point to the solvers.

restart Only used by gmres: the maximum dimension of the Krylov-space.

max iter Maximal number of iterations to be performed by the linear solver. This
can be compared with the return value – which gives the number of iterations actually
performed – to determine whether the solver has achieved its goal.

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 331

info This is the level of information of the linear solver; 0 is the lowest level of
information (no information is printed) and 10 the highest level.

Return Value

The number of iterations the solver needed until the norm of the residual was below tol,
or max iter if the solver was not able to reach its goal before the prescribed maximum
iteration count was exhausted.

There is also an interface to the OEM-solvers which splits the call to the OEM-methods
into an initialization part, an execution part and a cleanup part. This is useful when the same
solver applies the same matrix to varying load-vectors. One example is the implementation of
a CG-method for Schur’s complement operator of a saddle-point problem (see Section 4.10.4
below). The following functions implement this interface:

typedef int (∗OEMMVFCT) (void ∗data , int dim , const REAL ∗ rhs , REAL ∗u) ;

OEMMVFCT get oem so lve r (OEM SOLVER) ;
OEMDATA ∗ i n i t o em so l v e (const DOFMATRIX ∗A,

const DOF SCHAR VEC ∗mask ,
REAL to l , const PRECON ∗precon ,
int r e s t a r t , int max iter , int i n f o) ;

void r e l e a s e o em so l v e (const OEMDATA ∗oem) ;
int c a l l o em s o l v e s (const OEMDATA ∗oem , OEM SOLVER so lve r ,

const DOF REAL VEC ∗ f , DOF REAL VEC ∗u) ;
int ca l l o em so lve dow (const OEMDATA ∗oem , OEM SOLVER so lve r ,

const DOF REAL VEC D ∗ f , DOF REAL VEC D ∗u) ;
int c a l l o em so l v e d (const OEMDATA ∗oem , OEM SOLVER so lve r ,

const DOF REAL D VEC ∗ f , DOF REAL D VEC ∗u) ;

See Example 4.10.9-4.10.11 for short code skeletons explaining the use of these functions.
The descriptions for the individual functions are as follows:

4.10.4 Function (get oem solver()).

Synopsis

s o l v e r f c t = ge t oem so lve r (solver num) ;

Description

Return a function pointer for the solver indicated by solver num which shuld be one of
the symbols BiCGStab, CG GMRes, ODir, ORes, TfQMR, GMRes k, SymmLQ.

Parameters

solver num As explained above.

Return Value

A function pointer conforming to the type

332 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

int (∗OEMMVFCT) (void ∗data , int dim , const REAL ∗ rhs , REAL ∗u) ;

4.10.5 Function (init oem solve()).

Synopsis

oem data handle =
i n i t o e m s o l v e (A, mask , to l , precon , r e s t a r t , max iter ,

i n f o) ;

Description

Initialize a OEM DATA-handle which can be passed to the function pointers returned by
get oem solver() (see above). The specific solver to use, as well as the storage for the
solution and the load-vector, is left unspecified here; these data is given as parameters
to .call oem solve [s—d—dow](), see below. The data handle returned by this functions
eventually should be deleted by a call to realeas oem solve(), which is also described
below.

Parameters

The parameters have the same meaning as the respective parameters to
oem solve [s|d|dow(); the explanations are just repeated here:

A Pointer to a DOF MATRIX storing the system matrix.

mask Pointer to a DOF SCHAR VEC masking out parts of the finite element space: if
mask->vec[d] >= DIRICHLET, then A will act as if the d-th row would be zero.
Compare also the discussion in the section about Dirichlet boundary condition, see
Section 4.7.7.1

tol Tolerance for the residual; if the norm of the residual is less or equal tol,
oem solve [s|d|dow]() returns the actual iterate as the approximative solution
of the system.

precon A pointer to a structure describing the preconditioner to use, see further
below in Section 4.10.7.

4.10.6 Compatibility Note. Previous versions used a simple number here, but
as the preconditioner frame-work has become much more complicated, because of the
support for direct sums of finite element spaces, the code for the selection of the
preconditioner has been separated from the entry-point to the solvers.

restart Only used by gmres: the maximum dimension of the Krylov-space.

max iter Maximal number of iterations to be performed by the linear solver. This
can be compared with the return value – which gives the number of iterations actually
performed – to determine whether the solver has achieved its goal.

info This is the level of information of the linear solver; 0 is the lowest level of
information (no information is printed) and 10 the highest level.

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 333

Return Value

A pointer to an initialized OEM DATA-structure, see the source-code listing on page 325.

4.10.7 Function (release oem solve()).

Synopsis

r e l e a s e o e m s o l v e (oem data handle) ;

Description

Release an OEM DATA-handle previously acquired by a call to
init oem solve [s|d|dow]() as explained above.

Parameters

oem data handle The OEM DATA-pointer to destroy.

4.10.8 Function (call oem solve [s|d|dow]()).

Synopsis

i t e r a t i o n s = c a l l o e m s o l v e [s | d |dow] (oem data handle ,
s o l ve r , f , u) ;

Description

Call an iterative solver, as indicated by solver, trying to solve the linear system de-
scribed by oem data handle for the unknown u, given the load-vector f. u is at the
same time the storage for the solution and the initial guess for the iterative solver.

Parameters

With the exception of oem data handle the parameters have the same meaning as the
respective parameters to oem solve [s|d|dow(); the explanations are just repeated
here:

oem data handle A OEM DATA-structure, as returned by a previous call to
init oem solve() (or filled in “by hand”).

f A pointer to a DOF REAL[D] VEC[D] storing the load-vector of the linear system.

u A pointer to a DOF REAL[D] VEC[D] storing the initial guess on input and the
approximative solution on output. In the context of interpolated Dirichlet boundary
conditions special provisions have to be taken for the “Dirichlet-nodes”. Compare
the discussion in Section 4.7.7.1.

solver Use the respective OEM-solver; see above for the available keywords.

334 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

Return Value

The number of iterations the solver needed until the norm of the residual was below tol,
or max iter if the solver was not able to reach its goal before the prescribed maximum
iteration count was exhausted.

4.10.9 Example. The high-level function

i t e r a t i o n s = oem so lve [s | d | dow] (A, mask , f , u ,
s o l v e r , to l , precon ,
r e s t a r t , max iter , i n f o) ;

is implemented as follows:

int oem so lve s (const DOFMATRIX ∗A, const DOF SCHAR VEC ∗mask ,
const DOF REAL VEC ∗ f , DOF REAL VEC ∗u ,
OEM SOLVER so lve r , REAL to l , const PRECON ∗precon ,
int r e s t a r t , int max iter , int i n f o)

{
const OEMDATA ∗oem ;
int i t e r ;

oem = in i t o em so l v e (A, mask , to l , precon , r e s t a r t , max iter , i n f o) ;
i t e r = c a l l o em s o l v e s (oem , so lve r , f , u) ;
r e l e a s e o em so l v e (oem) ;

return i t e r ;
}

4.10.10 Example. If it is clear which solver to use, then the call through
call oem solve [s|d|dow]() in Example 4.10.9 can be replaced by a direct call to the solver-
routine like follows. Note, however, that this is a simplified example which does not take into
account that u->fe space could be a direct sum of finite element spaces, as explained in
Section 3.7. Of course, it is just fine for application to ignore the “direct sum” feature if it
is clear that it is not needed. See Example 4.10.11 for an example of how to deal with direct
sums. The reader should also remember that – for simple applications – it is sufficient to use
the high-level routines oem solve [s|d|dow](), see also Example 4.10.9 for the connection
between the example given here and the high-level routines.

const OEMDATA ∗oem ;
int i t e r ;
OEMMVFCT s o l v e r f c t ;
int dim ;

oem = in i t o em so l v e (A, mask , to l , precon , r e s t a r t , max iter , i n f o) ;
s o l v e r f c t = ge t oem so lve r (CG) ; /∗ e . g . ∗/
dim = do f r e a l v e c l e n g t h (u−>f e s p a c e) ;
FOR ALL FREE DOFS(u−>f e space−>admin ,

i f (dof < dim) u−>vec [dof] = f−>vec [dof] = 0 . 0) ;
. . .
s o l v e r f c t (oem , dim , f−>vec , u−>vec) ; /∗ maybe do t h i s mu l t i p l e t imes . . . ∗/
. . .

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 335

FOR ALL FREE DOFS(u−>f e space−>admin ,
i f (dof < dim) f o th e r−>vec [dof] = 0 . 0) ;

s o l v e r f c t (oem , dim , f o th e r−>vec , u−>vec) ; /∗ . . . wi th o ther load−v e c t o r s ∗/
. . .
r e l e a s e o em so l v e r () ;

4.10.11 Example. A similar code-skeleton, taking direct sums of finite ele-
ment spaces into account (see Section 3.7.3) would look like as quoted below.
The interested reader maybe also wants to have a look at the source code
alberta-VERSION/alberta/src/Common/oem solve.c in the ALBERTA distribution. See Ex-
ample 4.10.10 for a simpler example, ignoring that “direct sum” feature. The reader should
also remember that – for simple applications – it is sufficient to use the high-level routines
oem solve [s|d|dow](), see also Example 4.10.9 for the connection between the example
given here and the high-level routines.

const OEMDATA ∗oem ;
int i t e r ;
OEMMVFCT s o l v e r f c t ;
int dim ;
REAL ∗uvec , ∗ f v e c ;

oem = in i t o em so l v e (A, mask , to l , precon , r e s t a r t , max iter , i n f o) ;
s o l v e r f c t = ge t oem so lve r (CG) ; /∗ e . g . ∗/
dim = do f r e a l v e c l e n g t h (u−>f e s p a c e) ;
i f (! CHAIN SINGLE(u)) {

uvec = MEMALLOC(dim , REAL) ;
f v e c = MEMALLOC(dim , REAL) ;
c opy f r om do f r e a l v e c (uvec , u) ;
c opy f r om do f r e a l v e c (fvec , f) ;

} else {
FOR ALL FREE DOFS(u−>f e space−>admin ,

i f (dof < dim) u−>vec [dof] = f−>vec [dof] = 0 . 0) ;
f v e c = f−>vec ;
uvec = u−>vec ;

}
. . .
s o l v e r f c t (oem , dim , fvec , uvec) ;
. . .
r e l e a s e o em so l v e r () ;
i f (! CHAIN SINGLE(u)) {

c o py t o d o f r e a l v e c (u , uvec) ;
MEMFREE(uvec , dim , REAL) ;
MEMFREE(fvec , dim , REAL) ;

}

4.10.3 SOR solvers for DOF-matrices and -vectors

The SOR and SSOR methods are implemented directly for linear systems defined by
DOF MATRIX and DOF REAL [D]VEC[D]s.

4.10.12 Remark. In contrast to the other solvers for linear systems, the SOR- and SSOR-
methods described in this section do not support direct sums of finite element spaces (see
Section 3.7).

336 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

int s o r s (DOFMATRIX ∗ , const DOF REAL VEC ∗ , const DOF SCHAR VEC ∗ ,
DOF REAL VEC ∗ , REAL, REAL, int , int) ;

int so r d (DOFMATRIX ∗ , const DOF REAL D VEC ∗ , const DOF SCHAR VEC ∗ ,
DOF REAL D VEC ∗ , REAL, REAL, int , int) ;

int s s o r s (DOFMATRIX ∗ , const DOF REAL VEC ∗ , const DOF SCHAR VEC ∗ ,
DOF REAL VEC ∗ , REAL, REAL, int , int) ;

int s s o r d (DOFMATRIX ∗ , const DOF REAL D VEC ∗ , const DOF SCHAR VEC ∗ ,
DOF REAL D VEC ∗ , REAL, REAL, int , int) ;

[s]sor [s,d](matrix, f, bound, u, omega, tol, max iter, info) solves the lin-
ear system for a scalar or decoupled vector valued problem in ALBERTA by the [Symmetric]
Successive Over Relaxation method; the return value is the number of used iterations to
reach the prescribed tolerance;

matrix: pointer to a DOF matrix storing the system matrix;

f: pointer to a DOF vector storing the right hand side of the system;

bound: optional pointer to a DOF vector giving Dirichlet boundary information;

u: pointer to a DOF vector storing the initial guess on input and the calculated solution
on output;

omega: the relaxation parameter and must be in the interval (0, 2]; if it is not in this interval
then omega=1.0 is used;

tol: tolerance for the maximum norm of the correction; if this norm is less than or equal
to tol, then sor [s,d]() returns the actual iterate as the solution of the system;

max iter: maximal number of iterations to be performed by sor [s,d]() although the
tolerance may not be reached;

info: level of information of sor [s,d](); 0 is the lowest level of information (no infor-
mation is printed) and 6 the highest level.

4.10.4 Saddle-point problems, CG solver for Schur’s complement

On the linear-algebra level, a linaer saddle-point problem is of the form[
A B
B∗ 0

] [
v
p

]
=

[
f
g

]
, f, v ∈ X, g, p ∈ Y, (4.2)

with matrices A and B, unknown vectors v and p and a load vector consisting of the vector f
and g. Usually, A has its origin in the discretization of an unconstraint minimization problem,
B∗ plays the role of a linear constraint, and p is the corresponding Lagrangian multiplier. Y
is the finite element space for the Lagrangian multiplier, and X a possibly different finite
element space for the principal unknown v:

If A is invertible, then it is possible to transform (4.2) into an equation for p only:

T p = B∗A−1 f − g, T := B∗A−1B, (4.3)

where v can be reconstructed from p by v = A−1(f −B p). If A is symmetric positive definite,
then so is T , and thus it is possible to solve (4.3) by means of a CG-method in this case
which, interestingly, even computes v as a by-product.

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 337

In the same spirit as for the iterative solvers for “ordinary” problems, this SPCG-
method is implemented in a fairly abstract manner, using a special data-structure to de-
scribe the saddle-point problem. The actual CG-iteration is executed by a call to the function
oem spcg(oem sp data,...), described below in Section 4.10.14. It is the task of the ap-
plication to fill that OEM SP DATA-structure (see Section 4.10.13 below). However, there are
interface functions to aid the implementation of such a saddle-point solver with ALBERTA’s
DOF-matrices and -vectors, see Section 4.10.5 below.

typedef struct oem sp data OEM SP DATA;
int oem spcg (OEM SP DATA ∗data , int dimX , const REAL ∗ f , REAL ∗u , int dimY ,

const REAL ∗g , REAL ∗p) ;

4.10.13 Datatype (OEM SP DATA).

Definition

typedef int (∗OEMMVFCT) (void ∗data , int dim , const REAL ∗ rhs , REAL
∗u) ;

typedef void (∗OEMGEMVFCT) (void ∗data ,
REAL fac to r ,
int dimX , const REAL ∗x , int dimY , REAL

∗y) ;

typedef struct oem sp data OEM SP DATA;
struct oem sp data
{

OEMMVFCT so lve Auf ;
void ∗ so lve Auf data ;
OEMGEMVFCT B;
void ∗B data ;
OEMGEMVFCT Bt ;
void ∗Bt data ;
OEMMVFCT pro j e c t ;
void ∗ p ro j e c t da t a ;
int (∗ precon) (void ∗ud ,

int dimY , const REAL ∗g Btu , const REAL ∗ r ,
REAL ∗Cr) ;

void ∗ precon data ;

WORKSPACE ∗ws ;

REAL to l e r an c e ;
int r e s t a r t ;
int max iter ;
int i n f o ;

REAL i n i t i a l r e s i d u a l ;
REAL r e s i d u a l ;
} ;

Components

338 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

solve Auf() An application provided function for solving Ax = b, for given initial
guess and solution x and load-vector b. This can, e.g. be one of the solver-functions
for ordinary problems, see Section 4.10.1.

solve Auf data Application data passed to solve Auf() as first argument. If
solve Auf() is one of the solver-functions described in Section 4.10.1 or a func-
tion pointer returned by get oem solver(), then this should be a pointer to a
OEM DATA structure, as returned for instance by init oem solver(), see above in
Section 4.10.2.

B() A pointer to an application provided function with the calling convention

B(B data , f a c to r , dimY , p , dimX , v) ;

This function must implement the operation v = v + factor B, p In the abstract
setting the range of the operator underlying B() is the same as the range of the
unconstrained operator A() such that it makes sense to apply the inverse of A() to
the result of B().

B data Application data passed to B() as first argument.

Bt() The pendent to B(): A pointer to an application provided function with the
calling convention

Bt(Bt data , f a c to r , dimX , v , dimY , p) ;

This function must implement the operation p = p+factor B∗ v For practical reasons
– e.g. in the context of a Stokes problem – the range of the discrete operator Bt()

need not necessarily be the finite element space for the Lagrangian multiplier (see
precon() and project() below), but often is rather the dual of that space.

Bt data Application data passed to Bt() as first argument.

project() A function pointer pointing to an application provided function which
has the task to project the result from Bt() to the finite element space for the
Lagrangian multiplier. project() maybe NULL is such a projection is not needed.
Arguably, this could already have been incorporated into Bt(), however, it is some-
times more efficient to let the discrete operator Bt() map to the dual of the space
for the Lagrangian multiplier. See also precon() below. Often project() will just
be an L2-projection involving the inversion of a mass-matrix, which can for instance
be done by a CG-method, or maybe even more efficiently with mass-lumping.

project data Application data pointer passed as first argument to project().

precon() A function pointer pointing to an application provided function which
should implement a preconditioner “C()” for the CG-method for Schur’s complement
operator. precon() may be NULL. The calling convention is

i t e r a t i o n s = precon (precon data , dim , g Btu , r , Cr) ;

where the non-self-explanatory arguments have the following meaning:

g Btu The current value of g−B∗u, where u is the current iterate for the principal
unknown v in the CG-method. This is the result of a call to Bt(), and most likely
lives in the dual of the space for the Lagrangian multiplier.

r This is project(g Btu), this lives in space for the Lagrangian multiplier.

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 339

The result value of precon() must be stored in Cr. Cr must belong to the space
for the Lagrangian multiplier. As an example, it is known that for a Quasi-Stokes
problem

µu− ν∆u+∇p = f, ∇ · u = 0,

a good choice for a preconditioner for Schur’s complement CG-method is

C(r) = ν r + µ q, with −∆q = g Btu.

Note that we have omitted the boundary conditions, which, of course, have to be
applied to close the differential equations mentioned above. The reader is referred to
standard text-books dealing with the discretizations of saddle-point problems.

precon data Data pointer passed as first argument to precon().

ws A pointer to a work-space area. May be NULL. If supplied, it must point to an
initialized work-space of size

2 ∗ dimY + dimX + max(dimX, dimY)

if precon() == NULL and

3 ∗ dimY + dimX + max(dimX, dimY).

If ws == NULL, then oem spcg() will allocate a work-space area by itself.

tolerance oem spcg() will terminate if the norm of the CG-residual for the La-
grangian multiplier falls below tolerance.

restart Not used by oem spcg(). Could be used when implementing similar iter-
ative methods for non-symmetric saddle-point problems, e.g. by means of applying
GMRES.

max iter ome spcg() will terminate after this many iterations of the main-loop.

info An integer controlling the amount of information printed to the terminal the
application program runs in.

initial residual Output. Upon return from oem spcg() this component stores the
initial residual.

residual Output. Upon return from oem spcg() this component stores the final
residual. This could be used for error recovery, e.g. if the iteration terminates because
the maximum number of iterations (as specified by max iter) was exhausted.

4.10.14 Function (oem spcg()).

Synopsis

i t e r a t i o n s = oem spcg (sp data , dimX , f , u , dimY , g , p) ;

Description

This function implement a CG-method for the inversion of Schur’s complement operator
for a linear symmetric saddle-point problem.

340 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

Parameters

sp data A pointer to a correctly filled OEM SP DATA structure, as explained above.
Upon return from oem spcg(), the fields initial residual and residual will con-
tain the initial and the final residual of the CG-iterations.

dimX The dimension of the space for the principal unknown u.

f Load-vector for the principal equation.

u Storage for the principal unknown, and start-value for the principal unknown for
the CG-method.

dimY Dimension of the space for the Lagrangian multiplier.

g Load-vector for the constraint equation.

p Storage for the Lagrangian multiplier and start-value for the CG-method.

Return Value

The number of times the main-loop of the CG-iteration was executed. If this is equal
to sp data->max iter, then the application should also inspect sp data->residual to
determine whether the approximative solution is still acceptable.

4.10.5 Saddle-pointer solvers for DOF-matrices and -vectors

Similar to the functions explained in Section 4.10.2 there are also interface functions to medi-
ate between the more low-level oem spcg() function described in the previous Section 4.10.4
and the DOF-vectors and -matrices generated by ALBERTA’s assemble frame-work, as de-
scribed in Section 4.7. The functions below have the slight disadvantage that they take too
many arguments. The interface functions support direct sums of finite element spaces (see
Section 3.7) which is of some importance in the context of mixed discretizations for the
Stokes-problem.

There are two interfaces available: one for a saddle-point problem with a single lin-
ear constraint, and one for a saddle-point problem with multiple linear constraints, with
the restriction that the constraints are decoupled. We start with the single-constraint ver-
sion oem sp solve() in Section 4.10.15 and continue with the multiple-constraint functions
init sp constraint(), release sp constraint() and oem sp schur solve() in the Sec-
tions 4.10.17-4.10.19. There is one additional support function sp dirichlet bound() which
deals with compatibility conditions in the context of a divergence constraint and Dirichlet
boundary conditions, see Section 4.10.21.

The suite of demo-programs contains example programs for the discretization of Stokes
and Quasi-Stokes problems, the interested reader is referred to the programs

alberta-VERSION-demo/src/Common/stokes.c

and

alberta-VERSION-demo/src/Common/quasi-stokes.c.

The prototypes for the available functions read as follows:

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 341

int oem sp so lve dow sc l (OEM SOLVER sp so l v e r ,
REAL sp to l , REAL t o l i n c r ,
int sp max i ter , int sp in f o ,
const DOFMATRIX ∗A, const DOF SCHAR VEC ∗bound ,
OEM SOLVER A solver ,
int A max iter , const PRECON ∗A precon ,
DOFMATRIX ∗B,
DOFMATRIX ∗Bt ,
DOFMATRIX ∗Yproj ,
OEM SOLVER Ypro j so lve r ,
int Yproj max iter , const PRECON ∗Yproj precon ,
DOFMATRIX ∗Yprec ,
OEM SOLVER Yprec so lver ,
int Yprec max iter , const PRECON ∗Yprec precon ,
REAL Ypro j f rac , REAL Ypre frac ,
const DOF REAL VEC D ∗ f ,
const DOF REAL VEC ∗g ,
DOF REAL VEC D ∗x ,
DOF REAL VEC ∗y) ;

int oem sp so lve ds (OEM SOLVER sp so l v e r ,
REAL sp to l , REAL t o l i n c r ,
int sp max i ter , int sp in f o ,
const DOFMATRIX ∗A, const DOF SCHAR VEC ∗bound ,
OEM SOLVER A solver ,
int A max iter , const PRECON ∗A precon ,
DOFMATRIX ∗B,
DOFMATRIX ∗Bt ,
DOFMATRIX ∗Yproj ,
OEM SOLVER Ypro j so lve r ,
int Yproj max iter , const PRECON ∗Yproj precon ,
DOFMATRIX ∗Yprec ,
OEM SOLVER Yprec so lver ,
int Yprec max iter , const PRECON ∗Yprec precon ,
REAL Ypro j f rac , REAL Ypre frac ,
const DOF REAL D VEC ∗ f ,
const DOF REAL VEC ∗g ,
DOF REAL D VEC ∗x ,
DOF REAL VEC ∗y) ;

REAL sp d i r i c h l e t b ound dow s c l (MatrixTranspose transpose ,
const DOFMATRIX ∗Bt ,
const DOF SCHAR VEC ∗bound ,
const DOF REAL VEC D ∗u h ,
DOF REAL VEC ∗g h) ;

REAL sp d i r i c h l e t b ound d s (MatrixTranspose transpose ,
const DOFMATRIX ∗Bt ,
const DOF SCHAR VEC ∗bound ,
const DOF REAL D VEC ∗u h ,
DOF REAL VEC ∗g h) ;

typedef struct s p c on s t r a i n t
{

const DOFMATRIX ∗B, ∗Bt ;
const DOF SCHAR VEC ∗bound ;
OEMMVFCT pro j e c t ;
OEMDATA ∗ p ro j e c t da t a ;
OEMMVFCT precon ;

342 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

OEMDATA ∗ precon data ;
REAL p r o j f a c t o r , p r e c f a c t o r ;

} SP CONSTRAINT;

SP CONSTRAINT ∗ i n i t s p c o n s t r a i n t (const DOFMATRIX ∗B,
const DOFMATRIX ∗Bt ,
const DOF SCHAR VEC ∗bound ,
REAL to l , int i n fo ,
const DOFMATRIX ∗Yproj ,
OEM SOLVER Ypro j so lve r ,
int Yproj max iter ,
const PRECON ∗Yproj prec ,
const DOFMATRIX ∗Yprec ,
OEM SOLVER Yprec so lver ,
int Yprec max iter ,
const PRECON ∗Yprec prec ,
void (∗Yprec bndry) (void ∗data ,

const DOF REAL VEC ∗ r ,
DOF REAL VEC ∗mod r ,
DOF REAL VEC ∗Cr) ,

void ∗Yprec bndry data ,
REAL Ypro j f rac , REAL Yprec f rac) ;

void r e l e a s e s p c o n s t r a i n t (SP CONSTRAINT ∗ c on s t r a i n t da t a) ;
int oem sp schur so lve (OEM SOLVER sp so l v e r ,

REAL sp to l , int sp max i ter , int sp in f o ,
OEMMVFCT p r i n c i p a l i n v e r s e ,
OEMDATA ∗ pr i n c i pa l da t a ,
const DOF REAL VEC D ∗ f ,
DOF REAL VEC D ∗u ,
SP CONSTRAINT ∗ cons t ra in t ,
const DOF REAL VEC ∗g ,
DOF REAL VEC ∗p ,
. . .) ;

4.10.15 Function (oem sp solve [dow scl|ds]()).

Synopsis

i t e r a t i o n s = oem sp so lve [dow sc l | ds] (
s p s o l v e r ,
s p t o l , t o l i n c r , sp max iter , s p i n f o ,
A, mask , A so lver , A max iter , A precon ,
B, Bt ,
Yproj , Ypro j so lve r , Yproj max iter , Yproj precon ,
Yprec , Yprec so lver , Yprec max iter , Yprec precon ,
Ypro j f rac , Yprec f rac ,
f , g , x , y) ;

Description

This function implements an interface between the DOF-vector and -matrix level and the
low-level functions described in Section 4.10.4 above. Internally, oem sp solve() emits

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 343

calls to init oem solve() and initializes the support data-structure OEM SP DATA. Then
finally the function oem spcg() is called, see also Section 4.10.4.

oem sp solve() implements a preconditioner C of the form

C(r) = Yproj frac ∗ Yproj(r) + Yprec frac ∗ Yprec−1(r), (4.4)

which has the form of the usual preconditioner for a Quasi-Stokes problem, which was
already mentioned in the explanation for the parameter precon() for the function
oem spcg(), see Section 4.10.14.

Parameters

sp solver The solver used for the outer iteration. Currently, only a CG-method for a sym-
metric and positive (semi-) definite Schur’s complement operator is implemented, so
sp solver must equal the symbol CG.

sp tol The tolerance for the outer CG-loop.

tol incr A decrease in tolerance for the iterative solvers for the sub-problems, like inverting
the principal part A of the operator. The tolerances for the solvers for the sub-problems
will be sp tol / tol incr.

sp max iter The maximum number of iterations for the outer CG-loop.

sp info The verbosity level. The solvers for the sub-problems will inherit a decreased ver-
bosity level of max(0, spinfo− 3).

A The matrix for the principal part of the saddle-point problem.

bound A DOF SCHAR VEC used to exclude DOFs from the operation of the matrix-vector rou-
tines. See semantics are as explained in the explanations for the argument mask to the
function init oem solve(), see Section 4.10.5.

A solver The solver to use to invert A, compare with the explanations for get oem solver()

in Section 4.10.4 and the parameter solver to init oem solver().

A max iter The maximum number of iterations for the linear solver used to invert A.

A precon A pointer to the descriptor for the preconditioner to use for the inversion of A, see
Section 4.10.7 below.

B A pointer to the matrix implementing B, see (4.2).

Bt A pointer to the matrix implementing B∗, see (4.2). Bt may be NULL, in which case
the matrix B is used, passing the Transpose flag to the matrix-vector routines, see
Section 3.3.7. An application calling oem sp solve() with Bt == NULL most likely will
want to make use of the optional parameter mask above in order to implement Dirichlet
boundary conditions.

Yproj The matrix for the back-projection of the result from applying Bt to the finite element
space for the constraint. Compare the remarks in the explanation of the component
project() of the OEM SP DATA structure.

344 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

Yproj solver The solver to use for inverting Yproj.

Yproj max iter The maximum number of iterations for inverting Yproj.

Yproj precon The preconditioner for the iterative solver for the inversion of Yproj. See
Section 4.10.7 below.

Yprec A part defining one part of the preconditioner as explained in equation (4.4). Maybe
NULL, in which case no preconditioner will be applied in the outer CG-loop for inverting
Schur’s complement.

Yprec solver The solver to use for inverting Yprec.

Yprec max iter The maximum number of iterations for inverting Yprec.

Yprec precon The preconditioner for the iterative solver for the inversion of Yprec. See
Section 4.10.7 below.

Yproj frac See equation (4.4) above.

Yprec frac See equation (4.4) above.

f The load vector for the principal unknown.

g The load vector for the linear constraint. Even in the case when the non-discrete problem
is subject to a homogeneous constraint, it can be necessary to impose a slightly inhomo-
geneous constraint in the discrete setting. One notable example is the implementation
of Dirichlet boundary conditions in the context of a divergence constraint. In this case
interpolated Dirichlet boundary values will in general fail to fulfill the compatibility
condition the discrete divergence constraint imposes on the discrete boundary values.
Compare with the explanations for sp dirichlet bound() below.

x Storage for the principal of the solution, and initial guess for the CG-method.

y Storage for the Lagrangian multiplier, and initial guess for the CG-method for Schur’s
complement.

4.10.16 Datatype (SP CONSTRAINT).

Description

In the multi-constraint case, each single constraint is described by a SP CONSTRAINT

structure, in order to reduce the number of parameters which have to be passed to the
saddle-point solver. Such a structure can be obtained by a call to init sp constraint(),
see below Section 4.10.17.

The meaning of the individual structure components is identical to the meaning of the
respective component of the OEM SP DATA or parameter of the oem sp solve() function,
the reader is therefore referred to Section 4.10.13 and Section 4.10.15 for a detailed
discussion.

Definition

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 345

typedef struct s p c on s t r a i n t
{

const DOFMATRIX ∗B, ∗Bt ;
const DOF SCHAR VEC ∗bound ;
OEMMVFCT pro j e c t ;
void ∗ p ro j e c t da t a ;
OEMMVFCT precon ;
void ∗ precon data ;
REAL p r o j f a c t o r , p r e c f a c t o r ;

} SP CONSTRAINT;

Components

B See parameter B of oem sp solve().

Bt See parameter Bt of oem sp solve().

bound See parameter bound of oem sp solve().

project() See component project() of OEM SP DATA.

project data See component project data of OEM SP DATA.

precon() See component precon() of OEM SP DATA.

precon data See component precon data of OEM SP DATA.

proj factor See parameter Yproj frac of oem sp solve().

prec factor See parameter Yprec frac of oem sp solve().

4.10.17 Function (init sp constraint()).

Synopsis

c o n s t r a i n t d a t a =
i n i t s p c o n s t r a i n t (B, Bt , bound , to l , in fo ,

Yproj , Ypro j so lve r , Yproj max iter ,
Yproj prec ,
Yprec , Yprec so lver , Yprec max iter ,
Yprec prec ,
Yprec bndry , Yprec bndry data ,
Ypro j f rac , Yprec f rac) ;

Description

Allocate and initialize a SP CONSTRAINT structure, for later use with
oem sp schur solve(), see Section 4.10.19 below. The meaning of the parame-
ters is almost identical to the corresponding parameters to oem sp solve(), see
Section 4.10.15 above.

Parameters

B See parameter B of oem sp solve().

Bt See parameter Bt of oem sp solve().

346 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

bound See parameter bound of oem sp solve().

tol The tolerance for the sub-solvers used to invert Yproj and Yprec (if present).
Compare parameter tol incr of oem sp solve().

info Control the amount of messages printed to the terminal the application has
been started from. Compare parameter sp info of oem sp solve().

Yproj See parameter Yproj of oem sp solve().

Yproj solver See parameter Yproj solver of oem sp solve().

Yproj max iter See parameter Yproj max iter of oem sp solve().

Yproj prec See parameter Yproj prec of oem sp solve().

Yprec See parameter Yprec of oem sp solve().

Yprec solver See parameter Yprec solver of oem sp solve().

Yprec max iter See parameter Yprec max iter of oem sp solve().

Yprec prec See parameter Yprec prec of oem sp solve().

Yprec frac See parameter Yprec frac of oem sp solve().

Yprec bndry(data, r, mod r, Cr) A callback for cases where the constraint has
to fulfil special boundary conditions. Yprec bndry may be NULL. The first argument
to the call-back is the application provided Yprec bndry data-pointer specified by
the following argument. r is the current residual which normally serves as load-vector
for the preconditioner (see equation (4.4)), mod r is a modifiable copy of r, and Cr

is the preconditioned residual which is solved for when inverting Yprec.

Yprec bndry data See the description for Yprec bndry() above; Yprec bndry data

is the application-data pointer for that callback.

Yprec frac See parameter Yprec frac of oem sp solve().

Return Value

A pointer to an initialized SP CONSTRAINT structure, which can be passed as argument to
oem sp schur solve() described in Section 4.10.19 below. The return structure should
be deleted by a call to release sp constraint(), see below.

4.10.18 Function (release sp constraint()).

Synopsis

r e l e a s e s p c o n s t r a i n t (c o n s t r a i n t d a t a) ;

Description

Release the resources associated with a SP CONSTRAINT structure as returned by
init sp constraint().

Parameters

constraint data A pointer to a SP CONSTRAINT structure previously acquired by a
call to init sp constraint(), see Section 4.10.17.

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 347

4.10.19 Function (oem sp schur solve()).

Prototype

int oem sp schur so lve (OEM SOLVER sp so l v e r ,
REAL sp to l , int sp max i ter , int sp in f o ,
OEMMVFCT p r i n c i p a l i n v e r s e ,
OEMDATA ∗ pr i n c i pa l da t a ,
const DOF REAL VEC D ∗ f ,
DOF REAL VEC D ∗u ,
SP CONSTRAINT ∗ cons t ra in t ,
const DOF REAL VEC ∗g ,
DOF REAL VEC ∗p ,
. . .) ;

Synopsis

i t e r a t i o n s =
oem sp schur so lve (s p s o l v e r ,

s p t o l , sp max iter , s p i n f o ,
A inverse , A data , f , u ,
cons t ra in t , g , p ,
. . .) ;

Description

Solve a saddle-point problem with possibly multiple, decoupled linear constraints by
inverting the associated Schur’s complement operator by means of an iterative method.
Currently, only a CG-method is implemented, so the principal operator A has to be
symmetric and positive (semi-) definite.

Parameters

sp solver The solver used for the outer iteration. Currently, only a CG-method for a
symmetric and positive (semi-) definite Schur’s complement operator is implemented,
so sp solver must equal the symbol CG.

sp tol The tolerance for the outer CG-loop.

sp max iter The maximum number of iterations for the outer CG-loop.

sp info A “verbosity-level” controlling the amount of information printed to the
terminal the application is running from.

A inverse() Pointer to a solver-function, for instance as returned by
get oem solver().

A data A pointer to a data structure needed by A inverse(), the pointer is passed
as first argument to A inverse(). See also init oem solver() in Section 4.10.5.

f The load-vector for the principal equation.

u Storage for the principal unknown (solution), and initial guess for the CG-method.

348 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

constraint A SP CONSTRAINT structure, for instance as generated by a call to
init sp constraint(), see Section 4.10.17, see also release sp constraint(), Sec-
tion 4.10.18.

g The load vector for the possibly inhomogeneous linear constraint described by the
parameter constraint. Note that only scalar constraints are supported by this func-
tion, consequently g is a scalar DOF REAL VEC.

p Storage for the Lagrangian multiplier associated with constraint and initial guess
for the Lagrangian multiplier in the outer CG-loop.

... More constraints may be added after the parameter p, each as a triple

. . . , c on s t ra in t da ta , l oad vec to r , l a g r ang i an mu l t i p l i e r , . . .

All constraints must be decoupled from each other. After the final constraint a
NULL-pointer must be passed to oem sp schur solve(), if only a single constraint is
needed, then the first argument after the parameter p must already be a NULL-pointer.

Return Value

The number of iterations of the outer CG-loop for the inversion of Schur’s complement.

Examples

The single-constraint oem sp solve() functions are implemented on top of
oem sp schur solve(). The interested reader may want to have a look at
alberta-VERSION/alberta/src/Common/oem sp solve.c. See also Example 4.10.20
below.

4.10.20 Example. A brief demonstration of how oem sp schur solve() could be used in
the single constraint case is given below. The reader is referred to Section 4.10.7 below for
the documentation of the functions related to preconditioning.

. . . /∗ o ther s t u f f ∗/

A prec = in i t p r e c on f r om type (A, NULL /∗ bound ∗/ , sub in fo , &A prec type) ;
A oem = in i t o em so l v e (A, NULL, to l , A prec , −1, A miter , s ub i n f o) ;

Ypro j prec = in i t p r e c on f r om type (Yproj , NULL /∗ bound ∗/ , sub in fo ,
Ypro j prec type) ;

Yprec prec = in i t p r e c on f r om type (Yprec , NULL /∗ bound ∗/ , sub in fo ,
Yprec prec type) ;

SP CONSTRAINT ∗ d i v c on s t r a i n t =
i n i t s p c o n s t r a i n t (B, Bt , NULL, t o l / 100 .0 , MAX(0 , i n f o − 3) ,

Yproj , Ypro j so lve r , Yproj miter , Yproj prec ,
Yprec , Yprec so lver , Yprec miter , Yprec prec ,
nu , mu) ;

oem sp schur so lve (so lve r , to l , miter , in fo ,
g e t o em so lve r (A so lve r) , A oem ,
f h , u h ,
d i v c on s t r a i n t ,
g h , p h ,
NULL) ;

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 349

r e l e a s e s p c o n s t r a i n t (d i v c on s t r a i n t) ;
r e l e a s e o em so l v e (A oem) ;

. . . /∗ o ther s t u f f ∗/

4.10.21 Function (sp dirichlet bound [dow scl|ds]()).

Prototype

REAL sp d i r i c h l e t b ound dow s c l (MatrixTranspose transpose ,
const DOFMATRIX ∗Bt ,
const DOF SCHAR VEC ∗bound ,
const DOF REAL VEC D ∗u ,
DOF REAL VEC ∗g) ;

REAL sp d i r i c h l e t b ound d s (MatrixTranspose transpose ,
const DOFMATRIX ∗Bt ,
const DOF SCHAR VEC ∗bound ,
const DOF REAL D VEC ∗u ,
DOF REAL VEC ∗g) ;

Synopsis

f l u x e x c e s s = s p d i r i c h l e t b o u n d [dow sc l | ds] (
transpose , Bt , bound , u , g) ;

Description

If a flow field u is subject to a divergence constraint and has to satisfy Dirichlet boundary
values h on the entire boundary of a domain Ω, and if the test-space for the Lagrangian
multiplier contains the function which is constant and equal to 1 on the entire domain,
then the Dirichlet boundary values have to satisfy the compatibility condition

0 =

∫
Ω

1 div u = −
∫
∂Ω
u · ν = −

∫
∂Ω
h · ν. (4.5)

This compatibility conditions has also to be satisfied in the discrete setting, however, if
one simply uses Lagrange-interpolation to implement Dirichlet boundary values, then
the discrete Dirichlet boundary values in general violate this condition, and consequently
the discrete saddle point problem does not have a solution in this case. One way to cope
with this problem is to solve a slightly inhomogeneous saddle-point problem, where a
load-vector for the Lagrangian multiplier compensates for the “flux-excess” of the inter-
polated Dirichlet boundary conditions (another way would be to modify the boundary
values, of course).

sp dirichlet bound() computes a load-vector for the Lagrangian multiplier by ap-
plying the B∗ operator to the boundary values. Of course, this makes only sense if the
discrete boundary values asymptotically approximate the compatibility condition in the
limit h→∞.

350 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

Parameters

transpose If equal to Tranpose, then the following parameter Bt actually is not B∗,
but B. sp dirichlet bound() internally uses the transposed matrix for computing
the load-vector g. If the parameter Bt is actually B∗, the transpose should be set
to NoTranpose.

Bt A pointer to the DOF-matrix implementing the B∗ matrix from equation (4.3),
or the B-matrix if transpose == Transpose.

bound A DOF SCHAR VEC, if bound->vec[dof] >= DIRICHLET, then the corre-
sponding DOF belongs to a Dirichlet boundary. bound must not be NULL,
sp dirichlet bound() just works on the linear algebra level and does not loop
over the mesh-elements. A suitable boundary-flag vector can be obtained by a call
to the function dirichlet bound(), see also Section 4.7.7.1.

If sp dirichlet bound() encounters DOFs with bound->vec[dof] <= NEUMANN,
then it returns immediately to the caller and does not modify the load-vector g.
See also Section 3.2.4.

u The initial value for the principle unknown, sp dirichlet bound() expects that u
already carries the Dirichlet boundary values.

g Storage for the load-vector to compensate for the flux-excess. Note that the appli-
cation has to initialize g prior to calling sp dirichlet bound(), which works also in
the case of an inhomogeneous divergence constraint. In that case the compatibility
condition has to be modified in the obvious manner. Anyhow, sp dirichlet bound()

works additive.

Return Value

The total flux excess over the boundary segments of the domain, or 0.0 if for any DOF
with bound->vec[DOF] <= NEUMANN was encountered.

Examples

The interested read is referred to the program

alberta-VERSION-demo/src/Common/stokes.c

4.10.6 OEM matrix-vector functions for DOF-matrices and -vectors

The general oem ...() solvers all need pointers to matrix-vector multiplication routines which
do not accept arguments of type DOF REAL [D]VEC[D] and a DOF MATRIX but work directly
on flat REAL-arrays. For the application to a scalar or vector-valued linear system described
by a DOF MATRIX (and an optional DOF SCHAR VEC which can be used to honour Dirichlet
boundary conditions, see Section 4.7.7.1), the following routines are provided:

typedef int (∗OEMMVFCT) (void ∗data , int dim , const REAL ∗ rhs , REAL ∗u) ;

OEMMVFCT oem in i t mat vec (void ∗∗ dataptrptr ,
MatrixTranspose transpose , const DOFMATRIX ∗A,
const DOF SCHAR VEC ∗mask) ;

void ex i t oem mat vec (void ∗dataptr)

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 351

4.10.22 Example. A short example demonstrating the function listed above. These are
stripped-down versions of init/release oem solve() explained in Section 4.10.2. The inter-
ested reader is referred to alberta-VERSION/alberta/src/Common/oem solve.c for the full
source code.

OEMDATA ∗ s imp l e i n i t o em so l v e (const DOFMATRIX ∗A,
const DOF SCHAR VEC ∗mask ,
REAL to l , int max iter , int i n f o)

{
OEMDATA ∗oem ;
const MatrixTranspose t ranspose = NoTranspose ;

oem = MEMCALLOC(1 , OEMDATA) ;
oem−>mat vec = in i t oem mat vec (&oem−>mat vec data , transpose , A, mask) ;
oem−>ws = NULL; /∗ work−space ,

∗ l e t the s o l v e r s handle t h i s po in t f o r themse l ve s .
∗/

oem−>t o l e r an c e = t o l ;
oem−>max iter = max iter ;
oem−>i n f o = MAX(0 , i n f o) ;

return oem ;
}

void s imp l e r e l e a s e o em so l v e (const OEMDATA ∗ oem)
{

OEMDATA ∗oem = (OEMDATA ∗) oem ;

exit oem mat vec (oem−>mat vec data) ;
MEMFREE(oem , 1 , OEMDATA) ;

}

4.10.23 Function (init oem mat vec()).

Synopsis

mat vec f c t =
oem in i t mat vec (&mv data ptr , t ranspose , A, mask) ;

Description

Return a pointer to a function implementing the matrix-vector operation of the ma-
trix A with a DOF REAL[D] VEC[D]. Of course, a matrix-vector product between a
DIM OF WORLD × DIM OF WORLD block-matrix and a scalar DOF REAL VEC does not make
sense. This function is fully aware of ALBERTA’s implementation of direct sums of finite
element spaces, as described in Section 3.7.

Parameters

mv data ptr After calling this function, mv data ptr will point to a control
structure which must be passed as first argument to the function returned by
init oem mat vec(). The application can call exit oem mat vec() to release the
memory resources allocated by init oem mat vec().

352 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

transpose One of Transpose or NoTranspose, indicating the matrix-vector opera-
tion should be performed with either the transposed or non-transposed matrix.

A A pointer to a DOF MATRIX.

mask A pointer to a DOF SCHAR VEC which can be used to exclude DOFs from the
matrix-vector product. mask can be NULL. See Section 4.7.7.1 for further explanations.

Return Value

A function pointer, pointing to the function actually implementing the matrix-vector
operation. This function obeys the calling convention for the matrix-vector routines in
the OEM DATA structure, see Section 4.10.1 above.

Examples See Example 4.10.22.

4.10.24 Function (exit oem mat vec()).

Synopsis

ex i t oem mat vec (mv data ptr) ;

Description

Release the resources previously allocated by a call to init oem mat vec().

Parameters

mv data ptr The data-pointer allocated by init oem mat vec().

Examples See Example 4.10.22.

4.10.7 Preconditioners

4.10.25 Compatibility Note. The get XXX precon() functions no longer carry a
... [s|d|dow|-suffix. This has been dropped, because the DOF MATRIX structure now carries
its own block-type, and the finite element spaces described by the FE SPACE structure now know
about the dimension of the range their elements are mapping to.

See also Compatibility Note 4.10.1 above for further remarks.

The interface functions described in Section 4.10.2 and Section 4.10.5 which call the it-
erative solvers described in Section 4.10.1 and Section 4.10.4 all need a pointer to a PRECON

structure. Such a structure can either be initialized by calls to one of the get XXX precon()

functions described in the Sections 4.10.27-4.10.31:

const PRECON ∗ ge t d i ag p r e con (const DOFMATRIX ∗A,
const DOF SCHAR VEC ∗bound) ;

const PRECON ∗get HB precon (const DOFMATRIX ∗matrix ,
const DOF SCHAR VEC ∗bound ,
int i n f o) ;

const PRECON ∗get BPX precon (const DOFMATRIX ∗matrix ,
const DOF SCHAR VEC ∗bound ,

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 353

int i n f o) ;
const PRECON ∗get SSOR precon (const DOFMATRIX ∗A,

const DOF SCHAR VEC ∗bound ,
REAL omega ,
int n i t e r) ;

const PRECON ∗ get ILUk precon (const DOFMATRIX ∗A,
const DOF SCHAR VEC ∗mask ,
int i l u l e v e l , int i n f o) ;

These functions implement a diagonal and an SSOR preconditioner and two hierarchical basis
preconditioners (classical Yserentant [28] and Bramble-Pasciak-Xu [4] types). The ILU(k)
preconditioner is the one described in [3].

Another possibility to get access to preconditioners are calls to the following functions
(see Sections 4.10.33-4.10.36), which also implement preconditioners for the block-matrices
which arise in the context of direct sums of finite element spaces (see Section 3.7):

const PRECON ∗ i n i t o em precon (const DOFMATRIX ∗A,
const DOF SCHAR VEC ∗mask ,
int i n fo , OEMPRECON precon ,
. . . /∗ ssor omega , s s o r n i t e r e t c . ∗/) ;

const PRECON ∗ v in i t oem precon (const DOFMATRIX ∗A,
const DOF SCHAR VEC ∗mask ,
int i n fo , OEMPRECON,
v a l i s t ap) ;

const PRECON ∗ i n i t p r e c on f r om type (const DOFMATRIX ∗A,
const DOF SCHAR VEC ∗mask ,
int i n fo ,
const PRECONTYPE ∗ prec type) ;

4.10.26 Datatype (PRECON).

Description

A preconditioner may need some initialization phase, which depends on the matrix of
the linear system, but is independent of the actual application of the preconditioner
to a vector. Thus, a preconditioner is described by three functions for initialization,
application, and a final exit routine which may free memory which was allocated during
initialization, e.g. All three functions are collected in the structure

Definition

typedef struct precon PRECON;
struct precon
{

void ∗ precon data ;

bool (∗ i n i t p r e c o n) (void ∗ precon data) ;
void (∗ precon) (void ∗precon data , int n , REAL ∗vec) ;
void (∗ ex i t p r e c on) (void ∗ precon data) ;

} ;

Components

354 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

precon data data for the preconditioner; always the first argument to the functions
init precon(), precon(), and exit precon().

init precon(precon data) pointer to a function for initializing the preconditioning
method; the return value is false if initialization fails, otherwise true.

precon(precon data) pointer to a function for executing the preconditioning
method;

precon can be used as the entry left precon or right precon in an OEM DATA

structure together with precon data as the corresponding pointer left precon data

respectively right precon data.

exit precon(precon data) frees all data used by the preconditioning method.

4.10.27 Function (get diag precon()).

Prototype

const PRECON ∗ ge t d i ag p r e con (const DOFMATRIX ∗A,
const DOF SCHAR VEC ∗bound) ;

Synopsis

precon pt r = g e t d i a g p r e co n (A, bound) ;

Description

Initialize a PRECON structure describing a diagonal preconditioner for A. The application
should call precon ptr->exit precon(precon ptr) to release the resources associated
with precon ptr ones the preconditioner is no longer needed. But note that the solver
interface-functions oem solve() and release oem solve() call exit precon() on their
own.

Parameters

A The matrix to compute the diagonal preconditioner for.

bound A flag-vector, masking out specific DOFs, compare the explanations for the
mask parameter to oem solve(), see Section 4.10.2. bound may be NULL.

Return Value

A pointer to an initialized PRECON structure implementing the preconditioner, see Sec-
tion 4.10.26.

4.10.28 Function (get HB precon()).

Prototype

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 355

const PRECON ∗get HB precon (const DOFMATRIX ∗matrix ,
const DOF SCHAR VEC ∗bound ,
int i n f o) ;

Synopsis

precon pt r = get HB precon (A, bound , i n f o) ;

Description

Initialize a PRECON structure describing a hierarchical preconditioner, as described in
[28]. The application should call precon ptr->exit precon(precon ptr) to release
the resources associated with precon ptr once the preconditioner is no longer needed.
But note that the solver interface-functions oem solve() and release oem solve()

call exit precon() on their own.

Parameters

A The matrix to compute the preconditioner for.

bound A flag-vector, masking out specific DOFs, compare the explanations for the
mask parameter to oem solve(), see Section 4.10.2. bound may be NULL.

info An integer controlling the amount of information printed to the terminal the
application is running in (larger values mean more “noise”).

Return Value

A pointer to an initialized PRECON structure implementing the preconditioner, see Sec-
tion 4.10.26.

4.10.29 Function (get BPX precon()).

Prototype

const PRECON ∗get BPX precon (const DOFMATRIX ∗matrix ,
const DOF SCHAR VEC ∗bound ,
int i n f o) ;

Synopsis

precon pt r = get BPX precon (A, bound , i n f o) ;

Description

Initialize a PRECON structure describing the BPX-preconditioner, as described in [4].
The application should call precon ptr->exit precon(precon ptr) to release the re-
sources associated with precon ptr once the preconditioner is no longer needed. But
note that the solver interface-functions oem solve() and release oem solve() call
exit precon() on their own.

356 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

Parameters

A The matrix to compute the preconditioner for.

bound A flag-vector, masking out specific DOFs, compare the explanations for the
mask parameter to oem solve(), see Section 4.10.2. bound may be NULL.

info An integer controlling the amount of information printed to the terminal the
application is running in (larger values mean more “noise”).

Return Value

A pointer to an initialized PRECON structure implementing the preconditioner, see Sec-
tion 4.10.26.

4.10.30 Function (get SSOR precon()).

Prototype

const PRECON ∗get SSOR precon (const DOFMATRIX ∗A,
const DOF SCHAR VEC ∗bound ,
REAL omega ,
int n i t e r) ;

Synopsis

precon pt r = get SSOR precon (A, bound , i n f o) ;

Description

Initialize a PRECON structure describing an SSOR-preconditioner. The application should
call precon ptr->exit precon(precon ptr) to release the resources associated with
precon ptr once the preconditioner is no longer needed. But note that the solver
interface-functions oem solve() and release oem solve() call exit precon() on their
own.

Parameters

A The matrix to compute the preconditioner for.

bound A flag-vector, masking out specific DOFs, compare the explanations for the
mask parameter to oem solve(), see Section 4.10.2. bound may be NULL.

omega The relaxation parameter.

n iter The number of SSOR-iterations to perform.

Return Value

A pointer to an initialized PRECON structure implementing the preconditioner, see Sec-
tion 4.10.26.

4.10.31 Function (get ILUk precon()).

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 357

Prototype

const PRECON ∗ get ILUk precon (const DOFMATRIX ∗A,
const DOF SCHAR VEC ∗mask ,
int i l u l e v e l , int i n f o) ;

Synopsis

precon pt r = get ILUk precon (A, bound , i n f o) ;

Description

Initialize a PRECON structure describing an ILU(k)-preconditioner as described [3]. This
preconditioner uses a combinatorical, “level”-based strategy to control the amount of
fill-in generated by the incomplete LU -factorization. The preconditioner can benefit
from re-ordering the DOFs in a way that the amount of fill-in generated by a com-
plete LU -factorization would be minimized. Currently, ALBERTA searches for a library
libgpskca and expects that this library contains the functions of the GPSKCA package
from www.netlib.org, [16].

Note the level-based fill-in control has the disadvantage that the generated precondi-
tioner may not even be positive definite, even if A is spd. On the other hand, ILU(k)
may still be spd even if A is not.

The application should call precon ptr->exit precon(precon ptr) to release the re-
sources associated with precon ptr once the preconditioner is no longer needed. But
note that the solver interface-functions oem solve() and release oem solve() call
exit precon() on their own.

Parameters

A The matrix to compute the preconditioner for.

bound A flag-vector, masking out specific DOFs, compare the explanations for the
mask parameter to oem solve(), see Section 4.10.2. bound may be NULL.

level The control parameter for the amount of fill-in, see [3].

info An integer controlling the amount of information printed to the terminal the
application is running in (larger values mean more “noise”).

Return Value

A pointer to an initialized PRECON structure implementing the preconditioner, see Sec-
tion 4.10.26.

4.10.32 Datatype (OEM PRECON).

Definition

http://www.netlib.org

358 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

typedef enum {
PreconEnd = −1,
PreconRepeat = PreconEnd ,
NoPrecon = 0 ,
DiagPrecon = 1 ,
HBPrecon = 2 ,
BPXPrecon = 3 ,
SSORPrecon = 4 ,
SSORPrecon = 5 ,

ILUkPrecon = 6 ,
BlkDiagPrecon = 512 ,
BlkSSORPrecon = 513 ,

} OEMPRECON;

Symbols

PreconEnd

PreconRepeat Terminate the variable argument list of init oem precon(), see Sec-
tion 4.10.33 in the context of block-matrix preconditioners for block-matrices having
their origin in direct-sum structure of the underlying finite element spaces (see Sec-
tion 3.7).

NoPrecon

DiagPrecon

HBPrecon

BPXPrecon Self-explanatory, select the respective preconditioner.

SSORPrecon Select an SSOR-preconditioner with omega == 1.0 and n iter == 2.

SSORPrecon Select an SSOR-preconditioner with control over omega and n iter.

ILUkPrecon Self explanatory.

BlkDiagPrecon Select a preconditioner which acts on a block-matrix structure in-
duced by a finite element space with is composed of several components as a direct
sum (see Section 3.7).

BlkSSORPrecon Currently not supported.

4.10.33 Function (init oem precon()).

Prototype

const PRECON ∗ i n i t o em precon (const DOFMATRIX ∗A,
const DOF SCHAR VEC ∗bound ,
int i n fo , OEMPRECON precon enum ,
. . . /∗ ssor omega , s s o r n i t e r e t c . ∗/) ;

const PRECON ∗ v in i t oem precon (const DOFMATRIX ∗A,
const DOF SCHAR VEC ∗bound ,
int i n fo , OEMPRECON precon enum ,
v a l i s t ap) ;

Synopsis

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 359

precon = in i t oem precon (A, bound , in fo , precon enum , . . .) ;
precon = vin i t oem precon (A, bound , in fo , precon enum , ap) ;

Description

These two function initialize a PRECON structure, based on the value of a descriptive
enumeration symbol. The returned structure can then be passed to oem solve() or
init oem solve(), as described in Section 4.10.2. In contrast to the get XXX precon()

functions described above these two functions support matrices with the block-matrix
structure implied by using direct sums of finite element spaces, see Section 3.7 for further
explanations.

For the difference between the ... “argument” and the ap argument the reader is
referred to any text-book dealing with the C-programming language.

Parameters

A The matrix to compute the preconditioner for.

bound A flag-vector, masking out specific DOFs, compare the explanations for the
mask parameter to oem solve(), see Section 4.10.2. bound may be NULL.

info An integer controlling the amount of information printed to the terminal the
application is running in (larger values mean more “noise”).

precon enum An enumeration value as defined by OEM PRECON, see Section 4.10.32,
selecting the respective preconditioner to use.

..., ap A variable-length argument list, providing additional parameters needed by
some of the preconditioners, as explained below:

SSORPrecon The two arguments following precon enum must specify the relax-
ation parameter omega and the number of iterations n iter to perform.

ILUkPrecon The argument following precon enum must specify the control-
parameter k controlling the amount of fill-in.

BlkDiagPrecon The parameters following precon enum must specify the type and
parameters for the preconditioners for the diagonal blocks. It is the responsibility
of the calling application to ensure that enough preconditioners are defined. An
example to generate a block-diagonal preconditioner for a 3×3 block-matrix (e.g.
in the context of a “Crouzeix-Raviart” discretization for the Stokes-problem in
3d) would be

precon = in i t oem precon (A, NULL, 3 /∗ i n f o ∗/ , BlkDiagPrecon ,
SSORPrecon , 1 . 5 , 2 , DiagPrecon ,

DiagPrecon) ;

The symbol PreconRepeat has a special meaning: it indicates that the last spec-
ified preconditioner should also be used for all other blocks. In the 3× 3 example
given above, the following code-fragment would select diagonal preconditioning
for all blocks¿

precon = in i t oem precon (A, NULL, 3 /∗ i n f o ∗/ , BlkDiagPrecon ,
DiagPrecon , PreconRepeat) ;

360 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

Return Value

A pointer to an initialized PRECON structure implementing the preconditioner, see Sec-
tion 4.10.26.

4.10.34 Datatype (PRECON TYPE).

Description

A data structure which can be use to define more complex preconditioners. The purpose
of this structure is to avoid defining functions with an endless number of arguments. This
“parameter-transport-structure” can be passed to init precon from type(), instead
of calling init oem precon(). The actual definition looks somewhat complicated and
maybe ugly, but using this structure is more or less straight-forward, have a look at
Example 4.10.35 below.

Definition

#define NBLOCKPRECONMAX 10

struct pre con type {
OEMPRECON type ;
union {

struct {
REAL omega ;
int n i t e r ;

} SSOR ;
struct {

int l e v e l ;
} ILUk ;

} param ;
} ;

typedef struct precon type
{

OEMPRECON type ;
union {

struct {
REAL omega ;
int n i t e r ;

} SSOR ;
struct {

int l e v e l ;
} ILUk ;
struct {

struct pre con type precon [N BLOCKPRECONMAX] ;
} BlkDiag ;
struct {

struct pre con type precon [N BLOCKPRECONMAX] ;
REAL omega ;
int n i t e r ;

} BlkSSOR ;
} param ;

} PRECONTYPE;

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 361

Components

type One of the symbolic constants defined by the OEM PRECON enumeration type.
See Section 4.10.32.

param If the preconditioner defined by type needs additional parameters, then the
corresponding section in the param component has to be filled. The names of
the structure components correspond to the parameters for the get XXX precon()

functions described above, currently, only SSORPrecon, ILUkPrecon and, of
course, BlkDiagPrecon need additional parameters. For the latter, the param com-
ponent contains an array of N BLOCK PRECON MAX many struct precon type

sub-structures for storing additional parameters possibly needed by the sub-
preconditioners.

4.10.35 Example. Two short examples demonstrating the use of the PRECON TYPE structure
defined above.

• Defining an SSOR preconditioner with control over the relaxation parameter and the
number of iterations:

PRECONTYPE prec ;
prec . type = SSORPrecon ;
prec . param . SSOR . omega = 1 . 5 ;
prec . param . SSOR . n i t e r = 2 ;

• Defining a preconditioner for a block-matrix resulting from using a direct sum of finite
element spaces

PRECONTYPE prec ;
prec . type = BlkDiagPrecon ;
prec . param . BlkDiag . precon [0] . type = SSOR ;
prec . param . BlkDiag . param . precon [0] . SSOR . omega = 1 . 0 ;
prec . param . BlkDiag . param . precon [0] . SSOR . n i t e r = 1 ;
for (i = 1 ; i < 3 ; i++) {

prec . param . BlkDiag . precon [i] . type = DiagPrecon ;
}

4.10.36 Function (init precon from type()).

Prototype

const PRECON ∗ i n i t p r e c on f r om type (const DOFMATRIX ∗A,
const DOF SCHAR VEC ∗bound ,
int i n fo ,
const PRECONTYPE ∗ prec type) ;

Synopsis

precon = i n i t p r e c o n f r o m t y p e (A, bound , in fo , p rec type) ;

362 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

Description

Initialize a PRECON structure, based on contents of the prec type parameter. The re-
turned structure can then be passed to oem solve() or init oem solve(), as described
in Section 4.10.2. In contrast to the get XXX precon() functions described above these
two functions support matrices with the block-matrix structure implied by using direct
sums of finite element spaces, see Section 3.7 for further explanations.

Parameters

A The matrix to compute the preconditioner for.

bound A flag-vector, masking out specific DOFs, compare the explanations for the
mask parameter to oem solve(), see Section 4.10.2. bound may be NULL.

info An integer controlling the amount of information printed to the terminal the
application is running in (larger values mean more “noise”).

prec type A pointer to a structure of type PRECON TYPE, as described in Sec-
tion 4.10.34 above, describing the preconditioner to generate.

Return Value

A pointer to an initialized PRECON structure implementing the preconditioner, see Sec-
tion 4.10.26.

Examples

The function init oem precon() (see Section 4.10.33) is implemented on top of
init precon from type(). The interested reader is referred to the source code in
alberta-VERSION/alberta/src/Common/oem solver.c

4.10.8 Multigrid solvers

A abstract framework for multigrid solvers is available. The main data structure for the
multigrid solver MG() is

typedef struct mu l t i g r i d i n f o MULTI GRID INFO;
struct mu l t i g r i d i n f o
{

REAL to l e r an c e ; /∗ t o l . f o r r e s i d ∗/
REAL exa c t t o l e r an c e ; /∗ t o l . f o r e x a c t s o l v e r ∗/

int cy c l e ; /∗ 1=V−cyc l e , 2=W−c y c l e ∗/
int n pre smooth , n in smooth ; /∗ no o f smoothing l oops ∗/
int n post smooth ; /∗ no o f smoothing l oops ∗/
int mg leve l s ; /∗ curren t no . o f l e v e l s ∗/
int e x a c t l e v e l ; /∗ l e v e l f o r e x a c t s o l v e r ∗/
int max iter ; /∗ max . no o f MG i t e r ’ s ∗/
int i n f o ;

int (∗ i n i t mu l t i g r i d) (MULTI GRID INFO ∗mg info) ;
void (∗ pre smooth) (MULTI GRID INFO ∗mg info , int l e v e l , int n) ;
void (∗ in smooth) (MULTI GRID INFO ∗mg info , int l e v e l , int n) ;
void (∗ post smooth) (MULTI GRID INFO ∗mg info , int l e v e l , int

n) ;

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 363

void (∗ mg r e s t r i c t) (MULTI GRID INFO ∗mg info , int l e v e l) ;
void (∗mg prolongate) (MULTI GRID INFO ∗mg info , int l e v e l) ;
void (∗ e x a c t s o l v e r) (MULTI GRID INFO ∗mg info , int l e v e l) ;
REAL (∗mg res id) (MULTI GRID INFO ∗mg info , int l e v e l) ;
void (∗ e x i t mu l t i g r i d) (MULTI GRID INFO ∗mg info) ;

void ∗data ; /∗ app l i c a t i o n dep . data ∗/
} ;

The entries yield following information:

tolerance tolerance for norm of residual.

exact tolerance tolerance for “exact solver” on coarsest level.

cycle selection of multigrid cycle type: 1 =V-cycle, 2 =W-cycle,

n pre smooth number of smoothing steps on each level before (first) coarse level correction.

n in smooth number of smoothing steps on each level between coarse level corrections (for
cycle ≥ 2).

n post smooth number of smoothing steps on each level after (last) coarse level correction.

mg levels number of levels.

exact level selection of grid level where the “exact” solver is used (and no further coarse
grid correction), usually exact level=0.

max iter maximal number of multigrid iterations.

info level of information produced by the multigrid method.

init multi grid pointer to a function for initializing the multigrid method; may be NULL;

if not NULL, init multi grid(mg info) initializes data needed by the multigrid method,
returns true if an error occurs.

pre smooth pointer to a function for performing the smoothing step before coarse grid
corrections;

pre smooth(mg info, level, n) performs n smoothing iterations on grid level.

in smooth pointer to a function for performing the smoothing step between coarse grid
corrections;

in smooth(mg info, level, n) performs n smoothing iterations on grid level.

post smooth pointer to a function for performing the smoothing step after coarse grid
corrections;

post smooth(mg info, level, n) performs n smoothing iterations on grid level.

mg restrict pointer to a function for computing and restricting the residual to a coarser
level;

mg restrict(mg info, level) computes and restricts the residual from grid level to
next coarser grid (level-1).

mg prolongate pointer to a function for prolongating and adding coarse grid corrections
to the fine grid solution;

mg prolongate(mg info, level) prolongates and adds the coarse grid (level-1) correc-
tion to the fine grid solution on grid level.

exact solver pointer to a function for the “exact” solver;

exact solver(mg info, level) computes the “exact” solution of the problem on grid
level with tolerance mg info->exact tolerance.

364 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

mg resid pointer to a function for computing the norm of the actual residual;

mg resid(mg info, level) returns the norm of residual on grid level.

exit multi grid a pointer to a cleanup routine, may be NULL;

if not NULLexit multi grid(mg info) is called after termination of the multigrid method
for freeing used data.

data pointer to application dependent data, holding information on or about different grid
levels, e.g.

The abstract multigrid solver is implemented in the routine

int MG(MULTI GRID INFO ∗)

Description:

MG(mg info) based upon information given in the data structure mg info, the subroutine
MG() iterates until the prescribed tolerance is met or the prescribed number of multigrid
cycles is performed.

Main parts of the MG() routine are:

{
int i t e r ;
REAL r e s i d ;

i f (mg info−>i n i t mu l t i g r i d)
i f (mg info−>i n i t mu l t i g r i d (mg info))

return(−1) ;

r e s i d = mg info−>r e s i d (mg info , mg info−>mg leve l s −1) ;
i f (r e s i d <= mg info−>t o l e r an c e)

return (0) ;

for (i t e r = 0 ; i t e r < mg info−>max iter ; i t e r++)
{

r e cu r s i v e MG i t e r a t i on (mg info , mg info−>mg leve l s −1) ;
r e s i d = mg info−>r e s i d (mg info , mg info−>mg leve l s −1) ;
i f (r e s i d <= mg info−>t o l e r an c e)

break ;
}
i f (mg info−>e x i t mu l t i g r i d)

mg info−>e x i t mu l t i g r i d (mg info) ;

return (i t e r +1) ;
}

The subroutine recursive MG iteration() performs smoothing, restriction of the residual
and prolongation of the coarse grid correction:

stat ic void r e cu r s i v e MG i t e r a t i on (MULTI GRID INFO ∗mg info , int l e v e l)
{

int cy c l e ;

i f (l e v e l <= mg info−>e x a c t l e v e l) {
mg info−>e x a c t s o l v e r (mg info , l e v e l) ;

}
else {

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 365

i f (mg info−>pre smooth)
mg info−>pre smooth (mg info , l e v e l , mg info−>n pre smooth) ;

for (c y c l e = 0 ; cy c l e < mg info−>cy c l e ; c y c l e++) {
i f ((c y c l e > 0) && mg info−>in smooth)

mg info−>in smooth (mg info , l e v e l , mg info−>n in smooth) ;

mg info−>mg r e s t r i c t (mg info , l e v e l) ;
r e cu r s i v e MG i t e r a t i on (mg info , l e v e l −1) ;
mg info−>pro longate (mg info , l e v e l) ;

}

i f (mg info−>post smooth)
mg info−>post smooth (mg info , l e v e l , mg info−>n post smooth) ;

}
}

For multigrid solution of a scalar linear system

Au = f

given by a DOF MATRIX A and a DOF REAL VEC f, the following subroutine is available:

int mg s (DOFMATRIX ∗ , DOF REAL VEC ∗ , const DOF REAL VEC ∗ ,
const DOF SCHAR VEC ∗ , REAL, int , int , char ∗) ;

Description:

mg s(matrix, u, f, bound, tol, max iter, info, prefix) solves the linear sys-
tem for a scalar valued problem by a multigrid method; the return value is the number of
performed iterations;

matrix is a pointer to a DOF matrix storing the system matrix, u is a pointer to a DOF
vector for the solution, holding an initial guess on input; f is a pointer to a DOF vector
storing the right hand side and bound a pointer to a DOF vector with information about
boundary DOFs; bound must not be NULL if Dirichlet DOFs are used;

tol is the tolerance for multigrid solver, max iter the maximal number of multigrid iter-
ations and info gives the level of information for the solver;

prefix is a parameter key prefix for the initialization of additional data via GET PARAMETER,
see Table 4.8, may be NULL; an SOR smoother (mg s info->smoother=1) and an SSOR
smoother (smoother=2) are available; under– or over relaxation parameter can be specified
by mg s info->smooth omega. These SOR/SSOR smoothers are used for exact solver,
too.

For applications, where several systems with the same matrix have to be solved, computing
time can be saved by doing all initializations like setup of grid levels and restriction of matrices
only once. For such cases, three subroutines are available:

MG S INFO ∗mg s i n i t (DOFMATRIX ∗ , const DOF SCHAR VEC ∗ , int , char ∗) ;
int mg s so lve (MG S INFO ∗ , DOF REAL VEC ∗ , const DOF REAL VEC ∗ , REAL, int) ;
void mg s ex i t (MG S INFO ∗) ;

Description:

366 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

member default key

mg info->cycle 1 prefix->cycle

mg info->n pre smooth 1 prefix->n pre smooth

mg info->n in smooth 1 prefix->n in smooth

mg info->n post smooth 1 prefix->n post smooth

mg info->exact level 0 prefix->exact level

mg info->info info prefix->info

mg s info->smoother 1 prefix->smoother

mg s info->smooth omega 1.0 prefix->smooth omega

mg s info->exact solver 1 prefix->exact solver

mg s info->exact omega 1.0 prefix->exact omega

Table 4.8: Parameters read by mg s() and mg s init()

mg s init(matrix, bound, info, prefix) function for initializing a multigrid method
for solving a scalar valued problem by mg s solve(); the return value is a pointer to data
used by mg s solve() and is the first argument to this function; the structure MG S INFO

contains matrices and vectors for linear problems on all used grid levels.

matrix is a pointer to a DOF matrix storing the system matrix, bound a pointer to a DOF
vector with information about boundary DOFs; bound must not be NULL if Dirichlet DOFs
are used;

info gives the level of information for mg s solve(); prefix is a parameter key prefix for
the initialization of additional data via GET PARAMETER, see Table 4.8, may be NULL.

mg s solve(mg s info, u, f, tol, max iter) solves the linear system for a scalar val-
ued problem by a multigrid method; the routine has to be initialize by mg s init()

and the return value mg s info of mg s init() is the first argument; the return value
of mg s solve() is the number of performed iterations;

u is a pointer to a DOF vector for the solution, holding an initial guess on input; f is a
pointer to a DOF vector storing the right hand side; tol is the tolerance for multigrid
solver, max iter the maximal number of multigrid iterations;

the function may be called several times with different right hand sides f.

mg s exit(mg s info) frees data needed for the multigrid method and which is allocated
by mg s init().

4.10.37 Remark. The multigrid solver is currently available only for Lagrange finite elements
of first order (lagrange1). An implementation for higher order elements is future work.

4.10.9 Nonlinear solvers

For the solution of a nonlinear equation

u ∈ RN : F (u) = 0 in RN (4.6)

several Newton methods are provided. For testing the convergence a (problem dependent)
norm of either the correction dk in the kth step, i.e.

‖dk‖ = ‖uk+1 − uk‖,

4.10. SOLVER FOR LINEAR AND NONLINEAR SYSTEMS 367

or the residual, i.e.
‖F (uk+1)‖,

is used.
The data structure (defined in alberta util.h) for passing information about assembling

and solving a linearized equation, tolerances, etc. to the solvers is

typedef struct n l s da t a NLS DATA;
struct n l s da ta
{

void (∗ update) (void ∗ , int , const REAL ∗ , int , REAL ∗) ;
void ∗update data ;
int (∗ s o l v e) (void ∗ , int , const REAL ∗ , REAL ∗) ;
void ∗ s o l v e da ta ;
REAL (∗norm) (void ∗ , int , const REAL ∗) ;
void ∗norm data ;

WORKSPACE ∗ws ;

REAL to l e r an c e ;
int r e s t a r t ;
int max iter ;
int i n f o ;

REAL i n i t i a l r e s i d u a l ;
REAL r e s i d u a l ;
} ;

Description:

update subroutine for computing a linearized system;

update(update data, dim, uk, update matrix, F) computes a linearization of the sys-
tem matrix, if update matrix is not zero, and the right hand side F, if F is not NULL, around
the actual iterate uk; dim is the dimension of the nonlinear system, and update data a
pointer to user data.

update data pointer to user data for the update of a linearized equation, first argument
to update().

solve function for solving a linearized system for the new correction; the return value is
the number of iterations used by an iterative solver or zero; this number is printed, if
information about the solution process should be produced;

solve(solve data, dim, F, d) solves the linearized equation of dimension dim with
right hand side F for a correction d of the actual iterate; d is initialized with zeros and
update data is a pointer to user data.

solve data pointer to user data for solution of the linearized equation, first argument to
solve();

the nonlinear solver does not know how the system matrix is stored; such information can
be passed from update() to solve() by using pointers to the same DOF matrix in both
update data and solve data, e.g.

norm function for computing a problem dependent norm ‖.‖; if norm is NULL, the Euclidian
norm is used;

norm(norm data, dim, x) returns the norm of the vector x; dim is the dimension of the
nonlinear system, and norm data pointer to user data.

368 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

norm data pointer to user data for the calculation of the problem dependent norm, first
argument to norm().

ws a pointer to a WORKSPACE structure for storing additional vectors used by a solver; if the
space is not sufficient, the used solver will enlarge this workspace; if ws is NULL, then the
used solver allocates memory, which is freed before exit.

tolerance tolerance for the nonlinear solver; if the norm of the correction/residual is less
or equal tolerance, the solver returns the actual iterate as the solution of the nonlinear
system.

restart restart for the nonlinear solver.

max iter is a maximal number of iterations to be performed, even if the tolerance may not
be reached.

info the level of information produced by the solver; 0 is the lowest level of information
(no information is printed) and 4 the highest level.

initial residual stores the norm of the initial correction/residual on exit.

residual stores the norm of the last correction/residual on exit.

The following Newton methods for solving (4.6) are currently implemented:

int nls newton (NLS DATA ∗ , int , REAL ∗) ;
int nl s newton ds (NLS DATA ∗ , int , REAL ∗) ;
int n l s n ewton f s (NLS DATA ∗ , int , REAL ∗) ;
int nl s newton br (NLS DATA ∗ , REAL, int , REAL ∗) ;

Description:

nls newton(nls data, dim, u0) solves a nonlinear system by the classical Newton
method; the return value is the number of iterations;

nls data stores information about functions for the assemblage and solution of DF (uk),
F (uk), calculation of a norm, tolerances, etc. dim is the dimension of the nonlinear system,
and u0 the initial guess on input and the solution on output; nls newton() stops if the
norm of the correction is less or equal nls data->tolerance; it needs a workspace for
storing 2*dim additional REALs.

nls newton ds(nls data, dim, u0) solves a nonlinear system by a Newton method
with step size control; the return value is the number of iterations;

nls data stores information about functions for the assembling and solving of DF (uk),
F (uk), calculation of a norm, tolerances, etc. dim is the dimension of the nonlinear system,
and u0 the initial guess on input and the solution on output; nls newton ds() stops if
the norm of the correction is less or equal nls data->tolerance; in each iteration at
most nls data->restart steps for controlling the step size τ are performed; the aim is to
choose τ such that

‖DF (uk)
−1F (uk + τdk)‖ ≤ (1− 1

2τ)‖dk‖

holds, where ‖.‖ is the problem dependent norm, if nls data->norm is not NULL, otherwise
the Euclidian norm; each step needs the update of F , the solution of one linearized problem
(the system matrix for the linearized system does not change during step size control) and
the calculation of a norm;

nls newton ds() needs a workspace for storing 4*dim additional REALs.

4.11. GRAPHICS OUTPUT 369

nls newton fs(nls data, dim, u0) solves a nonlinear system by a Newton method
with step size control; the return value is the number of iterations;

nls data stores information about functions for the assembling and solving of DF (uk),
F (uk), calculation of a norm, tolerances, etc. dim is the dimension of the nonlinear system,
and u0 the initial guess on input and the solution on output; nls newton fs() stops if
the norm of the residual is less or equal nls data->tolerance; in each iteration at most
nls data->restart steps for controlling the step size τ are performed; the aim is to choose
τ such that

‖F (uk + τdk)‖ ≤ (1− 1
2τ)‖F (uk)‖

holds, where ‖.‖ is the problem dependent norm, if nls data->norm is not NULL, otherwise
the Euclidian norm; the step size control is not expensive, since in each step only an update
of F and the calculation of ‖F‖ are involved;

nls newton fs() needs a workspace for storing 3*dim additional REALs.

nls newton br(nls data, delta, dim, u0) solves a nonlinear system by a global New-
ton method by Bank and Rose [1]; the return value is the number of iterations;

nls data stores information about functions for the assembling and solving of DF (uk),
F (uk), calculation of a norm, tolerances, etc. delta is a parameter with δ ∈ (0, 1 − α0),
where α0 = ‖DF (u0)u0 + F (u0)‖/‖F (u0)‖; dim is the dimension of the nonlinear system,
and u0 the initial guess on input and the solution on output; nls newton br() stops if
the norm of the residual is less or equal nls data->tolerance; in each iteration at most
nls data->restart steps for controlling the step size by the method of Bank and Rose
are performed; the step size control is not expensive, since in each step only an update of
F and the calculation of ‖F‖ are involved;

nls newton br() needs a workspace for storing 3*dim additional REALs.

4.11 Graphics output

ALBERTA provides one and two dimensional interactive graphic subroutines built on the
X–Windows and GL/OpenGL interfaces, and one, two and three dimensional interactive
graphics via the gltools [10]. Additionally, interfaces for post–processing data with the GRAPE
visualization environment [25] as well as with the General Mesh Viewer [19] are supplied.

4.11.1 One and two dimensional graphics subroutines

A set of subroutines for opening, closing of graphic output windows, and several display rou-
tines are provided, like drawing the underlying mesh, displaying scalar finite element functions
as a graph in 1d, and using iso–lines or iso–colors in 2d. For vector valued functions v similar
routines are available, which display the modulus |v|.

The routines use the following type definitions for window identification, color specification
in [red, green, blue] coordinates, with 0 ≤ red, green, blue ≤ 1, and standard colors

typedef void * GRAPH_WINDOW;

typedef float GRAPH_RGBCOLOR[3];

extern const GRAPH_RGBCOLOR rgb_black;

extern const GRAPH_RGBCOLOR rgb_white;

370 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

extern const GRAPH_RGBCOLOR rgb_red;

extern const GRAPH_RGBCOLOR rgb_green;

extern const GRAPH_RGBCOLOR rgb_blue;

extern const GRAPH_RGBCOLOR rgb_yellow;

extern const GRAPH_RGBCOLOR rgb_magenta;

extern const GRAPH_RGBCOLOR rgb_cyan;

extern const GRAPH_RGBCOLOR rgb_grey50;

extern const GRAPH_RGBCOLOR rgb_albert;

extern const GRAPH_RGBCOLOR rgb_alberta;

The last two colors correspond to the two different colors in the ALBERTA logo.

The following graphic routines are available for one and two dimensions:

GRAPH_WINDOW graph_open_window(const char *, const char *, REAL *, MESH *);

void graph_close_window(GRAPH_WINDOW);

void graph_clear_window(GRAPH_WINDOW, const GRAPH_RGBCOLOR);

void graph_mesh(GRAPH_WINDOW, MESH *, const GRAPH_RGBCOLOR, FLAGS);

void graph_drv(GRAPH_WINDOW, const DOF_REAL_VEC *, REAL, REAL, int);

void graph_drv_d(GRAPH_WINDOW, const DOF_REAL_D_VEC *, REAL, REAL, int);

void graph_el_est(GRAPH_WINDOW, MESH *, REAL (*)(EL *), REAL, REAL);

void graph_line(GRAPH_WINDOW, , const REAL [2], const REAL [2],

const GRAPH_RGBCOLOR, REAL);

void graph_point(GRAPH_WINDOW, const REAL [2], const GRAPH_RGBCOLOR, float);

void graph_points(GRAPH_WINDOW, int, REAL (*)[2], const GRAPH_RGBCOLOR, float);

Description:

graph open window(title, geometry, world, mesh) the function returns a pointer
to a GRAPH WINDOW which is opened for display; if the window could not be opened, the
return value is NULL; in 1d the y-direction of the graphic window is used for displaying the
graphs of functions;

title is an optional string holding a window title, if title is NULL, a default title is used;
geometry is an optional string holding the window geometry in X11 format “WxH” or
“WxH+X+Y”, if NULL, a default geometry is used;

world is an optional pointer to an array of world coordinates (xmin, xmax, ymin, ymax)
to specify which part of a triangulation is displayed in this window, if world is NULL and
mesh is not NULL, mesh->diam is used to select a range of world coordinates; in 1d, the
range of the y-direction is set to [−1, 1]; if both world and mesh are NULL, the unit square
[0, 1]× [0, 1] is displayed in 1d and 2d.

graph close window(win) closes the graphic window win, previously opened by the func-
tion graph open window().

graph clear window(win, c) clears the graphic window win and sets the background
color c; if c is NULL, white is used as background color.

graph mesh(win, mesh, c, flag) displays the underlying mesh in the graphic window
win; c is an optional color used for drawing lines, if c is NULL black as a default color is
used; the last argument flag allows for a selection of an additional display; flag may be
0 or the bitwise OR of some of the following flags:

GRAPH MESH BOUNDARY only boundary edges are drawn, otherwise all edges of the trian-
gulation are drawn; c is the display color for all edges if not NULL; otherwise the display

4.11. GRAPHICS OUTPUT 371

color for Dirichlet boundary vertices/edges is blue and for Neumann vertices/edges the
color is red;

GRAPH MESH ELEMENT MARK triangles marked for refinement are filled red, and triangles
marked for coarsening are filled blue, unmarked triangles are filled white;

GRAPH MESH VERTEX DOF the first DOF at each vertex is written near the vertex; cur-
rently only working in 2d when the library is not using OpenGL.

GRAPH MESH ELEMENT INDEX element indices are written inside the element, only avail-
able for EL INDEX == 1; currently only working in 2d when the library is not using
OpenGL.

graph drv(win, u, min, max, n refine) displays the finite element function stored in
the DOF REAL VEC u in the graphic window win; in 1d, the graph of u is plotted in black,
in 2d an iso-color display of u is used; min and max specify a range of u which is displayed;
if min ≥ max, min and max of u are computed by graph drv(); in 2d, coloring is adjusted
to the values of min and max; the display routine always uses the linear interpolant on a
simplex; if n refine > 0, each simplex is recursively bisected into 2mesh->dim*n refine sub–
simplices, and the linear interpolant on these sub–simplices is displayed; for n refine < 0
the default value u->admin->bas fcts->degree-1 is used.

graph drv d(win, v, min, max, n refine) displays the modulus of the vector valued
finite element function stored in the DOF REAL D VEC v in the graphic window win; the
other arguments are the same as for graph drv().

graph el est(win, mesh, get el est) displays piecewise constant values over the tri-
angulation mesh, like local error indicators, in the graphics window win; get el est is a
pointer to a function which returns the constant value on each element; by this function
the piecewise constant function is defined.

graph line(win, p0, p1, c, lw) draws the line segment with start point p0 and end
point p1 in (x, y) coordinates in the graphic window win; c is an optional argument and
may specify the line color to be used; if c is NULL black is used; lw specifies the linewidth
(currently only for OpenGL graphics); if lw ≤ 0 the default linewidth 1.0 is set.

graph point(win, p, c, diam) draws a point at the position p in (x, y) coordinates in
the graphic window win; c is an optional argument and may specify the color to be used;
if c is NULL black is used; diam specifies the drawing diameter (currently only for OpenGL
graphics); if diam ≤ 0 the default diameter 1.0 is set.

graph points(win, np, p, c, diam) draws a np points at the positions p in (x, y) co-
ordinates in the graphic window win; c is an optional argument and may specify the color
to be used; if c is NULL black is used; diam specifies the drawing diameter (currently only
for OpenGL graphics); if diam ≤ 0 the default diameter 1.0 is set.

4.11.1.1 Graphic routines for two dimensions

The following routines are specialized routines for two dimensional graphic output:

void graph_level_2d(GRAPH_WINDOW, const DOF_REAL_VEC *, REAL,

const GRAPH_RGBCOLOR, int);

void graph_levels_2d(GRAPH_WINDOW, const DOF_REAL_VEC *, int, const REAL *,

const GRAPH_RGBCOLOR *, int);

void graph_level_d_2d(GRAPH_WINDOW, const DOF_REAL_D_VEC *, REAL,

const GRAPH_RGBCOLOR, int);

372 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

void graph_levels_d_2d(GRAPH_WINDOW, const DOF_REAL_D_VEC *, int, const REAL *,

const GRAPH_RGBCOLOR *, int);

void graph_fvalues_2d(GRAPH_WINDOW, MESH *,

REAL (*)(const EL_INFO *, const REAL *),

FLAGS, REAL, REAL, int);

graph level 2d(win, v, level, c, n refine) draws a single selected isoline at value
level of the scalar finite element function stored in the DOF REAL VEC u in the graphic
window win; by the argument c a line color for the isoline can be specified; if c is NULL,
black is used as line color; the display routine always uses the linear interpolant of u on a
simplex; if n refine > 0, each triangle is recursively bisected into 22*n refine sub–triangles,
and the selected isoline of the linear interpolant on these sub–triangles is displayed; for
n refine < 0 the default value u->admin->bas fcts->degree-1 is used.

graph levels 2d(win, u, n, levels, c, n refine) draws n selected isolines at val-
ues level[0], . . . , level[n-1] of the scalar finite element function stored in the
DOF REAL VEC u in the graphic window win; if level is NULL, n equally distant isolines
between the minimum and maximum of u are selected; c is an optional vector of n color
values for the n isolines, if NULL, then default color values are used; the argument n refine

again chooses a level of refinement, where iso-lines of the piecewise linear interpolant is
displayed; for n refine < 0 the default value u->admin->bas fcts->degree-1 is used.

graph level d 2d(win, v, level, c, n refine) draws a single selected isoline at val-
ues level of the modulus of a vector valued finite element function stored in the
DOF REAL D VEC v in the graphic window win; the arguments are the same as for
graph level().

graph levels d 2d(win, v, n, levels, c, n refine) draws n selected isolines at
values level[0], . . . , level[n-1] of the modulus of a vector valued finite element function
stored in the DOF REAL D VEC v in the graphic window win; the arguments are the same as
for graph levels().

graph fvalues 2d(win, mesh, f, flag, min, max, n refine) displays the func-
tion f in the graphic window win; f is a pointer to a function for evaluating values on
single elements; f(el info, lambda) returns the value of the function on el info->el at
the barycentric coordinates lambda;

an iso-color display of f is used; min and max specify a range of f which is displayed; if
min ≥ max, min and max of f are computed by graph fvalues 2d(); coloring is adjusted to
the values of min and max; the display routine always uses the linear interpolant of f on a
simplex; if n refine > 0, each simplex is recursively bisected into 22*n refine sub–simplices,
and the linear interpolant on these sub–simplices is displayed.

4.11.2 gltools interface

The following interface for using the interactive gltools graphics of WIAS Berlin [10] is im-
plemented. The gltools are freely available under the terms of the MIT license, see

http://www.wias-berlin.de/software/gltools/

The ALBERTA interface to the gltools is compatible with version gltools-2-4. It can be
used for 1d, 2d, and 3d triangulation, but only when mesh->dim equals DIM OF WORLD. For
window identification we use the data type

http://www.wias-berlin.de/software/gltools/

4.11. GRAPHICS OUTPUT 373

typedef void* GLTOOLS_WINDOW;

The interface provides the following functions:

GLTOOLS_WINDOW open_gltools_window(const char *, const char *, const REAL *,

MESH *, int);

void close_gltools_window(GLTOOLS_WINDOW);

void gltools_mesh(GLTOOLS_WINDOW, MESH *, int);

void gltools_drv(GLTOOLS_WINDOW, const DOF_REAL_VEC *, REAL, REAL);

void gltools_drv_d(GLTOOLS_WINDOW, const DOF_REAL_D_VEC *, REAL, REAL);

void gltools_vec(GLTOOLS_WINDOW, const DOF_REAL_D_VEC *, REAL, REAL);

void gltools_est(GLTOOLS_WINDOW, MESH *, REAL (*)(EL *), REAL, REAL);

void gltools_disp_mesh(GLTOOLS_WINDOW, MESH *, int, const DOF_REAL_VEC *);

void gltools_disp_drv(GLTOOLS_WINDOW, const DOF_REAL_VEC *, REAL, REAL,

const DOF_REAL_VEC *);

void gltools_disp_drv_d(GLTOOLS_WINDOW, const DOF_REAL_D_VEC *, REAL, REAL,

const DOF_REAL_VEC *);

void gltools_disp_vec(GLTOOLS_WINDOW, const DOF_REAL_D_VEC *, REAL, REAL,

const DOF_REAL_VEC *);

void gltools_disp_est(GLTOOLS_WINDOW, MESH *, REAL (*)(EL *), REAL, REAL,

const DOF_REAL_VEC *);

Description:

open gltools window(title, geometry, world, mesh, dialog) the function re-
turns a GLTOOLS WINDOW which is opened for display; if the window could not be opened,
the return value is NULL; title is an optional string holding a title for the window; if title
is NULL, a default is used; geometry is an optional string holding the window geometry in
X11 format (“WxH” or “WxH+X+Y”), if NULL, a default geometry is used; the optional
argument world is a pointer to an array of world coordinates (xmin, xmax, ymin, ymax)
for 2d and (xmin, xmax, ymin, ymax, zmin, zmax) for 3d, it can be used to specify which
part of the mesh will be displayed in the window; if world is NULL, either mesh or the
default domain [0, 1]d is used; mesh is an optional pointer to a mesh to select a range of
world coordinates which will be displayed in the window; if both world and mesh are NULL,
the default domain [0, 1]d is used; display is not done or is done in an interactive mode
depending on whether dialog equals 0 or not; in interactive mode type ’h’ to get a list
of all key bindings;

close gltools window(win) closes the window win which has been previously opened
by open gltools window();

gltools mesh(win, mesh, mark) displays the elements of mesh in the graphic window
win; if mark is not zero the piecewise constant function sign(el->mark) is shown;

gltools drv(win, u, min, max) displays the DOF REAL VEC u in the graphic window
win; for higher order elements it is possible to display the vector on a refined grid; the key
’P’ toggles between refined and not refined mode; min and max define the range of the
discrete function for display; if min ≥ max this range is adjusted automatically;

gltools drv d(win, ud, min, max) displays the modulus of the DOF REAL D VEC ud in
the graphic window win; for higher order elements it is possible to display the vector on
a refined grid; the key ’P’ toggles between refined and not refined mode; min and max

374 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

define the range of the modulus of discrete function for display; if min ≥ max this range is
adjusted automatically;

gltools vec(win, ud, min, max) displays the vector field given by DOF REAL D VEC ud

in the graphic window win; for higher order elements it is possible to display the vector
on a refined grid; the key ’P’ toggles between refined and not refined mode; min and max

define the range of the modulus of discrete function for display; if min ≥ max this range is
adjusted automatically;

gltools est(win, mesh, get el est, min, max) displays the estimated error on
mesh as a piecewise constant function in the graphic window win; the local indicators
are accessed by get el est() on each element; min and max define the range for display;
if min ≥ max this range is adjusted automatically;

gltools est() can also be used to display any piecewise constant function on the mesh,
where local values are accessed by get el est();

gltools disp mesh(win, mesh, mark, disp) additionally to gltools mesh(), a dis-
tortion of the geometry by a displacement vector field DOF REAL D VEC disp is shown; this
can be used in solid mechanics applications, e.g.;

gltools disp drv(win, u, min, max, disp) similar to gltools drv() but displayed
on the distorted geometry given by DOF REAL D VEC disp;

gltools disp drv d(win, ud, min, max, disp) similar to gltools drv d() but dis-
played on the distorted geometry given by DOF REAL D VEC disp;

gltools disp vec(win, ud, min, max, disp) similar to the function gltools vec()

but displayed on the distorted geometry given by DOF REAL D VEC disp;

gltools disp est(win, mesh, get el est, min, max, disp) similar to the function
gltools est() but displayed on the distorted geometry given by DOF REAL D VEC disp.

4.11.3 GRAPE interface

Visualization using the GRAPE library [25] is only possible as a post–processing step. Data
of the actual geometry and finite element functions is written to file by write mesh[xdr]()

and write dof real[d] vec[xdr]() and then read by some programs, using the GRAPE
mesh interface for the visualization. We recommend using the xdr routines for portability of
the stored binary data. The use of the GRAPE h–mesh and hp–mesh interfaces is work in
progress and the description of these programs will be done in the near future. References to
visualization methods used in GRAPE applying to ALBERTA can be found in [12, 21, 22].

For obtaining the GRAPE library, please see

http://www.iam.uni-bonn.de/sfb256/grape/

The distribution of ALBERTA contains source files with the implementation of GRAPE
mesh interface to ALBERTA in the add ons/grape/ subdirectory. Having access to the
GRAPE library (Version 5.4.2), this interface can be compiled and linked with the ALBERTA
and GRAPE library into the executables alberta grape?? and alberta movi??, where the
two-digit suffix ?? codes for the mesh-dimension and DIM OF WORLD. Currently, however, only
co-dimension 0 versions in 2d and 3d are available. The path of the GRAPE header file and
library has to be specified during the installation of ALBERTA, compare Section 2.5.

http://www.iam.uni-bonn.de/sfb256/grape/

4.11. GRAPHICS OUTPUT 375

The presence of the GRAPE library and header-file is determined at configure time. If it is
found, then the four GRAPE-programs are compiled automatically when running make in the
top-level directory of the ALBERTA distribution and installed below PREFIX/bin/ running
make install

The program alberta grape?? is mainly designed for displaying finite element data on
a single grid, i. e. one or several scalar/vector-valued finite element functions on the cor-
responding mesh. alberta grape?? expects mesh data stored by write mesh[xdr]() and
write dof real[xdr]() or write dof real d[xdr]() defined on the same mesh.

a lbe r t a g rape22 −m mesh . xdr −s s c a l a r . xdr −v vec to r . xdr

will display the 2d mesh stored in the file mesh.xdr together with the scalar finite ele-
ment function stored in scalar.xdr and the vector valued finite element function stored
in vector.xdr.

alberta grape?? --help gives some online-help, including a short example:

jane_john_doe@street ~ $

jane_john_doe@street ~ $ alberta_grape33 --help

Usage: alberta_grape33 [-p PATH] [OPTIONS]

-m MESH [-s DRV] [-v DRDV] [[-m MESH1] [-s DRV1] [-v DRDV1] ...]

Example:

alberta_grape33 --mesh=mymesh -s temperature --vector velocity

where "mymesh", "temperature" and "velocity" are file-names.

If a long option shows an argument as mandatory, then it is mandatory

for the equivalent short option also. Similarly for optional arguments.

The order of the options _is_ significant in the following cases:

‘-p PATH’ alters the search path for all following data-files.

‘-m MESH’ specifies a new mesh for all following DRVs and DRDVs (see below)

Options:

-m, --mesh=MESH

The file-name of an ALBERTA-mesh gnereated by the ALBERTA

library routines ‘write_mesh()’ or ‘write_mesh_xdr()’

‘-x’ and ‘-b’ options below.

This option is mandatory and may not be omitted. This option

may be specified multiple times. All following dof-vectors

given by the ‘-s’ and ‘-v’ options must belong to the most

recently specified mesh.

-b, --binary

Expect MESH, DRV and DRDV to contain data in host dependent

byte-order, generated by ‘write_SOMETHING()’ routines of the

ALBERTA library (SOMETHING is ‘mesh’, ‘dof_real_vec’ etc.

-x, --xdr

This is the default and just mentioned here for completeness.

Expect MESH, DRV and DRDV to contain data in network

byte-order, generated by ‘write_SOMETHING_xdr()’ routines

of the ALBERTA library. Per convention this means big-endian

byte-order.

376 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

-s, --scalar=DRV

Load the data-file DRV which must contain a DOF_REAL_VEC

dumped to disk by ‘write_dof_real_vec[_xdr]()’.

This option may be specified multiple times. The DOF_REAL_VECs

must belong to the most recently specified mesh.

See ‘-m’ and ‘-b’ above.

-v, --vector=DRDV

Load the data-file DRDV which must contain a DOF_REAL_VEC_D

dumped to disk by ‘write_dof_real_d_vec[_xdr]()’.

This option may be specified multiple times. The vector

must belong to the most recently specified mesh.

See ‘-m’ and ‘-b’ above.

-p, --path=PATH

Specify a path prefix for all following data-files. This option

may be specified multiple times. PATH is supposed to be the

directory containing all data-files specified by the following

‘-m’, ‘-s’ and ‘-v’ options.

-h, --help

Print this help.

The program alberta movi?? is designed for displaying finite element data on a sequence
of grids with one or several scalar/vector-valued finite element functions. This is the standard
visualization tool for post–processing data from time–dependent simulations. alberta movi??

expects a sequence of mesh data stored by write mesh[xdr]() and finite element data
of this mesh stored by write dof real[xdr]() or write dof real d[xdr](), where the
filenames for the sequence of meshes and finite element functions are generated by the function
generate filename(), explained in Section 3.1.6. Section 2.4.10 shows how to write such a
sequence of data in a time-dependent problem.

Similar to alberta grape?? the command alberta movi?? --help gives some online-
help:

jane_john_doe@street ~ $

jane_john_doe@street ~ $ alberta_movi33 --help

Usage: alberta_movi33 START END [-p PATH] [OPTIONS]

-m MESH [-s DRV] [-v DRDV] [[-s DRV1] [-v DRDV1] ...]

Example:

alberta_movi33 --mesh=mymesh 0 10 -i 5 -s u_h --vector v_h

reads grid mesh000000 with scalar function u_h000000 and

vector function v_h000000, then mesh000005 with u_h000005 and

v_h000005, and finally mesh000010 with u_h000010 and v_h000010

If a long option shows an argument as mandatory, then it is mandatory

for the equivalent short option also. Similarly for optional arguments.

The order of the options is not significant with the exception that the

non-option arguments START and END must come _first_.

Non-option arguments:

START END

Two integers specifying the start- and end-scene. The actual

4.11. GRAPHICS OUTPUT 377

file names of the data-files are generated by appending a six

digit number which loops between START and END.

See also ‘-i’ below.

Options:

-i, --increment=INC

INC is an integers specifying the increment while reading in

the time scenes. To read e.g. only every second time-scene

use ‘-i 2’. INC defaults to 1

-m, --mesh=MESH

The file-name prefix of an ALBERTA-mesh gnereated by the ALBERTA

library routines ‘write_mesh()’ or ‘write_mesh_xdr()’

‘-x’ and ‘-b’ options below. The actual file name is generated

by appending a six digit time-scene number to MESH, unless

the ‘-f’ option is also specified, see below.

This option is mandatory and may not be omitted.

-f, --fixed-mesh

Use a single fixed mesh for all time-scenes (i.e. in the

non-adaptive case). If ‘-f’ is used ‘-m MESH’ gives the actual

file name of the mesh and not only the mesh-prefix. See ‘-m’

above.

-s, --scalar=DRV

Load the data-files DRVXXXXXX which must contain DOF_REAL_VECs

dumped to disk by ‘write_dof_real_vec[_xdr]()’.

‘XXXXXX’ stands for the time-scene number.

This option may be specified multiple times. The DOF_REAL_VECs

must belong to the meshes specified with the ‘-m’ option.

See ‘-m’, ‘-b’, ‘-p’ and ‘-i’.

-v, --vector=DRDV

Load the data-files DRDVXXXXXX which contain DOF_REAL_VEC_Ds

dumped to disk by ‘write_dof_real_d_vec[_xdr]()’.

‘XXXXXX’ stands for the time-scene number.

This option may be specified multiple times. The vectors

must belong to the meshes specified with the ‘-m’ option.

See ‘-m’, ‘-b’, ‘-p’ and ‘-i’.

-p, --path=PATH

Specify a path prefix for all data-files. PATH is supposed to

be the directory containing all data-files specified by the

‘-m’, ‘-s’ and ‘-v’ options.

-B, --Bar

Generate a time-progress-bar when displaying the data in GRAPE.

-b, --binary

Expect MESH, DRV and DRDV to contain data in host dependent

byte-order, generated by ‘write_SOMETHING()’ routines of the

ALBERTA library (SOMETHING is ‘mesh’, ‘dof_real_vec’ etc.

-x, --xdr

This is the default and just mentioned here for completeness.

Expect MESH, DRV and DRDV to contain data in network

byte-order, generated by ‘write_SOMETHING_xdr()’ routines

of the ALBERTA library. Per convention this means big-endian

byte-order.

-h, --help

Print this help.

378 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

4.11.4 Paraview interface

The Paraview interface (http://www.paraview.org/) – like the GRAPE-interface – is avail-
able as a set of separate programs which can be used to display finite element data in a
post-processing step. The corresponding programs do not require any support package and
are always compiled when running make and installed below PREFIX/bin/ when running
make install. The programs are named alberta2paraview2d and alberta2paraview3d.
The calling convention is somewhat similar to the GRAPE support-programs, and running
the programs with the --help command-line switch displays an online-help, including some
simple examples:

jane_john_doe@street ~ $

jane_john_doe@street ~ $ alberta2paraview3d --help

Usage: alberta2paraview3d [-t FIRST LAST] [-i STEP] [-p PATH] [-o OUTPUT]

-m MESH [-s DRV] [-v DRDV] [[-m MESH1] [-s DRV1] [-v DRDV1] ...]

Example for converting stationary data:

alberta2paraview3d \

-r lagrange_degree --mesh mymesh -s temperature --vector velocity

where "mymesh", "temperature" and "velocity" are file-names.

Example for converting a sequence of files resulting from a transient

problem:

alberta2paraview3d -t 0 10 -i 5 -p PATH --mesh mymesh -s u_h --vector v_h

reads grid mymesh000000 with scalar function u_h000000 and

vector function v_h000000, then mesh000005 with u_h000005 and

v_h000005, and finally mesh000010 with u_h000010 and v_h000010

If a long option shows an argument as mandatory, then it is mandatory

for the equivalent short option also. Similarly for optional arguments.

The order of the options _is_ significant in the following cases:

‘-p PATH’ alters the search path for all following data-files.

‘-m MESH’ specifies a new mesh for all following DRVs and DRDVs (see below)

‘-b|-x’ alters the expected data-format for all following files

(see below)

Options:

-t, --transient FIRST LAST

Convert a sequence of mesh- and data-files. The file-names

must end with 6-digit decimal number. FIRST and LAST specify the

first and last member of this sequence.

-i, --interval SKIP

In conjunction with ‘-t’ use only every SKIP-th frame in the

given sequence of files.

-m, --mesh MESH

The file-name of an ALBERTA-mesh gnereated by the ALBERTA

library routines ‘write_mesh()’ or ‘write_mesh_xdr()’

‘-x’ options below.

This option is mandatory and may not be omitted. This option

may be specified multiple times. All following dof-vectors

given by the ‘-s’ and ‘-v’ options must belong to the most

http://www.paraview.org/

4.11. GRAPHICS OUTPUT 379

recently specified mesh.

-a, --ascii

Write the paraview file in ASCII format.

-r, --refined LAGRANGE-DEGREE

Expect Lagrange-degree (between 0 and 4) to refine the given

MESH

To select ’no refinement’ simply do not specify ‘--refined’,

’Lagrange-degree = 0’ is the default.

-u, --unperforated

For a 3d mesh refine without holes (produces a lot more

elements). To select mesh-refine with holes simply do not

specify ‘--unperforated’ (refinement with holes is the default).

-b, --binary

Write the paraview file in binary format.

To select ASCII OUTPUT format simply do not specify ‘--binary’,

because ASCII OUTPUT format is the default.

-x, --xdr

This is the default and just mentioned here for completeness.

Expect MESH, DRV and DRDV to contain data in network

byte-order, generated by ‘write_SOMETHING_xdr()’ routines

of the ALBERTA library. Per convention this means big-endian

byte-order. ’-l’ and ’-x’ may be specified multiple times.

-l, --legacy

Expect MESH, DRV and DRDV to contain data in ALBERTA’s

legacy file-format, generated by ‘write_SOMETHING()’ routines

of the ALBERTA library. This may not work, because the format

of those data-files is byte-order dependent and thus not portable

across different computer architectures. ’-l’ and ’-x’ may be

specified multiple times.

-s, --scalar DRV

Load the data-file DRV which must contain a DOF_REAL_VEC

dumped to disk by ‘write_dof_real_vec[_xdr]()’.

This option may be specified multiple times. The DOF_REAL_VECs

must belong to the most recently specified mesh.

See ‘-m’ above.

-v, --vector DRDV

Load the data-file DRDV which must contain a DOF_REAL_VEC_D

dumped to disk by ‘write_dof_real_d_vec[_xdr]()’.

This option may be specified multiple times. The vector

must belong to the most recently specified mesh.

See ‘-m’ above.

-o, --output FILENAME

Specify an output file-name. If this option is omitted, then the

output file-name is"alberta".

-d, --pvd_output FILENAME

Specify an pvd_output file-name,in conjuncion with’-t’.

"alberta_paraview_movi"is the default

-p, --path PATH

Specify a path prefix for all following data-files. This option

may be specified multiple times. PATH is supposed to be the

directory containing all data-files specified by the following

‘-m’, ‘-s’ and ‘-v’ options.

380 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

-h, --help

Print this help.

4.11.5 Geomview interface

Geomview (http://www.geomview.org/) is a quite ancient rendering engine, originally devel-
oped by the Geometry Center (http://www.geom.uiuc.edu/). It is easy to use, but as such
not a visualization tool for finite element data, and mainly aiming at displaying 2-surfaces.
Currently, Geomview is the only way to directly visualize 2d and 3d simulations with co-
dimension larger than 1, respectively 0. The suite of demo-programs contains a rudimen-
tary interface to Geomview, the use is demonstrated in the demo-programs using parametric
meshes, like src/Common/ellipt-sphere.c.

4.11.6 GMV interface

A second possibility to visualize ALBERTA meshes and vectors as a post–processing step is
to use the General Mesh Viewer (GMV) developed at the Los Alamos National Laboratories.
For information on how to obtain this program see

http://www-xdiv.lanl.gov/XCM/gmv/GMVHome.html

GMV is a standalone program and support for the GMV interface in ALBERTA is always
built in. At the moment, this interface is the only one which supports all of the following
features: embedded meshes (mesh->dim < DIM OF WORLD), parametric meshes, generation of
movie sequences, reusing meshes for several vectors to reduce disk space, and several more.
The ALBERTA interface was written for GMV 4.0.

The interface contains the following functions:

int write_mesh_gmv(MESH *, const char *, int, int, const int,

DOF_REAL_VEC **, const int, DOF_REAL_D_VEC **,

DOF_REAL_D_VEC *, REAL)

int write_dof_vec_gmv(MESH *, const char *, const char *, int, int, const int,

DOF_REAL_VEC **drv_ptr, const int, DOF_REAL_D_VEC **,

DOF_REAL_D_VEC *, REAL);

Description:

write mesh gmv(mesh,name,asc,ref,n drv,drvs,n drdv,drdvs,vel,time) Writes
an ALBERTA triangulation and DOF vectors into a file name readable by the GMV
program. The parameter asc, if set to true directs ALBERTA to write the data in GMV
ASCII format, otherwise a native binary format is used. The triangulation is stored
in mesh. The parameters n drv and n drdv state the number of DOF REAL VECs and
DOF REAL D VECs to store in the file. These vectors are passed as arrays of pointers drvs

and drdvs. At the moment there is a limit of 250 vectors of either type which may be
written at once. The additional argument vel is used for one DOF REAL D VEC which has
the meaning of a velocity field. This results in a special treatment by GMV; GMV will

http://www.geomview.org/
http://www.geom.uiuc.edu/
http://www-xdiv.lanl.gov/XCM/gmv/GMVHome.html

4.12. CONTRIBUTED “ADD-ONS” 381

automatically create a new field storing the velocity magnitudes on reading the file. The
argument time stores a time value for instationary simulations.

As most other visualization packages, GMV is only able to display linear data. To alleviate
this problem, the parameter ref, if set to true, directs the interface to output a virtually
refined triangulation to avoid loss of data when visualizing higher order Lagrange DOF
vectors. This only works for Lagrange finite element spaces.

write dof vec gmv(mesh,mfile,name,asc,ref,n drv,drvs,n drdv,drdvs,vel,time)

This routine works in a similar way as write mesh gmv(). The only difference is that the
mesh triangulation is not output into the file. Instead, ALBERTA generates a GMV file
containing a reference to another GMV file mfile containing the mesh. The mesh file
must have been output previously using write mesh gmv(). No refinement or coarsening
must occur between these calls, otherwise GMV will be unable to use the old mesh.

The advantage of this is that disk space is saved, since there is no need to repeatedly write
entire mesh triangulations for instationary simulations without mesh changes. This also
saves time on reading the GMV file.

4.12 Contributed “add-ons”

The ALBERTA distributions contains a sub-directory

alberta-VERSION/add_ons/

with contributed extension and code-fragments. The degree of stability varies between the dif-
ferent packages in the add ons/ sub-directory. We give just a very brief description here. Some
of the “add-ons” already have been mentioned in the preceeding sections. The stand-alone
programs contained in the add ons/ directory are compiled during the ordinary compilation
cycle for the ALBERTA-distribution, and install below PREFIX/bin/, where prefix is the prin-
cipal installation prefix for the entire package, as specified by the --prefix-argument to the
configure-script.

4.12.1 add ons/bamg2alberta/

Conversion from the output of the bamg grid-generator distributed along with the FreeFem++
toolbox (Christian Haarhaus).

4.12.2 add ons/block solve/

A C-framework implementing block-matrices consisting of ordinary DOF MATRIX structure
(Notger Noll). The add-on comes in the shape of a library

PREFIX/lib/liboem_block_solve_Xd[_debug].EXTENSION

PREFIX/include/alberta/oem_block_solve.h

The basic data structures are a BLOCK DOF VEC for storing finite element functions, a
BLOCK DOF SCHAR VEV for storing boundary masks (compare Section 4.7.7.1), and, of course,
a BLOCK DOF MATRIX for storing matrices composed from blocks of DOF MATRIX structures.
Finally, there is a BLOCK PRECON TYPE structure, for a purpose similar to the PRECON TYPE

structure described in Section 4.10.34.

382 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

The basic support functions implemented in the library are explained further below in the
Sections 4.12.5-4.12.11, in particular

• get block dof[schar] vec() on page 385,

• free block dof[schar] vec() on page 385

• get block dof matrix() on page 386,

• free block dof matrix() on page 387,

• clear block dof matrix() on page 387,

• oem block solve() on page 388,

• init oem block precon() on page 389.

4.12.1 Datatype (BLOCK DOF[SCHAR] VEC).

Definition

#define NOEMBLOCKSMAX 10

typedef struct b l o ck do f v e c
{

const char ∗name ;
int n components ;

DOF REAL VEC D ∗ do f vec [N OEMBLOCKSMAX] ;

} BLOCK DOF VEC;

typedef struct b l o c k do f s c ha r v e c
{

const char ∗name ;
int n components ;

DOF SCHAR VEC ∗ s cha r vec [N OEMBLOCKSMAX] ;

} BLOCK DOF SCHAR VEC;

Components

These two structure are quite simple, the meaning of the components are as follows;

name A descriptive name, used for debugging and pretty-printing.

n components The number of blocks, the restriction n components <

N OEM BLOCKS MAX applies, of course.

dof vec A flat array of at most N OEM BLOCKS MAX many DOF REAL VEC D com-
ponents, the actual number is stored in n components. Analogously for the
schar vec component of the BLOCK DOF SCHAR VEC. Note: Though the data-type
is a DOF REAL VEC D it is (ab-)used to store also DOF REAL VEC data, compare the re-
marks in Section 3.3.2 concerning the stride respectively the reserved components
of a DOF REAL VEC D respectively a DOF REAL VEC structure.

4.12. CONTRIBUTED “ADD-ONS” 383

4.12.2 Datatype (BLOCK DOF MATRIX).

Definition

#define NOEMBLOCKSMAX 10

typedef enum { Full , Empty , Diag , Triag , Symm } MatType ;

typedef struct b lock do f mat r i x
{

const char ∗name ;
int n row components ;
int n col components ;

const FE SPACE ∗ r ow f e spa c e s [N OEMBLOCKSMAX] ;
const FE SPACE ∗ c o l f e s p a c e s [N OEMBLOCKSMAX] ;

MatType b lock type ;

DOFMATRIX ∗dof mat [N OEMBLOCKSMAX] [N OEMBLOCKSMAX] ;
MatrixTranspose t ranspose [N OEMBLOCKSMAX] [N OEMBLOCKSMAX] ;

} BLOCKDOFMATRIX;

Components

Slightly more complicated than the BLOCK DOF VEC structure, but still straight forward,
maybe with the exception of the block type component.

name A descriptive name, for pretty-printing an debugging purposes.

n row components

n col components The number of row- and column-blocks.

row fe spaces

col fe spaces The finite element spaces, for each row and column.

block type An enumeration value, describing the block-structure:

Full An ordinary, fully filled block-matrix.

Empty The empty, i.e. zero-matrix. This implies that all pointers in the
dof mat[][] component (see below) are NULL-pointers.

Diag A diagonal matrix. Only the diagonal blocks in dof mat[][] are non-NULL.

Triag An upper triangular matrix. Only the upper-triangular blocks in
dof mat[][] are non-NULL.

Symm A symmetric matrix, it holds dof mat[i][j] == dof mat[j][i].
The transpose[][] component is initialized to Transpose by
get block dof matrix().

dof mat[][] The data of the matrix. Not all pointers need to be non-NULL, see the
documentation for block type above.

transpose[][] For each component of dof mat a MatrixTranspose flag specifying
whether the matrix pointed to should operate as transposed matrix.

4.12.3 Datatype (BLOCK PRECON TYPE).

384 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

Definition

#define NOEMBLOCKSMAX 10

typedef struct b lock precon type
{

/∗ Block−Precon−Type ∗/
OEMPRECON block type ;

REAL block omega ; /∗ f o r BlkSSORPrecon ∗/
int b l o c k n i t e r ; /∗ f o r BlkSSORPrecon ∗/

PRECONTYPE precon type [N OEMBLOCKSMAX] ;
} BLOCKPRECONTYPE;

Description

This is a “parameter-transport” structure understood by init oem block precon(),
see below Section 4.12.11. Compare also Section 4.10.36.

Components

block type The block-type of the preconditioner. Only BlkDiagPrecon and – exper-
imentally – BlkSSORPrecon are supported.

block omega

block n iter The respective parameters when unsing block type ==

BlkSSORPrecon.

precon type For each row the type of the preconditioner, see Section 4.10.34.

4.12.4 Function (... print block ...()).

Description

Not all functions implemented in the library are explained in detail below, in particular,
we just notice without detailed description that the following routines exist for pretty-
printing:

Prototypes

void p r i n t b l o c k d o f v e c (BLOCK DOF VEC ∗ b lock vec) ;
void p r i n t b l o c k do f ma t r i x (BLOCKDOFMATRIX ∗block mat) ;
void p r i n t b l o ck do f v e c map l e (BLOCK DOF VEC ∗ block vec ,

const char ∗block name) ;
void pr in t b l o ck do f mat r i x map l e (BLOCKDOFMATRIX ∗block mat ,

const char ∗block name) ;
void f p r i n t b l o c k do f v e c map l e (FILE ∗ fp , BLOCK DOF VEC ∗ block vec ,

const char ∗block name) ;
void f p r i n t b l o ck do f ma t r i x map l e (FILE ∗ fp , BLOCKDOFMATRIX ∗block mat ,

const char ∗block name) ;
void f i l e p r i n t b l o c k d o f v e c map l e (const char ∗ f i l e name ,

const char f open opt i on s [] ,
BLOCK DOF VEC ∗ block vec ,
const char ∗block name) ;

void f i l e p r i n t b l o c k d o f ma t r i x map l e (const char ∗ f i l e name ,
const char f open opt i on s [] ,
BLOCKDOFMATRIX ∗block mat ,
const char ∗block name) ;

4.12. CONTRIBUTED “ADD-ONS” 385

4.12.5 Function (get block dof[schar] vec()).

Prototype

BLOCK DOF VEC ∗ g e t b l o c k do f v e c (const char ∗name , int n components ,
const FE SPACE ∗ f e space , . . .) ;

BLOCK DOF SCHAR VEC ∗
g e t b l o c k do f s c h a r v e c (const char ∗name , int n components ,

const FE SPACE ∗ f e space , . . .) ;

Synopsis

b lock vec = g e t b l o c k d o f [s cha r] vec (name , n components ,
f i r s t f e s p a c e , . . .) ;

Description

Allocate and initialize a new BLOCK DOF[SCHAR] VEC structure. The routine will inter-
nally place calls to get dof real[d] vec[d]().

Parameters

name A descriptive name, useful for debugging purposes and pretty-printing. The
name is duplicated by calling strdup(3).

n components The number of blocks the vector shall consist of.

first fe space The finite element space for the first component.

... In generalk, n components-1 further finite element spaces. If a NULL-pointer is
encountered in the list, then the preceding finite element space will be used for all
following components of the block-vector.

Return Value

A pointer to a newly allocated DOF BLOCK[SCHAR] VEC structure, use
free block dof vec() to release the associated resources and delete the vector.

Examples

Have a look at the test program

alberta-VERSION/add_ons/block_solver/demo/Common/quasi-stokes.c

4.12.6 Function (free block dof[schar] vec()).

Prototype

void f r e e b l o c k d o f v e c (BLOCK DOF VEC ∗bvec) ;
void f r e e b l o c k d o f s c h a r v e c (BLOCK DOF VEC ∗bvec) ;

386 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

Synopsis

f r e e b l o c k d o f [s cha r] vec (b lock vec) ;

Description

Release a vector previously allocated by a call to get block dof vec().

Parameters

block vec The vector to destroy.

4.12.7 Function (get block dof matrix()).

Prototype

BLOCKDOFMATRIX ∗ g e t b l o ck do f ma t r i x (const char ∗name ,
int n row components ,
int n col components ,
MatType block type ,
const FE SPACE ∗ f e space , . . .) ;

Synopsis

block matr ix = g e t b l o c k d o f m a t r i x (name , n row , n co l ,
b lock type ,
f i r s t f e s p a c e , . . .) ;

Description

Allocate a new BLOCK DOF MATRIX structure. Call free block dof matrix() to release
the associated memory.

Parameters

name A descriptive name, useful for debugging purposes and pretty-printing. name is
duplicating by a call to strdup(3).

n row

n col The number of row- and column-blocks.

block type The block-type, as explained in Section 4.12.2.

first fe space The finite element spaces defining the blocks. The function expects
them to be ordered alternating: first row space, first column space, second row space,
second column space. If n cols != n rows, then the trailing “excess” spaces are
specified one after another. If a NULL-pointer is encountered, then the preceding
finite element space is used for all remaining rows and columns.

4.12. CONTRIBUTED “ADD-ONS” 387

Return Value

A pointer to a newly allocated DOF DOF BLOCK MATRIX structure, use
free block dof matrix() to release the associated resources and delete the ma-
trix.

Examples

The interested reader is referred to the test program

alberta-VERSION/add_ons/block_solver/demo/Common/quasi-stokes.c

4.12.8 Function (free block dof matrix()).

Prototype

void f r e e b l o c k do f ma t r i x (BLOCKDOFMATRIX ∗bmatrix) ;

Synopsis

f r e e b l o c k d o f m a t r i x (b lock matr ix) ;

Description

Release a matrix previously allocated by a call to get block dof matrix().

Parameters

block matrix The matrix to destroy.

4.12.9 Function (clear block dof matrix()).

Prototype

void c l e a r b l o c k do f ma t r i x (BLOCKDOFMATRIX ∗bmatrix) ;

Synopsis

c l e a r b l o c k d o f m a t r i x (b lock matr ix) ;

Description

Clear the entries of a BLOCK DOF MATRIX.

Parameters

block matrix The matrix to clear to 0.

388 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

4.12.10 Function (oem block solve()).

Prototype

int oem block so lve (const BLOCKDOFMATRIX ∗A,
const BLOCK DOF SCHAR VEC ∗bound ,
const BLOCK DOF VEC ∗ f , BLOCK DOF VEC ∗u ,
OEM SOLVER so lve r ,
REAL to l ,
const PRECON ∗precon ,
int r e s t a r t , int max iter , int i n f o) ;

Synopsis

i t e r a t i o n s =
oem block so lve (A, bound , f , u , s o l ve r ,

to l , precon , r e s t a r t , max iter , i n f o) ;

Description

The reader is referred to oem solver() for further explanations. oem solve() and
oem block solver() differ only in that the latter accepts block-vectors and -matrices,
and the former accepts ordinary DOF-vectors and -matrices as arguments.

Parameters

A The system matrix.

bound A flag-vector to mask-out certain DOFs, e.g. to implement Dirichlet boundary
conditions.

f The load vector.

u Storage for the solution and initial guess for the iterative solver.

solver Use the respective OEM-solver; see above for the available keywords.

tol Tolerance for the residual; if the norm of the residual is less or equal tol,
oem solve [s|d|dow]() returns the actual iterate as the approximative solution
of the system.

tol A pointer to a structure describing the preconditioner to use, see further below
in Section 4.12.11.

restart Only used by gmres: the maximum dimension of the Krylov-space.

max iter Maximal number of iterations to be performed by the linear solver. This
can be compared with the return value – which gives the number of iterations actually
performed – to determine whether the solver has achieved its goal.

info This is the level of information of the linear solver; 0 is the lowest level of
information (no information is printed) and 10 the highest level.

4.12. CONTRIBUTED “ADD-ONS” 389

Return Value

The number of iterations the solver needed until the norm of the residual was below tol,
or max iter if the solver was not able to reach its goal before the prescribed maximum
iteration count was exhausted.

Examples

The interested reader is referred to the test program

alberta-VERSION/add_ons/block_solver/demo/Common/quasi-stokes.c

4.12.11 Function (init oem block precon()).

Prototype

const PRECON ∗
i n i t o em b lo ck p r e con (const BLOCKDOFMATRIX ∗A,

const BLOCK DOF SCHAR VEC ∗bound ,
int i n fo ,
const BLOCKPRECONTYPE ∗ prec type) ;

Synopsis

precon = in i t o e m b l o c k p r e c on (A, bound , in fo , p rec type) ;

Description

The reader should compare this functions with init precon from type() on page 361.

Parameters

A The matrix to compute the preconditioner for.

bound A flag-vector, masking out specific DOFs, compare the explanations for the
mask parameter to oem solve(), see Section 4.10.2. bound may be NULL.

info An integer controlling the amount of information printed to the terminal the
application is running in (larger values mean more “noise”).

prec type A pointer to a structure of type BLOCK PRECON TYPE, as described in Sec-
tion 4.12.3 above, describing the preconditioner to generate.

Return Value

A pointer to an initialized PRECON structure implementing the preconditioner, see Sec-
tion 4.10.26.

Examples

The interested reader is referred to the test program

alberta-VERSION/add_ons/block_solver/demo/Common/quasi-stokes.c

390 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

4.12.12 Function ([...]()).

Description

The remaining functions are also implemented, the reader is referred to the Section 3.7.3
for similar functions for ordinary DOF REAL VEC structures.

Prototypes

void b lock do f copy (const BLOCK DOF VEC ∗x , BLOCK DOF VEC ∗y) ;
void b l o c k d o f s e t (REAL stotz , BLOCK DOF VEC ∗bvec) ;
int copy f rom b lock do f vec (REAL ∗x , BLOCK DOF VEC ∗bdof) ;
int c opy t o b l o ck do f v e c (BLOCK DOF VEC ∗bdof , REAL ∗x) ;
int b l o c k do f v e c l e n g th (BLOCK DOF VEC ∗bdof) ;

4.12.3 add ons/geomview/

A stand-alone viewer to convert simulation data as produced by ALBERTA’s IO-routines (see
Section 3.3.8) to OOGL-format, which is the data format understood by Geomview. See also
Section 4.11.5. (Claus-Justus Heine, Carsten Eilks)

4.12.4 add ons/gmv/

A stand-alone program to convert ALBERTA data-files (see Section 3.3.8) to GMV format,
see also Section 4.11.6. The program in the add ons/ directory is just a wrapper, calling the
library functions described in Section 4.11.6 (courtesy to Daniel Köster).

4.12.5 add ons/grape/

The Grape interface, see also Section 4.11.3 (Alfred Schmidt, Kunibert G. Siebert, Robert
Klöfkorn, Claus-Justus Heine and probably others).

4.12.6 add ons/libalbas/

A basis-function add-on, with the focus on stable discretisations of the Stokes problem (Claus-
Justus Heine). The additional basis function sets are on the one hand available through
ALBERTA basis-function plugin-mechanism (see Section 3.5.7), and otherwise through the
following functions:

const BAS FCTS ∗ b a s f c t s i n i t (int dim , int dow , const char ∗name) ;

const BAS FCTS ∗ g e t n u l l b f c t s (unsigned dim) ;
const BAS FCTS ∗ get bubble (unsigned dim , unsigned i n t e r d e g) ;
const BAS FCTS ∗ g e t wa l l bubb l e s (unsigned dim , unsigned i n t e r d e g) ;
const BAS FCTS ∗ g e t t r a c e bubb l e (unsigned dim , unsigned i n t e r d e g) ;
const BAS FCTS ∗ ge t r av i a r t thomas (unsigned dim , unsigned i n t e r d e g) ;
const BAS FCTS ∗ ge t o l d m in i e l ement (unsigned dim) ;

typedef struct s t o k e s p a i r STOKES PAIR;
struct s t o k e s p a i r
{

const BAS FCTS ∗ v e l o c i t y ;

4.12. CONTRIBUTED “ADD-ONS” 391

const BAS FCTS ∗ pre s su r e ;
/∗ cons t BAS FCTS ∗ s l i p s t r e s s ; ∗/

} ;
STOKES PAIR s t o k e s p a i r (const char ∗name , unsigned dim , unsigned degree) ;

We document only bas fcts init() and stokes pair(), the other functions are self-
explanatory after reading the documentation for bas fcts init() below.

4.12.13 Function (bas fcts init()).

Prototype

const BAS FCTS ∗ b a s f c t s i n i t (int dim , int dow , const char ∗name) ;

Synopsis

b a s f c t s = b a s f c t s i n i t (dim , DIM OF WORLD, name) ;

Description

The entry point when using libalbas as plugin-module (see Section 3.5.7), but also an
ordinary library function which can be called by functions linked against libalbas.

Parameters

dim The desired dimension of the basis functions.

dow This should equal DIM OF WORLD. As libalbas can be used as a plugin which
is loaded according to the value of an environment variable (see Section 3.5.7), the
parameter dow can be used by the library for sanity checks.

name In ALBERTA basis functions are identified by a unique name. bas fcts init()

currently implements the following basis function sets:

"P1+bubble" An older implementation of the velocity component of the Mini-
element. This implementation does not use the direct sum framework (see Sec-
tion 3.7).

"Bubble[IX][Nd]" A single element bubble bT ,

bT (λ) = w(dim)

dim∏
i=0

λi,

where the scaling factor w(dim) is chosen such that the bubble has mean-value 1
on the reference element. The “ Nd” suffix is optional, if present, it is compared
against the parameter dim as sanity check. The “ IX” part is optional, too. If
present, it specifies the degree of a quadrature rule used for the interpolation op-
erator. The interpolation operator uses the mean-value of the non-interpolated
function as value for the single DOF per element. If the bubble-function belongs
to a chain of basis functions, then the interpolation operator take the mean value

392 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

of the other components of the corresponding direct sum into account, so the
resulting interpolant will have the same mean-value as the non-interpolated func-
tion on each element. The default interpolation degree is 0 (respectively 1, using
the standard 1-point formula).

"WallBubbles[IX][Nd]" A DIM OF WORLD-valued basis function set which con-
sists the face-bubbles. This basis function set comes with an per-element initializer
(see Section 3.11) as it depends on the geometry of the element: the bubbles point
in normal direction with respect to the faces of each element. Using a formula:

bei = ±w(dim)
(∏

j=0, ... dim
j 6=i

λj
)
νi,

where νi denotes the normal to the i-the face of the element. The scaling factor
is chosen such that the mean-value over the faces of the reference simplex is 1
for each bubble. The sign is chosen such that the resulting finite element space
consists of globally continuous functions. The current implementation does not
take curved boundaries into account. The “ IX” and “ Nd” parts are optional. The
X denotes the quadrature degree of a quadrature formula used for interpolation.
The interpolation operator determines the local DOFs such that the flux of the
interpolated function across the boundaries of each element is the same as the flux
of the non-interpolated function, up to quadrature errors. The default quadrature
degree is again 0 (respectively 1, see above in the explanations for the element
bubble).

"TraceBubbles[IX][Nd]" This is the trace-space of the face-bubbles (compare
with the trace bas fcts component in the BAS FCTS structure, see Section 3.5).

"RaviartThomas" This is the lowest-order Raviart-Thomas element. However, the
code is untested and was primarily meant as a sketch.

"...#..." Any string containing a “#” letter is first decomposed into separate
tokens, separated by the “#” signs. The individual components are then generated
by calls to ALBERTA’s get bas fcts() routine, and then chained together by calls
to chain bas fcts(), see Section 3.5.3.

Return Value

A pointer to new BAS FCTS structure, as requested by the parameter name, or NULL in
case that the request could not be serviced.

Examples

The interested reader is referred to the source-code for the stokes pair() function in
alberta-VERSION/add ons/libalbas/src/basfcts.c

4.12.14 Function (stokes pair()).

Prototype

4.12. CONTRIBUTED “ADD-ONS” 393

typedef struct s t o k e s p a i r
{

const BAS FCTS ∗ v e l o c i t y ;
const BAS FCTS ∗ pre s su r e ;
/∗ cons t BAS FCTS ∗ s l i p s t r e s s ; ∗/

} STOKES PAIR;

STOKES PAIR s t o k e s p a i r (const char ∗name , unsigned dim , unsigned
degree) ;

Synopsis

s t o k e s p a i r s t r u c t = s t o k e s p a i r (name , dim , degree) ;

Description

Generate some of the known stable mixed discretizations for the Stokes-problem, the
explanations for the parameter name below.

Parameters

name The name of the Stokes-pair. The function understands the following names:

"Mini" Generate the so-called “Mini element”: the velocity space consists of the
direct sum of a linear Lagrange element and an element bubble, and the pressure
space is a linear Lagrange space. The parameter degree to stokes pair() con-
trols the quadrature degree for the interpolation operator, see the explanations
for bas fcts init() above in Section 4.12.13.

"TaylorHood" The classical Taylor-Hood element. The parameter degree controls
the degree of the velocity space in this case.

"BernardiRaugel" Generate the “Bernardi-Raugel” element: the velocity space is
constructed as the direct sum of a linear Lagrange space and the space of face bub-
bles described in Section 4.12.13 above. The parameter degree to stokes pair()

controls the quadrature degree for the interpolation operator, see the explanations
for bas fcts init() above in Section 4.12.13.

The pressure space for the “Bernardi-Raugel” element consists of the space of
discontinuous, element-wise constant functions.

CrouzeixRaviart Generate the quadratic “Crouzeix-Raviart-Mansfield” element:
the velocity space consists of the direct sum of a quadratic Lagrange space with
an element bubble in 2d, and of a three-component direct sum in 3d, where ad-
ditionally face bubbles have to be added. The pressure space is piece-wise linear
and discontinuous.

The parameter degree controls the degree of the quadrature formula used for
the interpolation operator, see see the explanations for bas fcts init() above
in Section 4.12.13.

dim The (mesh-)dimension of the requested set of basis functions.

394 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

degree As explained above, the meaning of this parameter changes, depending on
which ; Stokes-pair is requested.

Return Value

An instance of a STOKES PAIR structure. Note that this is not a pointer, but a real
instance of that structure.

4.12.7 add ons/meshtv/

A stand-alone program to convert ALBERTA data-files (see Section 3.3.8) to SILO/MeshTV
format. (Daniel Köster).

4.12.8 add ons/paraview/

A stand-alone program to convert ALBERTA data-files (see Section 3.3.8) to Paraview format,
see Section 4.11.4. (Rebecca Stotz).

4.12.9 add ons/static condensation/

Static-condensation for Stokes-discretizations with the Mini-element, thus reducing the di-
mension of the velocity space by #elements× DIM OF WORLD. (Rebecca Stotz)

There are versions for the “gradient” formulation as well as for the deformation-tensor
formulation, including some timings, comparing time needed to solve the condensed equations
(with the block-solve add-on, see Section 4.12.2 above and the SYMMLQ solver) against the
time needed to solve the uncondensed equations with the CG-method for Schur’s complement.

The add-on comes in the shape of a library

PREFIX/lib/libstatic_condensation_Xd[_debug].EXTENSION

PREFIX/include/alberta/static-condensation.h

The library defines the following functions:

4.12.15 Function (condense mini spp[dd]()).

Prototype

void condense min i spp (const DOF REAL VEC D ∗u h ,
const DOF REAL VEC D ∗ f h ,
const DOF REAL VEC ∗g h ,
BNDRY FLAGS d i r i ch l e t mask ,
EL MATRIX INFO ∗A minfo ,
EL MATRIX INFO ∗B minfo ,
BLOCKDOFMATRIX ∗ system matrix ,
BLOCK DOF VEC ∗up h ,
BLOCK DOF VEC ∗ l o ad ve c t o r)

void condense mini spp dd (const DOF REAL VEC D ∗u h ,
const DOF REAL VEC D ∗ f h ,
const DOF REAL VEC ∗g h ,
BNDRY FLAGS d i r i ch l e t mask ,
EL MATRIX INFO ∗A minfo ,
EL MATRIX INFO ∗B minfo ,

4.12. CONTRIBUTED “ADD-ONS” 395

BLOCKDOFMATRIX ∗ system matrix ,
BLOCK DOF VEC ∗up h ,
BLOCK DOF VEC ∗ l o ad ve c t o r)

Synopsis

condense min i spp (u h , f h , g h , d i r i ch l e t mask ,
A minfo , B minfo ,
system matrix , up h , l o a d v e c t o r) ;

condense mini spp dd (u h , f h , g h , d i r i ch l e t mask ,
A minfo , B minfo ,
system matrix , up h , l o a d v e c t o r) ;

Description

We consider the saddle point problem, with Lagrange and bubble basis-functions:A11 A12 B1

A21 A22 B2

Bt
1 Bt

2 0

 ·
uh,1uh,2
ph

 =

fh,1fh,2
gh

 ,
where, e.g. uh,1 and fh,1 are the Lagrange-components of the velocity field and the load-
vector for the velocity and uh,2 and fh,2 are the bubble-components. This problem will
be converted into an new system:[

Asingle Bsingle
Bt
single Csingle

]
·
[
uh,single
ph,single

]
=

[
fh,single
gh,single

]
,

which is equivalent to

system matrix · up h = load vector.

The function condense mini spp() converts the saddle point problem as follows

uh,single = u1 = up h->dof vec[0],

ph,single = p = up h->dof vec[1],

fh,single = fh,1 −A12 A
−1
22 fh,2 = load vector->dof vec[0],

gh,single = g −Bt
2 A
−1
22 f2 = load vector->dof vec[1],

Asingle = A11 −A12 A
−1
22 A21 = system matrix->dof mat[0][0],

Bsingle = B1 −A12 A
−1
22 B2 = system matrix->dof mat[0][1],

Bt
single = (Bsingle)

tr = system matrix->dof mat[1][0],

Csingle = −Bt
2 A
−1
22 B2 = system matrix->dof mat[1][1].

(4.7)

Parameters

396 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

u h Storage of the principal unknown, and start-value for an iterative solver. In the
context of Dirichlet boundary conditions (see Section 4.7.7.1) the application has
to make sure that u h already incorporates (interpolated) Dirichlet boundary condi-
tions.

f h Load-vector for the principal equations.

g h Load-vector for the constraint equation.

dirichlet mask A bit-mask describing which parts of the boundary should be
treated as Dirichlet-boundary, see Section 4.7.7.1. Note: dirichlet mask must not
be NULL.

A minfo Element matrix information to assemble matrix A =

(
A11 A12

A21 A22

)
. The

static condensation only works if A22 is diagonal, which is the case for the bubble
basis-functions because they “live” only on one element.

B minfo Element matrix information to assemble the matrix B =

(
B1

B2

)
.

system matrix Storage for the new matrices of the condensed system. It is a pointer
to a BLOCK DOF MATRIX structure, in which the matrices Asingle, Bsingle, B

t
single and

Csingle are stored, as shown in equation (4.7).

up h Storage for the condensed solution. It is a pointer to a BLOCK DOF VEC structure,
up h->dof vec[0] is the storage for the lagrange components of the velocity and
up h->dof vec[1] is the storage for the pressure.

load vector Load-vector of the condensed system, as shown in (4.7).

Examples

In subdirectory static condensation/demo, there are two demo programs,
mini-stokes.c and mini-quasi-stokes.c as an example how to use the
functions condense mini spp(), condense mini spp dd() and expand mini spp(),
expand mini spp dd().

4.12.16 Function (expand mini spp[dd]()).

Prototype

void expand mini spp (const BLOCK DOF VEC ∗up h ,
const DOF REAL VEC D ∗ f h ,
DOF REAL VEC D ∗uh ,
BNDRY FLAGS d i r i ch l e t mask ,
EL MATRIX INFO ∗A minfo ,
EL MATRIX INFO ∗B minfo)

void expand mini spp dd (const BLOCK DOF VEC ∗up h ,
const DOF REAL VEC D ∗ f h ,
DOF REAL VEC D ∗uh ,
BNDRY FLAGS d i r i ch l e t mask ,
EL MATRIX INFO ∗A minfo ,
EL MATRIX INFO ∗B minfo)

4.12. CONTRIBUTED “ADD-ONS” 397

Synopsis

expand mini spp (up h , f h , uh , d i r i ch l e t mask ,
A minfo , B minfo) ;

expand mini spp dd (up h , f h , uh , d i r i ch l e t mask ,
A minfo , B minfo) ;

Description

The functions expand mini spp() and expand mini spp dd() reconstruct the bubble-
components which were eliminated by the function condense mini spp() or
condense mini spp dd() or (see Section 4.12.15). The functions recompose the
Lagrange-components and the bubble-components and store them in uh.

The bubble-component of u is reconstructed as follows

uh,2 = A−1
22 (fh,2 −A21 uh,1 −B2 ph).

Note that A22 is a diagonal matrix, so this operation is comparatively cheap.

Parameters

up h The principal unknown, after solving the condensed system.

f h Load-vector for the principal equations.

uh Storage for the recomposed solution of the principal equations.

dirichlet mask A bit-mask describing which parts of the boundary should be
treated as Dirichlet-boundary. Note: dirichlet mask must not be NULL.

A minfo Element matrix information for assembling the matrix A =

(
A11 A12

A21 A22

)
.

The static condensation only works if A22 is diagonal, which is the case for the
bubble basis-functions because they “live” only on one element.

B minfo Element matrix information to assemble the matrix B =

(
B1

B2

)
.

Examples

In subdirectory static condensation/demo, there are two demo programs,
mini-stokes.c and mini-quasi-stokes.c as an example how to use the
functions condense mini spp(), condense mini spp dd() and expand mini spp(),
expand mini spp dd(). One for

4.12.10 add ons/triangle2alberta/

A converter from the mesh-generator Triangle to ALBERTA macro-file format (Daniel Köster).

4.12.11 add ons/write mesh fig/

Contains a function to dump an ALBERTA-mesh in the fig-file-format as understood by the
xfig CAD-tool. Daniel Köster).

398 CHAPTER 4. TOOLS FOR FINITE ELEMENT CALCULATIONS

Bibliography

[1] R. E. Bank and D. J. Rose, Global approximate Newton methods., Numer. Math., 37
(1981), pp. 279–295.

[2] E. Bänsch and K. G. Siebert, A posteriori error estimation for nonlinear problems
by duality techniques. Preprint 30, Universität Freiburg, 1995.

[3] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the So-
lution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition, SIAM,
Philadelphia, PA, 1994.

[4] J. H. Bramble, J. E. Pasciak, and J. Xu, Parallel multilevel preconditioners, Math.
Comput., 55 (1990), pp. 1–22.

[5] R. Cools and P. Rabinowitz, Monomial cubature rules since “Stroud”: a compilation,
J. Comput. Appl. Math., 48 (1993), pp. 309–326.

[6] J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson, An extended set of
Fortran Basic Linear Algebra Subprograms, ACM Trans. Math. Softw., 14 (1988), pp. 1–
32.

[7] W. Dörfler, FORTRAN–Bibliothek der Orthogonalen Fehler–Methoden, Manual,
Mathematische Fakultät Freiburg, 1995.

[8] D. Dunavant, High degree efficient symmetrical Gaussian quadrature rules for the tri-
angle, Int. J. Numer. Methods Eng., 21 (1985), pp. 1129–114.

[9] G. Dziuk, An algorithm for evolutionary surfaces, Numer. Math., 58 (1991), pp. 603 –
611.

[10] J. Fuhrmann and H. Langmach, gltools: OpenGL based online visualization. Software:
http://www.wias-berlin.de/software/gltools/.

[11] K. Gatermann, The construction of symmetric cubature formulas for the square and
the triangle, Computing, 40 (1988), pp. 229–240.

[12] B. Haasdonk, M. Ohlberger, M. Rumpf, A. Schmidt, and K. G. Siebert, Mul-
tiresolution visualization of higher order adaptive finite element simulations, Computing,
70 (2003), pp. 181–204.

[13] H. Kardestuncer, ed., Finite Element Handbook, McGraw-Hill, New York, 1987.

399

400 BIBLIOGRAPHY

[14] C. Lawson, R. Hanson, D. Kincaid, and F. Krough, Basic Linear Algebra Sub-
programs for Fortran usage, ACM Trans. Math. Softw., 5 (1979), pp. 308–325.

[15] M. Lenoir, Optimal isoparametric finite elements and error estimates for domains in-
volving curved boundaries, SIAM J. Numer. Anal., 23 (1986), pp. 562–580.

[16] J. G. Lewis, Algorithm 582: The gibbs-poole-stockmeyer and gibbs-king algorithms for
reordering sparse matrices, ACM Trans. Math. Softw., 8 (1982), pp. 190–194.

[17] A. Meister, Numerik linearer Gleichungssysteme, Vieweg, 1999.

[18] R. H. Nochetto, M. Paolini, and C. Verdi, An adaptive finite element method
for two-phase Stefan problems in two space dimensions. Part II: Implementation and
numerical experiments, SIAM J. Sci. Stat. Comput., 12 (1991), pp. 1207–1244.

[19] F. A. Ortega, GMV Version 4.0 – General Mesh Viewer User’s Manual, Los Alamos
National Laboratory.

[20] C. C. Paige and M. A. Saunders, Solutions of sparse indefinite systems of linear
equations, SIAM J. Numer. Anal., 12 (1975), pp. 617–629.

[21] M. Rumpf, A. Schmidt, and K. G. Siebert, On a unified visualization approach
for data from advanced numerical methods, in Visualization in Scientific Computing ’95,
R. Scateni, J. V. Wijk, and P. Zanarini, eds., Springer, 1995, pp. 35–44.

[22] , Functions defining arbitrary meshes – a flexible interface between numerical data
and visualization routines, Computer Graphics Forum, 15 (1996), pp. 129–141.

[23] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, 1996.

[24] A. Schmidt and K. G. Siebert, Design of adaptive finite element software. The finite
element toolbox ALBERTA. With CD-ROM., Lecture Notes in Computational Science
and Engineering 42. Berlin: Springer. xii, 315 p. EUR 64.15 , 2005.

[25] SFB 256, GRAPE – GRAphics Programming Environment Manual, Version 5.0, Bonn,
1995.

[26] A. H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, Englewood
Cliffs, NJ, 1971.

[27] R. Verfürth, A posteriori error estimates for nonlinear problems: Finite element dis-
cretization of elliptic equations, Math. Comp., 62 (1994), pp. 445–475.

[28] H. Yserentant, On the multi-level splitting of finite element spaces, Numer. Math., 49
(1986), pp. 379–412.

Index

active projection(), 138

adaptive methods

ADAPT INSTAT, 307

adapt mesh(), 305

adapt method instat(), 309

adapt method stat(), 304

ADAPT STAT, 302

ALBERTA marking strategies, 306

estimate(), 303

get adapt instat(), 310

get adapt stat(), 310

get el est(), 303

get el estc(), 303

implementation, 302–312

one timestep(), 310

add ons

libalbas

bas fcts init(), 391–392

get bubble(), 390

get raviart thomas(), 390

get trace bubble(), 390

get wall bubbles(), 390

stokes pair(), 392–394

liboem block solve

BLOCK DOF MATRIX, 383

BLOCK DOF SCHAR VEC, 382

BLOCK DOF VEC, 382

BLOCK PRECON, 383

clear block dof matrix(), 387

free block dof matrix(), 387

free block dof schar vec(), 385

free block dof vec(), 385

get block dof matrix(), 386

get block dof schar vec(), 385

get block dof vec(), 385

init oem block precon(), 389

oem block solve(), 388

static condensation

condense mini spp(), 394–396

condense mini spp dd(), 394–396

expand mini spp(), 396–397

expand mini spp dd(), 396–397

ALBERTA marking strategies, 306

alberta grape, 374

alberta movi, 374

application function types

D2 FCT AT X, 244

D2 FCT D AT X, 244

FCT AT X, 244, 245

FCT D AT X, 244

GRD FCT AT X, 244, 245

GRD FCT D AT X, 244

GRD LOC FCT AT QP, 244

GRD LOC FCT D AT QP, 244

LOC FCT AT QP, 244

LOC FCT D AT QP, 244

assemblage tools, 251–301

add element d vec(), 254, 255

add element matrix(), 254

add element matrix(), 255

add element vec(), 254, 255

add element vec dow(), 254, 255

bndry L2scp fct bas(), 298

bndry L2scp fct bas dow(), 298

bndry L2scp fct bas loc(), 298

bndry L2scp fct bas loc dow(), 298

BNDRY OPERATOR INFO, 271

boundary conditions(), 291

boundary conditions dow(), 291

boundary conditions loc(), 291

boundary conditions loc dow(), 291

dirichlet bound(), 293

dirichlet bound d(), 293

dirichlet bound loc(), 293

401

402 INDEX

dirichlet bound loc d(), 293
dirichlet bound loc dow(), 293
EL BNDRY VEC, 253
EL DOF VEC, 253
EL INT VEC, 253
EL MATRIX, 252
EL MATRIX INFO, 263
EL PTR VEC, 253
EL REAL D VEC, 253
EL REAL VEC, 253
EL REAL VEC D, 253
EL SCHAR VEC, 253
EL UCHAR VEC, 253
EL VEC D INFO, 287
EL VEC INFO, 287
EL VEC INFO D, 287
fill matrix info(), 273
fill matrix info ext(), 273
get q00 psi phi(), 287
get q01 psi phi(), 284
get q10 psi phi(), 285
get q11 psi phi(), 281
H1scp fct bas(), 289
H1scp fct bas dow(), 289
interpol(), 301
interpol loc(), 301
interpol d(), 301
interpol dow(), 301
interpol loc d(), 301
interpol loc dow(), 301
L2scp fct bas(), 289
L2scp fct bas d(), 289
L2scp fct bas dow(), 289
L2scp fct bas loc(), 289
L2scp fct bas loc dow(), 289
MATENT TYPE, 252
OPERATOR INFO, 267
Q00 PSI PHI, 286
Q00 PSI PHI CACHE, 286
Q01 PSI PHI, 282
Q01 PSI PHI CACHE, 282
Q10 PSI PHI, 284
Q10 PSI PHI CACHE, 284
Q11 PSI PHI, 280
Q11 PSI PHI CACHE, 280
robin bound(), 300
update matrix(, 265

update real d vec(), 289
update real vec(), 289
update real vec dow(), 289

barycentric coordinates
coord to world(), 221
el grd lambda(), 221
world to coord(), 221

basis fucntions
basis function hooks, 143

basis functions
BAS FCTS data type, 145

BLAS for element vectors and matrices, 264,
265

bi mat el vec(), 260, 265
bi mat el vec d(), 260, 265
bi mat el vec dow(), 260, 265
bi mat el vec dow scl(), 260, 265
bi mat el vec rdr(), 260, 265
bi mat el vec rrd(), 260, 265
bi mat el vec scl dow(), 260, 265
el bi mat vec(), 260, 264
el bi mat vec d(), 260, 264
el bi mat vec dow(), 260, 264
el bi mat vec dow scl(), 260, 264
el bi mat vec rdr(), 260, 264
el bi mat vec rrd(), 260, 264
el bi mat vec scl dow(), 260, 264
el gen mat vec(), 260, 264
el gen mat vec d(), 260, 264
el gen mat vec dow(), 260, 264
el gen mat vec dow scl(), 260, 264
el gen mat vec rdr(), 260, 264
el gen mat vec rrd(), 260, 264
el gen mat vec scl dow(), 260, 264
el mat axey(), 260, 264
el mat axpby(), 260, 264
el mat axpy(), 260, 264
el mat set(), 260, 264
el mat vec(), 260, 264
el mat vec d(), 260, 264
el mat vec dow(), 260, 264
el mat vec dow scl(), 260, 264
el mat vec rdr(), 260, 264
el mat vec rrd(), 260, 264
el mat vec scl dow(), 260, 264
gen mat el vec(), 260, 265

INDEX 403

gen mat el vec d(), 260, 265
gen mat el vec dow(), 260, 265
gen mat el vec dow scl(), 260, 265
gen mat el vec rdr(), 260, 265
gen mat el vec rrd(), 260, 265
gen mat el vec scl dow(), 260, 265
mat el vec(), 260, 265
mat el vec d(), 260, 265
mat el vec dow(), 260, 265
mat el vec dow scl(), 260, 265
mat el vec rdr(), 260, 265
mat el vec rrd(), 260, 265
mat el vec scl dow(), 260, 265

BLAS for REAL D

AX DOW(), 82
AXEY DOW(), 82
AXPBY DOW(), 82
AXPBYP DOW(), 82
AXPBYPCZ DOW(), 82
AXPBYPCZP DOW(), 82
AXPY DOW(), 82
DIST1 DOW(), 82
DIST8 DOW(), 82
DIST DOW(), 82
DST2 DOW(), 82
GRAMSCP DOW(), 82
MAX DOW(), 82
MAXEY DOW(), 82
MAXPBY DOW(), 82
MAXPBYP DOW(), 82
MAXPBYPCZ DOW(), 82
MAXPBYPCZP DOW(), 82
MAXPY DOW(), 82
MAXTPY DOW(), 82
MDIST DOW(), 82
MDST2 DOW(), 82
MGRAMSCP DOW(), 82
MNORM DOW(), 82
MNRM2 DOW(), 82
MSCAL DOW(), 82
MSCP DOW(), 82
NORM1 DOW(), 82
NORM8 DOW(), 82
NORM DOW(), 82
NRM2 DOW(), 82
NRMP DOW(), 82
PNRMP DOW(), 82

POW DOW(), 82
SCAL DOW(), 82
SCP DOW(), 82
SUM DOW(), 82
WEDGE DOW(), 82

boundary types, 81

coarse restrict(), 125, 142
coarsening

interpolation of DOF vectors, 142
restriction of DOF vectors, 142

DOF MATRIX

ENTRY NOT USED(), 127
ENTRY USED(), 127
MATRIX ROW, 127
NO MORE ENTRIES, 127
ROW LENGTH, 127
UNUSED ENTRY, 127

DOFs
adding and removing of DOFs, 138–141
entries in the el structure, 131
entries in the mesh structure, 131
FOR ALL DOFS(), 130
FOR ALL FREE DOFS(), 130
DOFs

get dof indices(), 133
implementation, 117–136

element geometry
EL GEOM CACHE, 90
fill el geom cache(), 90

element indices, 91
error estimators, 312–324

ellipt est(), 314
ellipt est d(), 314
ellipt est dow(), 314
heat est(), 319
heat est d(), 319
heat est dow(), 319

evaluation of finite element functions
[param]D2 uh at qp(), 240
[param]D2 uh d at qp(), 240
[param]D2 uh dow at qp(), 240
[param]div uh d at qp(), 240
[param]div uh dow at qp(), 240
eval D2 uh(), 236
eval D2 uh d(), 236

404 INDEX

eval D2 uh d fast(), 238
eval D2 uh dow(), 236
eval D2 uh dow fast(), 238
eval D2 uh fast(), 238
eval div uh d(), 236
eval div uh d fast(), 238
eval div uh dow(), 236
eval div uh dow fast(), 238
eval grd uh(), 236
eval grd uh d(), 236
eval grd uh d fast(), 238
eval grd uh dow(), 236
eval grd uh dow fast(), 238
eval grd uh fast(), 238
eval uh(), 236
eval uh d(), 236
eval uh d fast(), 238
eval uh dow(), 236
eval uh dow fast(), 238
eval uh fast(), 238
[param]grd uh at qp(), 240
[param]grd uh d at qp(), 240
[param]grd uh dow at qp(), 240
uh at qp(), 240
uh d at qp(), 240
uh dow at qp(), 240

evaluation tools
H1 err(), 248
H1 err dow(), 248
H1 err dow weighted(), 248
H1 err loc(), 248
H1 err loc dow(), 248
H1 err weighted(), 248
H1 norm uh(), 243, 244
H1 norm uh d(), 243, 244
H1 norm uh dow(), 243, 244
L2 err(), 248
L2 err dow(), 248
L2 err dow weighted(), 248
L2 err loc(), 248
L2 err loc dow(), 248
L2 err weighted(), 248
L2 norm uh(), 243, 244
L2 norm uh d(), 243, 244
L2 norm uh dow(), 243, 244
max err at qp(), 248
max err at qp loc(), 248

max err at vert(), 248

max err at vert loc(), 248

max err dow at qp(), 248

max err dow at qp loc(), 248

max err dow at vert(), 248

max err dow at vert loc(), 248

mean value(), 248, 251

mean value dow(), 248, 251

mean value loc(), 248, 251

mean value loc dow(), 248, 251

trace L2scp fct bas(), 298

trace L2scp fct bas dow(), 298

trace L2scp fct bas loc(), 298

trace L2scp fct bas loc dow(), 298

file organization, 58

Geomview interface, 380

get bound()

entry in BAS FCTS structure, 151

get bound()

for linear elements, 160

get dof indices()

entry in BAS FCTS structure, 150

get dof indices()

for linear elements, 160

for quadratic elements, 164

get int vec()

for linear elements, 155

gltools graphics, 372–374

close gltools window(), 373

gltools disp drv(), 373

gltools disp drv d(), 373

gltools disp est(), 373

gltools disp mesh(), 373

gltools disp vec(), 373

gltools drv(), 373

gltools drv d(), 373

gltools est(), 373

gltools mesh(), 373

gltools vec(), 373

GLTOOLS WINDOW, 372

open gltools window(), 373

GMV interface, 380–381

GRAPE

generate filename(), 72

GRAPE interface, 374–377

INDEX 405

alberta grape, 374
alberta movi, 374

graphics routines, 369–381
close gltools window(), 373
gltools disp drv(), 373
gltools disp drv d(), 373
gltools disp est(), 373
gltools disp mesh(), 373
gltools disp vec(), 373
gltools drv(), 373
gltools drv d(), 373
gltools est(), 373
gltools mesh(), 373
gltools vec(), 373
GLTOOLS WINDOW, 372
graph clear window(), 370
graph close window(), 370
graph drv(), 370
graph drv d(), 370
graph el est(), 370
graph fvalues(), 370
graph fvalues 2d(), 371
graph level 2d(), 371
graph level d 2d(), 371
graph levels 2d(), 371
graph levels d 2d(), 371
graph line(), 370
graph mesh(), 370
graph open window(), 370
graph point(), 370
graph points(), 370
GRAPH RGBCOLOR, 369
GRAPH WINDOW, 369
open gltools window(), 373
rgb albert, 369
rgb alberta, 369
rgb black, 369
rgb blue, 369
rgb cyan, 369
rgb green, 369
rgb grey50, 369
rgb magenta, 369
rgb red, 369
rgb white, 369
rgb yellow, 369
write dof vec gmv(), 380
write mesh gmv(), 380

heat equation

implementation, 41

implementation of model problems, 1

heat equation, 41

nonlinear reaction–diffusion equation, 19

Poisson equation, 4

include files

alberta.h, 59

alberta util.h, 59

init element(), 269

BAS FCTS, 215–219

basis function chains, 158

BNDRY OPERATOR INFO, 269

direct sums of function spaces, 158

Example, 277

example for a parametric mesh, 201

example for extra fill-flags, 201

example for mesh-traversal, 201

INIT EL TAG CTX, 217–218

INIT EL TAG DFLT(), 217–218

INIT EL TAG INIT(), 217–218

INIT EL TAG NULL(), 217–218

INIT EL TAG TAG(), 217–218

INIT EL TAG UNIQ(), 217–218

INIT EL TAG DFLT, 215–217

INIT EL TAG NONE, 215–217

INIT EL TAG NULL, 215–217

INIT ELEMENT(), 215–217

INIT ELEMENT DECL, 218

INIT OBJECT(), 215–217

OPERATOR INFO, 269

PARAMETRIC, 199

Q00 PSI PHI, 215–219

Q01 PSI PHI, 215–219

Q10 PSI PHI, 215–219

Q11 PSI PHI, 215–219

QUAD, 215–219

QUAD FAST, 215–219

vector-valued basis functions, 156, 217

WALL QUAD, 215–219

initialization of meshes, 96

installation, 57–58

interpol() for linear elements, 161

interpolation, 124

LALt(), 269

406 INDEX

parametric example, 277

leaf data

transformation during coarsening, 142

transformation during refinement, 138

linear solver

OEM DATA, 324

OEM SOLVER, 329

linear solvers, 324–366

call oem solve d(), 331, 333

call oem solve dow(), 331, 333

call oem solve s(), 331, 333

get oem solver(), 331

init oem solve(), 331, 332

init sp constraint(), 340, 345

oem bicgstab(), 326

oem cg(), 326

oem gmres(), 326

oem gmres k(), 326

oem odir(), 326

oem ores(), 326

oem solve d(), 329, 330

oem solve dow(), 329

oem solve dowb(), 330

oem solve s(), 329, 330

oem sp schur solve(), 340, 347–348

oem sp solve dow scl(), 340, 342

oem sp solve ds(), 340, 342

oem symmlq(), 326

oem tfqmr(), 326

release oem solve(), 331, 333

release sp constraint(), 340, 346

sor d(), 336

sor s(), 336

SP CONSTRAINT, 340, 344

sp dirichlet bound dow scl(), 340

sp dirichlet bound ds(), 340, 349–350

ssor d(), 336

ssor s(), 336

local numbering

edges, 75

faces, 75

neighbours, 75

macro triangulation

example for three quarters of the unit
disc, 104

example of a macro triangulation in 1d,
103

example of a macro triangulation in 2d,
103

example of a macro triangulation in 3d,
103

export macro triangulations, 107
import macro triangulations, 107
macro triangulation file, 99
macro data2mesh(), 109
macro test(), 109
read macro(), 105
read macro bin(), 106
read macro xdr(), 106
reading macro triangulations, 99
unit cube in 3d, 103
unit interval in 1d, 103
unit square in 2d, 103
write macro(), 106
write macro bin(), 106
write macro data(), 109
write macro data bin(), 109
write macro data xdr(), 109
write macro xdr(), 106
writing macro triangulations, 99, 106

marking, 306
memory (de–) allocation, 64–68

alberta alloc(), 64
alberta calloc(), 64
alberta free(), 64
alberta matrix(), 65
alberta realloc(), 64
CLEAR WORKSPACE(), 67
clear workspace(), 66
free alberta matrix(), 65
FREE WORKSPACE(), 67
free workspace(), 66
GET WORKSPACE(), 66
get workspace(), 66
MAT ALLOC(), 65
MAT FREE(), 65
MEM ALLOC(), 64
MEM CALLOC(), 64
MEM FREE(), 64
MEM REALLOC(), 64
print mem use(), 64
REALLOC WORKSPACE(), 66

INDEX 407

realloc workspace(), 66
mesh coarsening

implementation, 142
mesh refinement

implementation, 136–141
mesh traversal, 110–117
messages, 60
msg info, 61

node projection, 97
example for three fourths of the unit disc,

105
example of node projection, 98
init node proj(), 98

nonlinear reaction–diffusion equation
implementation, 19

nonlinear solvers, 366–369
NLS DATA, 367
nls newton(), 368
nls newton br(), 368
nls newton ds(), 368
nls newton fs(), 368

numerical quadrature
[param]D2 uh at qp(), 240
[param]D2 uh d at qp(), 240
[param]D2 uh dow at qp(), 240
[param]div uh d at qp(), 240
[param]div uh dow at qp(), 240
get lumping quadrature(), 224
get neigh quad(), 233
get neigh quad fast(), 233
get product quad(), 224
get quad fast(), 229
get quadrature(), 224
get wall quad(), 232
get wall quad fast(), 233
[param]grd uh at qp(), 240
[param]grd uh d at qp(), 240
[param]grd uh dow at qp(), 240
INIT D2 PHI, 227
INIT GRD PHI, 227
INIT PHI, 227
integrate std simp(), 224
max quad points(), 230
new quadrature(), 224
QUAD, 223
QUAD FAST, 227

QUADRATURE, 223
register quadrature(), 224
register wall quadrature(), 232
uh at qp(), 240
uh d at qp(), 240
uh dow at qp(), 240
WALL QUAD, 231
WALL QUAD FAST, 232

parameter file, 68
parameter handling, 68–72

ADD PARAMETER(), 69
add parameter(), 69
GET PARAMETER(), 70
get parameter(), 70
init parameters(), 69
save parameters(), 70

parametric meshes, 191
accessing, 192
copy lagrange coords(), 196
get lagrange coords(), 195–196
get lagrange touched edges(), 196–

197
isoparametric elements for the unit ball,

197
use of a parametric mesh, 201
use lagrange parametric(), 193–195

PARAMETRIC structure, 198
Paraview interface, 378–380
Per-element initializers

BAS FCTS, 215–219
basis function chains, 158
BNDRY OPERATOR INFO, 269
direct sums of functions spaces, 158
example for a parametric mesh, 201
example for extra fill-flags, 201
example for mesh-traversal, 201
INIT EL TAG CTX, 217–218
INIT EL TAG DFLT(), 217–218
INIT EL TAG INIT(), 217–218
INIT EL TAG NULL(), 217–218
INIT EL TAG TAG(), 217–218
INIT EL TAG UNIQ(), 217–218
INIT EL TAG DFLT, 215–217
INIT EL TAG NONE, 215–217
INIT EL TAG NULL, 215–217
INIT ELEMENT(), 215–217

408 INDEX

INIT ELEMENT DECL, 218
INIT OBJECT(), 215–217
OPERATOR INFO, 269
PARAMETRIC, 199
Q00 PSI PHI, 215–219
Q01 PSI PHI, 215–219
Q10 PSI PHI, 215–219
Q11 PSI PHI, 215–219
QUAD, 215–219
QUAD FAST, 215–219
vector-valued basis functions, 156, 217
WALL QUAD, 215–219

Poisson equation
implementation, 4

preconditioner
BPX, 355
get BPX precon(), 355–356
get diag precon(), 354
get HB precon(), 354–355
get ILUk precon(), 356–357
get SSOR precon(), 356
hierarchical basis, 354
ILUk, 356
init oem precon(), 358–360, 362
init precon from type(), 361
OEM PRECON, 357
SSOR, 356
vinit oem precon(), 358–360

real coarse restr()

for linear elements, 162
real refine inter()

for quadratic elements, 167
real refine inter()

for linear elements, 162
for quadratic elements, 165

reference element, 89
refine interpol(), 125, 141
refinement

DOFs
handed from parent to children, 139
newly created, 140
removed on the parent, 141

interpolation of DOF vectors, 141
local numbering

edges, 75
faces, 75

neighbours, 75
restriction, 124

submeshes
allocation, 204
coarsening, 208
implementation, 204
refinement, 208
tools, 206

tracemeshes
implementation, 204

WAIT, 72

XDR, 134

Data types, symbolic constants,
functions, and macros

List of data types

ADAPT INSTAT, 307
ADAPT STAT, 302

BAS FCT, 143
BAS FCT D, 143
BAS FCTS, 145
BLOCK DOF MATRIX, 383
BLOCK DOF SCHAR VEC, 382
BLOCK DOF VEC, 382
BLOCK PRECON, 383
BNDRY FLAGS, 81
BNDRY OPERATOR INFO, 271
BNDRY TYPE, 81

D2 BAS FCT, 143
D2 BAS FCT D, 143
D2 FCT AT X, 244
D2 FCT D AT X, 244
D3 BAS FCT, 143
D4 BAS FCT, 143
DOF, 118
DOF ADMIN, 118
DOF FREE UNIT, 118
DOF MATRIX, 126
DOF-vectors

DOF INT VEC, 121
DOF PTR VEC, 121
DOF REAL D VEC, 121
DOF REAL VEC, 121
DOF REAL VEC D, 121
DOF SCHAR VEC, 121

DOF UCHAR VEC, 121

EL, 86
EL BNDRY VEC, 253
EL DOF VEC, 253
EL GEOM CACHE, 90
EL INFO, 87
EL INT VEC, 253
EL MATRIX, 252
EL MATRIX INFO, 263
EL PTR VEC, 253
EL REAL D VEC, 253
EL REAL VEC, 253
EL REAL VEC D, 253
EL SCHAR VEC, 253
EL UCHAR VEC, 253
EL VEC D INFO, 287
EL VEC INFO, 287
EL VEC INFO D, 287

FCT AT X, 244, 245
FCT D AT X, 244
FE SPACE, 175
FLAGS, 59

GLTOOLS WINDOW, 372
GRAPH RGBCOLOR, 369
GRAPH WINDOW, 369
GRD BAS FCT, 143
GRD BAS FCT D, 143
GRD FCT AT X, 244, 245
GRD FCT D AT X, 244
GRD LOC FCT AT QP, 244
GRD LOC FCT D AT QP, 244

INIT EL TAG CTX, 217–218

LOC FCT AT QP, 244

409

410 DATA TYPES, SYMBOLIC CONSTANTS, FUNCTIONS, AND MACROS

LOC FCT D AT QP, 244

MACRO DATA, 107
MACRO EL, 84
MATENT TYPE, 252
MATRIX ROW, 127

MATRIX ROW REAL, 127
MATRIX ROW REAL D, 127
MATRIX ROW REAL DD, 127

MatrixTranspose, 133
MESH, 94
MULTI GRID INFO, 362

NLS DATA, 367
NODE PROJECTION, 98
NODE TYPES, 74

OEM DATA, 324
OEM PRECON, 357
OEM SOLVER, 329
OEM SP DATA, 337
OPERATOR INFO, 267

PARAMETRIC, 198
PRECON, 353

Q00 PSI PHI, 286
Q00 PSI PHI CACHE, 286
Q01 PSI PHI, 282
Q01 PSI PHI CACHE, 282
Q10 PSI PHI, 284
Q10 PSI PHI CACHE, 284
Q11 PSI PHI, 280
Q11 PSI PHI CACHE, 280
QUAD, 223
QUAD FAST, 227
QUADRATURE, 223

RC LIST EL, 93, 138
REAL, 60
REAL B, 75, 76
REAL BB, 76
REAL BBB, 76
REAL BBBB, 76
REAL BBD, 76
REAL BBDD, 76
REAL BD, 76
REAL BDB, 76

REAL BDBB, 76
REAL BDD, 76
REAL D, 75, 76
REAL DB, 76
REAL DBB, 76
REAL DBBB, 76
REAL DBBBB, 76
REAL DD, 76
REAL DDD, 76

S CHAR, 59
sorted wall vertices 1d, 230
sorted wall vertices 2d, 230
sorted wall vertices 3d, 230
SP CONSTRAINT, 340, 344

TRAVERSE STACK, 114

U CHAR, 59

WALL QUAD, 231
WALL QUAD FAST, 232
WORKSPACE, 66

List of symbolic constants

CALL EL LEVEL, 110
CALL EVERY EL INORDER, 110
CALL EVERY EL POSTORDER, 110
CALL EVERY EL PREORDER, 110
CALL LEAF EL, 110
CALL LEAF EL LEVEL, 110
CALL MG LEVEL, 110
CENTER, 74, 119

DIM FAC

DIM FAC 0D, 74
DIM FAC 1D, 74
DIM FAC 2D, 74
DIM FAC 3D, 74
DIM FAC LIMIT, 74
DIM FAC MAX, 74

DIM LIMIT, 73
DIM MAX, 73
DIM OF WORLD, 73
DIRICHLET, 81

LIST OF SYMBOLIC CONSTANTS 411

EDGE, 74, 119

FACE, 74, 119
false, 59
FILL ANY, 110
FILL BOUND, 110
FILL COORDS, 110
FILL MACRO WALLS, 110
FILL MASTER INFO, 110
FILL MASTER NEIGH, 110
FILL NEIGH, 110
FILL NON PERIODIC, 110
FILL NOTHING, 110
FILL OPP COORDS, 110
FILL ORIENTATION, 110
FILL PROJECTION, 110

GRAPH MESH BOUNDARY, 370
GRAPH MESH ELEMENT INDEX, 371
GRAPH MESH ELEMENT MARK, 371
GRAPH MESH VERTEX DOF, 371

H1 NORM, 315

INIT D2 PHI, 227
INIT EL TAG DFLT, 215–217
INIT EL TAG NONE, 215–217
INIT EL TAG NULL, 215–217
INIT GRD PHI, 227
INIT GRD UH, 316, 317
INIT PHI, 227
INIT UH, 316, 317
INTERIOR, 81

L2 NORM, 315

MESH COARSENED, 303, 305
MESH COARSENED, 142
MESH REFINED, 303, 305
MESH REFINED, 136

N EDGES

N EDGES 0D, 74
N EDGES 1D, 74
N EDGES 2D, 74
N EDGES 3D, 74
N EDGES LIMIT, 74
N EDGES MAX, 74

N FACES

N FACES 0D, 74
N FACES 1D, 74
N FACES 2D, 74
N FACES 3D, 74
N FACES LIMIT, 74
N FACES MAX, 74

N LAMBDA

N LAMBDA 0D, 74
N LAMBDA 1D, 74
N LAMBDA 2D, 74
N LAMBDA 3D, 74
N LAMBDA LIMIT, 74
N LAMBDA MAX, 74

N LAMBDA MAX, 73
N NEIGH

N NEIGH 0D, 74
N NEIGH 1D, 74
N NEIGH 2D, 74
N NEIGH 3D, 74
N NEIGH LIMIT, 74
N NEIGH MAX, 74

N NODE TYPES, 74
N VERTICES

N VERTICES 0D, 74
N VERTICES 1D, 74
N VERTICES 2D, 74
N VERTICES 3D, 74
N VERTICES LIMIT, 74
N VERTICES MAX, 74

N WALLS

N WALLS 0D, 74
N WALLS 1D, 74
N WALLS 2D, 74
N WALLS 3D, 74
N WALLS LIMIT, 74
N WALLS MAX, 74

NEUMANN, 81
nil, 59
NO MORE ENTRIES, 127
NoTranspose, 133

rgb albert, 369
rgb alberta, 369
rgb black, 369
rgb blue, 369
rgb cyan, 369
rgb green, 369

412 DATA TYPES, SYMBOLIC CONSTANTS, FUNCTIONS, AND MACROS

rgb grey50, 369
rgb magenta, 369
rgb red, 369
rgb white, 369
rgb yellow, 369
ROW LENGTH, 127

Transpose, 133
true, 59

UNUSED ENTRY, 127

VERTEX, 74, 119

List of functions

adapt mesh(), 305
adapt method instat(), 309
adapt method stat(), 304
add bas fcts plugin(), 174
add dof compress hook(), 120
add element d vec(), 254, 255
add element matrix(), 254
add element matrix(), 255
add element vec(), 254, 255
add element vec dow(), 254, 255
add parameter(), 69
AFFAFF DOW(), 77
AFFINE DOW(), 77
AFFINV DOW(), 77
alberta alloc(), 64
alberta calloc(), 64
alberta free(), 64
alberta matrix(), 65
alberta realloc(), 64
ALLOC EL VEC(), 260
AX DOW(), 77, 82
AXEY DOW(), 77, 82
AXPBY DOW(), 77, 82
AXPBYP DOW(), 77, 82
AXPBYPCZ DOW(), 77, 82
AXPBYPCZP DOW(), 77, 82
AXPY DOW(), 77, 82

bar D2 uh at qp(), 242
bar D2 uh d at qp(), 242

bar D2 uh dow at qp(), 242
bar grd uh at qp(), 242
bar grd uh d at qp(), 242
bar grd uh dow at qp(), 242
bas fcts init(), 391–392
bas fcts sub chain(), 189, 190
bi mat el vec(), 260, 265
bi mat el vec d(), 260, 265
bi mat el vec dow(), 260, 265
bi mat el vec dow scl(), 260, 265
bi mat el vec rdr(), 260, 265
bi mat el vec rrd(), 260, 265
bi mat el vec scl dow(), 260, 265
bndry L2scp fct bas(), 298
bndry L2scp fct bas dow(), 298
bndry L2scp fct bas loc(), 298
bndry L2scp fct bas loc dow(), 298
boundary conditions(), 291
boundary conditions dow(), 291
boundary conditions loc(), 291
boundary conditions loc dow(), 291
bulk to trace coords(), 206
bulk to trace coords 0d(), 206
bulk to trace coords 1d(), 206
bulk to trace coords 2d(), 206
bulk to trace coords dim(), 206

call oem solve d(), 331, 333
call oem solve dow(), 331, 333
call oem solve s(), 331, 333
chain bas fcts, 157
change error out(), 63
change msg out(), 63
check and get mesh(), 96
clear block dof matrix(), 387
clear dof matrix(), 129
clear workspace(), 66
close gltools window(), 373
CMP DOW(), 77
coarsen(), 142
condense mini spp(), 394–396
condense mini spp dd(), 394–396
coord to world(), 221
COPY DOW(), 77
copy from dof real d vec(), 184, 187
copy from dof real vec(), 184, 187
copy from dof real vec d(), 184, 187

LIST OF FUNCTIONS 413

copy from dof schar vec(), 184, 187
copy lagrange coords(), 192, 196
copy to dof real d vec(), 184, 187
copy to dof real vec(), 184, 187
copy to dof real vec d(), 184, 187
copy to dof schar vec(), 184, 187

D2 DOW(), 77
D2 P DOW(), 77
[param]D2 uh at qp(), 240
[param]D2 uh d at qp(), 240
[param]D2 uh dow at qp(), 240
DEF EL VEC CONST(), 260
DEF EL VEC VAR(), 260
del dof compress hook(), 120
dirichlet bound(), 293
dirichlet bound d(), 293
dirichlet bound loc(), 293
dirichlet bound loc d(), 293
dirichlet bound loc dow(), 293
dirichlet map(), 256, 260
DIST1 DOW(), 77, 82
DIST8 DOW(), 77, 82
DIST DOW(), 77, 82
distribute to dof real d vec skel(),

184, 186
distribute to dof real vec d skel(),

184, 186
distribute to dof real vec skel(), 184,

186
distribute to dof schar vec skel(), 184,

186
[param]div uh d at qp(), 240
[param]div uh dow at qp(), 240
dof asum(), 134
dof asum d(), 134
dof asum dow(), 134
dof axpy(), 134
dof axpy d(), 134
dof axpy dow(), 134
dof compress(), 120
dof copy(), 134
dof copy d(), 134
dof copy dow(), 134
dof dof vec sub chain(), 189, 190
dof dot(), 134
dof dot d(), 134

dof dot dow(), 134
dof gemv(), 134
dof gemv d(), 134
dof gemv dow(), 134
dof gemv dow scl(), 134
dof gemv rdr(), 134
dof gemv rrd(), 134
dof gemv scl dow(), 134
dof int vec sub chain(), 189, 190
dof matrix sub chain(), 189, 190
dof max(), 134
dof max d(), 134
dof max dow(), 134
dof min(), 134
dof min d(), 134
dof min dow(), 134
dof mv(), 134
dof mv d(), 134
dof mv dow(), 134
dof mv dow scl(), 134
dof mv rdr(), 134
dof mv rrd(), 134
dof mv scl dow(), 134
dof nrm2(), 134
dof nrm2 d(), 134
dof nrm2 dow(), 134
dof ptr vec sub chain(), 189, 190
dof real d vec length(), 184, 185
dof real d vec sub chain(), 189, 190
dof real vec d length(), 184, 185
dof real vec d sub chain(), 189, 190
dof real vec length(), 184, 185
dof real vec sub chain(), 189, 190
dof scal(), 134
dof scal d(), 134
dof scal dow(), 134
dof schar vec sub chain(), 189, 190
dof set(), 134
dof set d(), 134
dof set dow(), 134
dof uchar vec sub chain(), 189, 190
dof xpay(), 134
dof xpay d(), 134
dof xpay dow(), 134
DST2 DOW(), 77, 82

el bi mat vec(), 260, 264

414 DATA TYPES, SYMBOLIC CONSTANTS, FUNCTIONS, AND MACROS

el bi mat vec d(), 260, 264
el bi mat vec dow(), 260, 264
el bi mat vec dow scl(), 260, 264
el bi mat vec rdr(), 260, 264
el bi mat vec rrd(), 260, 264
el bi mat vec scl dow(), 260, 264
el det(), 221
el gen mat vec(), 260, 264
el gen mat vec d(), 260, 264
el gen mat vec dow(), 260, 264
el gen mat vec dow scl(), 260, 264
el gen mat vec rdr(), 260, 264
el gen mat vec rrd(), 260, 264
el gen mat vec scl dow(), 260, 264
el grd lambda(), 221
el interpol(), 256, 260
el interpol dow(), 256, 260
el mat axey(), 260, 264
el mat axpby(), 264
el mat axpy(), 260
el mat axpy(), 260, 264
el mat set(), 260, 264
el mat vec(), 260, 264
el mat vec d(), 260, 264
el mat vec dow(), 260, 264
el mat vec dow scl(), 260, 264
el mat vec rdr(), 260, 264
el mat vec rrd(), 260, 264
el mat vec scl dow(), 260, 264
el volume(), 221
element est(), 321
element est dow(), 321
element est dow finish(), 321
element est finish(), 321
element est grd uh(), 321
element est grd uh dow(), 321
element est uh(), 321
element est uh dow(), 321
ellipt est(), 314
ellipt est d(), 314
ellipt est dow(), 314
ellipt est dow finish(), 321
ellipt est dow init(), 321
ellipt est finish(), 321
ellipt est init(), 321
enlarge dof lists(), 121
estimate(), 303

eval bar D2 uh(), 242
eval bar D2 uh d(), 242
eval bar D2 uh d fast(), 242
eval bar D2 uh dow(), 242
eval bar D2 uh dow fast(), 242
eval bar D2 uh fast(), 242
eval bar grd uh(), 242
eval bar grd uh d(), 242
eval bar grd uh d fast(), 242
eval bar grd uh dow(), 242
eval bar grd uh dow fast(), 242
eval bar grd uh fast(), 242
eval D2 uh(), 236
eval D2 uh d(), 236
eval D2 uh d fast(), 238
eval D2 uh dow(), 236
eval D2 uh dow fast(), 238
eval D2 uh fast(), 238
eval div uh d(), 236
eval div uh d fast(), 238
eval div uh dow(), 236
eval div uh dow fast(), 238
eval grd uh(), 236
eval grd uh d(), 236
eval grd uh d fast(), 238
eval grd uh dow(), 236
eval grd uh dow fast(), 238
eval grd uh fast(), 238
eval uh(), 236
eval uh d(), 236
eval uh d fast(), 238
eval uh dow(), 236
eval uh dow fast(), 238
eval uh fast(), 238
exit oem mat vec(), 350, 352
EXPAND DOW(), 77
expand mini spp(), 396–397
expand mini spp dd(), 396–397

f at qp(), 225
f d at qp(), 225
f loc at qp(), 225
f loc d at qp(), 225
fe space sub chain(), 189, 190
fill el geom cache(), 90
fill el int vec(), 256, 259
fill el real d vec(), 256, 259

LIST OF FUNCTIONS 415

fill el real vec(), 256, 259
fill el real vec d(), 256, 259
fill el schar vec(), 256, 259
fill el uchar vec(), 256, 259
fill elinfo(), 111
fill macro info(), 111
get master el info(), 206
fill matrix info(), 273
fill matrix info ext(), 273
get slave el info(), 206
find el at pt(), 116
FORMAT DOW(), 77
fread dof int vec(), 136
fread dof int vec xdr(), 136
fread dof real d vec(), 136
fread dof real d vec xdr(), 136
fread dof real vec(), 136
fread dof real vec d(), 136
fread dof real vec xdr d(), 136
fread dof real vec xdr(), 136
fread dof schar vec(), 136
fread dof schar vec xdr(), 136
fread dof uchar vec(), 136
fread dof uchar vec xdr(), 136
fread mesh(), 136
free alberta matrix(), 65
free block dof matrix(), 387
free block dof schar vec(), 385
free block dof vec(), 385
free dof dof vec(), 123
free dof int vec(), 123
free dof matrix(), 129
free dof ptr vec(), 123
free dof real d vec(), 123
free dof real vec(), 123
free dof real vec d(), 123
free dof schar vec(), 123
free dof uchar vec(), 123
free el bndry vec(), 256, 259
free el dof vec(), 256, 259
free el int vec(), 256, 259
free el ptr vec(), 256, 259
free el real d vec(), 256, 259
free el real vec(), 256, 259
free el real vec d(), 256, 259
free el schar vec(), 256, 259
free el uchar vec(), 256, 259

free int dof vec(), 123
free macro data(), 109
free mesh(), 97
free traverse stack(), 114, 115
free workspace(), 66
fwrite dof int vec(), 136
fwrite dof int vec xdr(), 136
fwrite dof real d vec(), 136
fwrite dof real d vec xdr(), 136
fwrite dof real vec(), 136
fwrite dof real vec d(), 136
fwrite dof real vec d xdr(), 136
fwrite dof real vec xdr(), 136
fwrite dof schar vec(), 136
fwrite dof schar vec xdr(), 136
fwrite dof uchar vec(), 136
fwrite dof uchar vec xdr(), 136
fwrite mesh(), 136
fx at qp(), 225
fx d at qp(), 225

GEMTV DOW(), 77, 83
GEMV DOW(), 77, 83
gen mat el vec(), 260, 265
gen mat el vec d(), 260, 265
gen mat el vec dow(), 260, 265
gen mat el vec dow scl(), 260, 265
gen mat el vec rdr(), 260, 265
gen mat el vec rrd(), 260, 265
gen mat el vec scl dow(), 260, 265
generate filename(), 72
get adapt instat(), 310
get adapt stat(), 310
get bas fcts, 156
get block dof matrix(), 386
get block dof schar vec(), 385
get block dof vec(), 385
get bndry submesh(), 206
get bndry submesh by segment(), 206
get bndry submesh by type(), 206
get bound(), 256, 257
get BPX precon(), 352, 355–356
get bubble(), 390
get diag precon(), 352, 354
get disc ortho poly, 174
get discontinuous lagrange, 174
get dof dof vec(), 123

416 DATA TYPES, SYMBOLIC CONSTANTS, FUNCTIONS, AND MACROS

get dof indices(), 256, 257
get dof int vec(), 123
get dof matrix(), 129
get dof ptr vec(), 123
get dof real d vec(), 123
get dof real d vec skel(), 184, 186
get dof real vec(), 123
get dof real vec d(), 123
get dof real vec d skel(), 184, 186
get dof real vec skel(), 184, 186
get dof schar vec(), 123
get dof schar vec skel(), 184, 186
get dof uchar vec(), 123
get el bndry vec(), 256, 259
get el dof vec(), 256, 259
get el est(), 303
get el estc(), 303
get el int vec(), 256, 259
get el ptr vec(), 256, 259
get el real d vec(), 256, 259
get el real vec(), 256, 259
get el real vec d(), 256, 259
get el schar vec(), 256, 259
get el uchar vec(), 256, 259
get fe space(), 176
get HB precon(), 352, 354–355
get ILUk precon(), 352, 356–357
get int dof vec(), 123
get lagrange, 172
get lagrange coords(), 192, 195–196
get lagrange touched edges(), 192, 196–

197
get lumping quadrature(), 224
get macro data(), 109
get master(), 206
get master bound(), 206
get master dof indices(), 206
get matrix row(), 129
GET MESH(), 96
get neigh quad(), 233
get neigh quad fast(), 233
get oem solver(), 331
get parameter(), 70
get product quad(), 224
get q00 psi phi()), 287
get q01 psi phi()), 284
get q10 psi phi()), 285

get q11 psi phi()), 281
get quad fast(), 229
get quadrature(), 224
get raviart thomas(), 390
get slave dof mapping(), 206
get slave el(), 206
get SSOR precon(), 352, 356
get submesh(), 204
get trace bubble(), 390
get traverse stack(), 114, 115
get wall bubbles(), 390
get wall normal(), 221
get wall quad(), 232
get wall quad fast(), 233
get workspace(), 66
global coarsen(), 142
global refine(), 136
gltools disp drv(), 373
gltools disp drv d(), 373
gltools disp est(), 373
gltools disp mesh(), 373
gltools disp vec(), 373
gltools drv(), 373
gltools drv d(), 373
gltools est(), 373
gltools mesh(), 373
gltools vec(), 373
GRAD DOW(), 77
GRAD P DOW(), 77
GRAMSCP DOW(), 77, 82
graph clear window(), 370
graph close window(), 370
graph drv(), 370
graph drv d(), 370
graph el est(), 370
graph fvalues(), 370
graph fvalues 2d(), 371
graph level 2d(), 371
graph level d 2d(), 371
graph levels 2d(), 371
graph levels d 2d(), 371
graph line(), 370
graph mesh(), 370
graph open window(), 370
graph point(), 370
graph points(), 370
grd f at qp(), 225

LIST OF FUNCTIONS 417

grd f d at qp(), 225

grd f loc at qp(), 225

grd f loc d at qp(), 225

grd fx at qp(), 225

grd fx d at qp(), 225

[param]grd uh at qp(), 240

[param]grd uh d at qp(), 240

[param]grd uh dow at qp(), 240

H1 err(), 248

H1 err dow(), 248

H1 err dow weighted(), 248

H1 err loc(), 248

H1 err loc dow(), 248

H1 err weighted(), 248

H1 norm uh(), 243, 244

H1 norm uh d(), 243, 244

H1 norm uh dow(), 243, 244

H1scp fct bas(), 289

H1scp fct bas dow(), 289

heat est(), 319

heat est d(), 319

heat est dow(), 319

heat est dow finish(), 321

heat est dow init(), 321

heat est finish(), 321

heat est init(), 321

init dof real d vec skel(), 184, 185

init dof real vec d skel(), 184, 185

init dof real vec skel(), 184, 185

init dof schar vec skel(), 184, 185

INIT ELEMENT(), 215–217

init leaf data(), 92

init oem block precon(), 389

init oem mat vec(), 350, 351

init oem precon(), 358–360, 362

init oem solve(), 331, 332

init parameters(), 69

init precon from type(), 361

init sp constraint(), 340, 345

integrate std simp(), 224

interpol(), 301

interpol d(), 301

interpol dow(), 301

interpol loc(), 301

interpol loc d(), 301

interpol loc dow(), 301

INVAFF DOW(), 77

L2 err(), 248

L2 err dow(), 248

L2 err dow weighted(), 248

L2 err loc(), 248

L2 err loc dow(), 248

L2 err weighted(), 248

L2 norm uh(), 243, 244

L2 norm uh d(), 243, 244

L2 norm uh dow(), 243, 244

L2scp fct bas(), 289

L2scp fct bas d(), 289

L2scp fct bas dow(), 289

L2scp fct bas loc(), 289

L2scp fct bas loc dow(), 289

macro data2mesh(), 109

macro test(), 109

mat el vec(), 260, 265

mat el vec d(), 260, 265

mat el vec dow(), 260, 265

mat el vec dow scl(), 260, 265

mat el vec rdr(), 260, 265

mat el vec rrd(), 260, 265

mat el vec scl dow(), 260, 265

MAX DOW(), 77, 82

max err at qp(), 248

max err at qp loc(), 248

max err at vert(), 248

max err at vert loc(), 248

max err dow at qp(), 248

max err dow at qp loc(), 248

max err dow at vert(), 248

max err dow at vert loc(), 248

max quad points(), 230

MAXEY DOW(), 77, 82

MAXPBY DOW(), 77, 82

MAXPBYP DOW(), 77, 82

MAXPBYPCZ DOW(), 77, 82

MAXPBYPCZP DOW(), 77, 82

MAXPY DOW(), 77, 82

MAXTPY DOW(), 77, 82

MCMP DOW(), 77

MCOPY DOW(), 77

MD2 DOW(), 77

418 DATA TYPES, SYMBOLIC CONSTANTS, FUNCTIONS, AND MACROS

MD2 P DOW(), 77

MDET DOW(), 77

MDIST DOW(), 77, 82

MDST2 DOW(), 77, 82

mean value(), 248, 251

mean value dow(), 248, 251

mean value loc(), 248, 251

mean value loc dow(), 248, 251

mesh traverse(), 112

MEXPAND DOW(), 77

MFORMAT DOW(), 77

MG(), 364

mg s(), 365

mg s exit(), 365

mg s init(), 365

mg s solve(), 365

MGEMTV DOW(), 77, 83

MGEMV DOW(), 77, 83

MGRAD DOW(), 77

MGRAD P DOW(), 77

MGRAMSCP DOW(), 77, 82

MINVERT DOW(), 77

MM DOW(), 77, 83

MMT DOW(), 77, 83

MNORM DOW(), 77, 82

MNRM2 DOW(), 77, 82

MSCAL DOW(), 77, 82

MSCP DOW(), 77, 82

MSET DOW(), 77

MTM DOW(), 77, 83

MTV DOW(), 77, 83

MV DOW(), 77, 83

new bas fcts, 155

new quadrature(), 224

nls newton(), 368

nls newton br(), 368

nls newton ds(), 368

nls newton fs(), 368

NORM1 DOW(), 77, 82

NORM8 DOW(), 77, 82

NORM DOW(), 77, 82

NRM2 DOW(), 77, 82

NRMP DOW(), 77, 82

oem bicgstab(), 326

oem block solve(), 388

oem cg(), 326

oem gmres(), 326

oem gmres k(), 326

oem odir(), 326

oem ores(), 326

oem solve d(), 329, 330

oem solve dow(), 329

oem solve dowb(), 330

oem solve s(), 329, 330

oem sp schur solve(), 340, 347–348

oem sp solve dow scl(), 340, 342

oem sp solve ds(), 340, 342

oem spcg(), 337, 339

oem symmlq(), 326

oem tfqmr(), 326

one timestep(), 310

open error file(), 63

open gltools window(), 373

open msg file(), 63

param grd f loc at qp(), 225

param grd f loc d at qp(), 225

PNRMP DOW(), 77, 82

POW DOW(), 77, 82

print dof matrix(), 129

Printing of DOF-vectors

print dof int vec(), 124

print dof ptr vec(), 124

print dof real d vec(), 124

print dof real vec(), 124

print dof real vec dow(), 124

print dof schar vec(), 124

print dof uchar vec(), 124

print mem use(), 64

print msg(), 60

read bndry submesh(), 206

read bndry submesh by segment(), 206

read bndry submesh by segment xdr(), 206

read bndry submesh by type(), 206

read bndry submesh by type xdr(), 206

read bndry submesh xdr(), 206

read dof int vec(), 135

read dof int vec xdr(), 136

read dof real d vec(), 135

read dof real d vec xdr(), 136

read dof real vec(), 135

LIST OF FUNCTIONS 419

read dof real vec d(), 135

read dof real vec xdr d(), 136

read dof real vec xdr(), 136

read dof schar vec(), 135

read dof schar vec xdr(), 136

read dof uchar vec(), 135

read dof uchar vec xdr(), 136

read macro(), 105

read macro bin(), 106

read macro xdr(), 106

read mesh(), 134

read mesh xdr(), 135

read submesh(), 206

read submesh xdr(), 206

realloc workspace(), 66

refine(), 136

register quadrature(), 224

register wall quadrature(), 232

release oem solve(), 331, 333

release sp constraint(), 340, 346

robin bound(), 300

save parameters(), 70

SCAL DOW(), 77, 82

SCAN EXPAND DOW(), 77

SCAN FORMAT DOW(), 77

SCP DOW(), 77, 82

set coarse inter(), 188

set coarse inter d(), 188

set coarse inter dow(), 188

set coarse restrict(), 188

set coarse restrict d(), 188

set coarse restrict dow(), 188

SET DOW(), 77

set refine inter(), 188

set refine inter d(), 188

set refine inter dow(), 188

sor d(), 336

sor s(), 336

sp dirichlet bound dow scl(), 340

sp dirichlet bound ds(), 340, 349–350

ssor d(), 336

ssor s(), 336

stokes pair(), 175, 392–394

SUM DOW(), 77, 82

trace dof dof vec(), 206

trace dof int vec(), 206
trace dof ptr vec(), 206
trace dof real d vec(), 206
trace dof real vec(), 206
trace dof schar vec(), 206
trace dof uchar vec(), 206
trace int dof vec(), 206
trace L2scp fct bas(), 298
trace L2scp fct bas dow(), 298
trace L2scp fct bas loc(), 298
trace L2scp fct bas loc dow(), 298
trace to bulk coords(), 206
trace tobulk coords 0d(), 206
trace tobulk coords 1d(), 206
trace tobulk coords 2d(), 206
trace tobulk coords dim(), 206
TRAVERSE FIRST(), 114, 115

traverse first(), 114, 115

traverse neighbour(), 116

TRAVERSE NEXT(), 114, 115

traverse next(), 114, 115

uh at qp(), 240

uh d at qp(), 240

uh dow at qp(), 240

unchain submesh(), 206

update bas fcts sub chain(), 189, 190

update dof dof vec sub chain(), 189,

190

update dof int vec sub chain(), 189,

190

update dof matrix sub chain(), 189,

190

update dof ptr vec sub chain(), 189,

190

update dof real d vec sub chain(), 189,

190

update dof real vec d sub chain(), 189,

190

update dof real vec sub chain(), 189,

190

update dof schar vec sub chain(), 189,

190

update dof uchar vec sub chain(), 189,

190

update fe space sub chain(), 189, 190

update master matrix(), 206

420 DATA TYPES, SYMBOLIC CONSTANTS, FUNCTIONS, AND MACROS

update master real d vec(), 206

update master real vec(), 206

update matrix(), 265

update real d vec(), 289

update real vec(), 289

update real vec dow(), 289

use lagrange parametric(), 192--195

vinit oem precon(), 358--360

wall orientation(), 230

wall rel orientation(), 230

WEDGE DOW(), 77, 82

world to coord(), 221

write dof int vec(), 135

write dof int vec xdr(), 136

write dof real d vec(), 135

write dof real d vec xdr(), 136

write dof real vec(), 135

write dof real vec d(), 135

write dof real vec d xdr(), 136

write dof real vec xdr(), 136

write dof schar vec(), 135

write dof schar vec xdr(), 136

write dof uchar vec(), 135

write dof uchar vec xdr(), 136

write dof vec gmv(), 380

write macro(), 106

write macro bin(), 106

write macro data(), 109

write macro data bin(), 109

write macro data xdr(), 109

write macro xdr(), 106

write mesh(), 134

write mesh gmv(), 380

write mesh xdr(), 135

List of macros

ABS(), 59
ADD PARAMETER(), 69
ALLOC EL VEC(), 260

CHAIN ADD HEAD(), 180
CHAIN ADD TAIL(), 180
CHAIN DEL(), 180

CHAIN DO(), 180

CHAIN DO REV(), 180

CHAIN FOREACH(), 180

CHAIN FOREACH REV(), 180

CHAIN FOREACH REV SAVE(), 180

CHAIN FOREACH SAVE(), 180

CHAIN INIT(), 180

CHAIN INITIALIZER(), 180

CHAIN LENGTH(), 180

CHAIN NEXT(), 180

CHAIN PREV(), 180

CHAIN SINGLE(), 180

CHAIN WHILE(), 180

CHAIN WHILE REV(), 180

CLEAR WORKSPACE(), 67

D2 PHI(), 144

D2 PHI D(), 144

D3 PHI(), 144

D4 PHI(), 144

DEBUG TEST, 64

DEBUG TEST EXIT, 64

DEF EL VEC CONST(), 260

DEF EL VEC VAR(), 260

DIM FAC

DIM FAC(), 73

DIM FAC 0D, 74

DIM FAC 1D, 74

DIM FAC 2D, 74

DIM FAC 3D, 74

DIM FAC LIMIT, 74

DIM FAC MAX, 74

ENTRY NOT USED(), 127

ENTRY USED(), 127

ERROR(), 62

ERROR EXIT(), 62

FOR ALL DOFS(), 130

FOR ALL FREE DOFS(), 130

FOR ALL MAT COLS(), 129

FOREACH DOF(), 180

FOREACH DOF DOW(), 180

FOREACH FREE DOF(), 180

FOREACH FREE DOF DOW(), 180

FREE WORKSPACE(), 67

FUNCNAME(), 60

LIST OF MACROS 421

GET DOF VEC(), 123
GET MESH(), 96
GET PARAMETER(), 70
GET WORKSPACE(), 66
GRD PHI(), 144
GRD PHI D(), 144

INDEX(), 91
INFO(), 61
INIT BARY ?D(), 75
INIT BARY MAX(), 75
INIT EL TAG CTX DFLT(), 217–218
INIT EL TAG CTX INIT(), 217–218
INIT EL TAG CTX NULL(), 217–218
INIT EL TAG CTX TAG(), 217–218
INIT EL TAG CTX UNIQ(), 217–218
INIT ELEMENT(), 215–217
INIT ELEMENT DECL, 218
INIT OBJECT(), 215–217
IS DIRICHLET(), 81
IS INTERIOR(), 81
IS LEAF EL(), 93
IS NEUMANN(), 81

LEAF DATA(), 93

MAT ALLOC(), 65
MAT FREE(), 65
MAX(), 59
MEM ALLOC(), 64
MEM CALLOC(), 64
MEM FREE(), 64
MEM REALLOC(), 64
MIN(), 59
MSG(), 60

N EDGES

N EDGES(), 73
N EDGES 0D, 74
N EDGES 1D, 74
N EDGES 2D, 74
N EDGES 3D, 74
N EDGES LIMIT, 74
N EDGES MAX, 74

N FACES

N FACES(), 73
N FACES 0D, 74
N FACES 1D, 74

N FACES 2D, 74
N FACES 3D, 74
N FACES LIMIT, 74
N FACES MAX, 74

N LAMBDA

N LAMBDA(), 73
N LAMBDA 0D, 74
N LAMBDA 1D, 74
N LAMBDA 2D, 74
N LAMBDA 3D, 74
N LAMBDA LIMIT, 74
N LAMBDA MAX, 74

N NEIGH

N NEIGH(), 73
N NEIGH 0D, 74
N NEIGH 1D, 74
N NEIGH 2D, 74
N NEIGH 3D, 74
N NEIGH LIMIT, 74
N NEIGH MAX, 74

N VERTICES

N VERTICES(), 73
N VERTICES 0D, 74
N VERTICES 1D, 74
N VERTICES 2D, 74
N VERTICES 3D, 74
N VERTICES LIMIT, 74
N VERTICES MAX, 74

N WALLS

N WALLS(), 73
N WALLS 0D, 74
N WALLS 1D, 74
N WALLS 2D, 74
N WALLS 3D, 74
N WALLS LIMIT, 74
N WALLS MAX, 74

PHI(), 144
PHI D(), 144
PRINT INFO(), 61
PRINT INT VEC(), 61
PRINT REAL VEC(), 61

REALLOC WORKSPACE(), 66

SQR(), 59

TEST(), 62

422 DATA TYPES, SYMBOLIC CONSTANTS, FUNCTIONS, AND MACROS

TEST EXIT(), 62
TRAVERSE FIRST(), 114, 115
TRAVERSE NEXT(), 114, 115

WAIT, 63
WAIT REALLY, 63
WARNING(), 63

	Preface
	Contents
	List of Figures
	List of Tables
	Implementation of model problems
	libdemo.a
	Online-graphics
	parse_parameters()

	Poisson equation
	Include file and global variables
	The main program for the Poisson equation
	The parameter file for the Poisson equation
	Initialization of the finite element space
	Functions for leaf data
	Data of the differential equation
	The assemblage of the discrete system
	The solution of the discrete system
	Error estimation

	Nonlinear reaction–diffusion equation
	Program organization and header file
	Global variables
	The main program for the nonlinear reaction–diffusion equation
	Initialization of leaf data
	The build routine
	The solve routine
	The estimator for the nonlinear problem
	Initialization of problem dependent data
	The parameter file for the nonlinear reaction–diffusion equation
	Implementation of the nonlinear solver

	Heat equation
	Global variables
	The main program for the heat equation
	The parameter file for the heat equation
	Functions for leaf data
	Data of the differential equation
	Time discretization
	Initial data interpolation
	The assemblage of the discrete system
	Error estimation
	Time steps

	Installation of ALBERTA and file organization
	Installation
	File organization

	Data structures and implementation
	Basic types, utilities, and parameter handling
	Basic types
	Message macros
	Memory allocation and deallocation
	Parameters and parameter files
	Parameters used by the utilities
	Generating filenames for meshes and finite element data

	Data structures for the hierarchical mesh
	Dimension of the mesh
	The local indexing on elements
	BLAS-like routines for DIM_OF_WORLD- and N_LAMBDA_MAX-arrays
	Boundary types
	The MACRO_EL data structure
	The EL data structure
	The EL_INFO data structure
	Caching of geometric element quantities
	The INDEX macro
	Application data on leaf elements
	The RC_LIST_EL data structure
	The MESH data structure
	Initialization of meshes
	Projection of new nodes
	Reading and writing macro triangulations
	Import and export of macro triangulations from/to other formats
	Mesh traversal routines

	Administration of degrees of freedom
	The DOF_ADMIN data structure
	Vectors indexed by DOFs: The DOF_*_VEC data structures
	Interpolation and restriction of DOF vectors during mesh adaptation
	The DOF_MATRIX data structure
	Access to global DOFs: Macros for iterations using DOF indices
	Access to local DOFs on elements
	BLAS routines for DOF vectors and matrices
	Reading and writing of meshes and vectors

	The refinement and coarsening implementation
	The refinement routines
	The coarsening routines

	Implementation of basis functions
	Data structures for basis functions
	Vector-valued basis functions
	Chains of basis function sets
	Lagrange finite elements
	Discontinuous Lagrange finite elements
	Discontinuous orthogonal finite elements
	Basis-function plug-in module

	Implementation of finite element spaces
	The finite element space data structure
	Access to finite element spaces

	Direct sums of finite element spaces
	Data structures for disjoint unions and direct sums
	List-management and looping constructs
	Managing temporary coefficient vectors
	Data transfer during mesh adaptation
	Forming direct sub-sums

	Data structures for parametric meshes
	Piece-wise polynomial parametric meshes
	The PARAMETRIC structure

	Implementation of submeshes
	Allocating submeshes
	Routines for submeshes
	Refinement and coarsening of submeshes

	Periodic finite element spaces
	Definition of periodic meshes
	Periodic meshes and finite element spaces
	Element-wise access to periodic data
	Periodicity and trace-meshes

	Per-element initializers for quadrature rules and basis function sets
	Basics
	Per-element initializers and vector-valued basis functions
	Tag management
	Mesh-traversal and per-element initializers

	Tools for finite element calculations
	Routines for barycentric coordinates
	Data structures for numerical quadrature
	The QUAD data structure
	The QUAD_FAST data structure
	Integration over subsimplices (walls)
	The WALL_QUAD data structure
	The WALL_QUAD_FAST data structure
	Caching of geometric quantities on quadrature nodes

	Functions for the evaluation of finite elements
	Calculation of norms for finite element functions
	Interface for application provided functions
	Calculation of errors of finite element approximations
	Tools for the assemblage of linear systems
	Element matrices and vectors
	Data structures and functions for matrix assemblage
	Matrix assemblage for second order problems
	Matrix assemblage for coupled second order problems
	Data structures for storing pre-computed integrals of basis functions
	Data structures and functions for updating coefficient vectors
	Boundary conditions
	Interpolation into finite element spaces

	Data structures and procedures for adaptive methods
	ALBERTA adaptive method for stationary problems
	Standard ALBERTA marking routine
	ALBERTA adaptive method for time dependent problems
	Initialization of data structures for adaptive methods

	Implementation of error estimators
	Error estimator for elliptic problems
	Error estimator for parabolic problems

	Solver for linear and nonlinear systems
	Krylov-space solvers for general linear systems
	Krylov-space solvers for DOF matrices and vectors
	SOR solvers for DOF-matrices and -vectors
	Saddle-point problems, CG solver for Schur's complement
	Saddle-pointer solvers for DOF-matrices and -vectors
	OEM matrix-vector functions for DOF-matrices and -vectors
	Preconditioners
	Multigrid solvers
	Nonlinear solvers

	Graphics output
	One and two dimensional graphics subroutines
	gltools interface
	GRAPE interface
	Paraview interface
	Geomview interface
	GMV interface

	Contributed ``add-ons''
	add_ons/bamg2alberta/
	add_ons/block_solve/
	add_ons/geomview/
	add_ons/gmv/
	add_ons/grape/
	add_ons/libalbas/
	add_ons/meshtv/
	add_ons/paraview/
	add_ons/static_condensation/
	add_ons/triangle2alberta/
	add_ons/write_mesh_fig/

	Bibliography
	Index
	Data types, symbolic constants, functions, and macros
	List of data types
	List of symbolic constants
	List of functions
	List of macros

